On the Applicability of Predictive Maintainability Models onto dynamic
Languages

Miguel Lopez', Naji Habra?, Grégory Seront'

" CETIC asbl
Rue Clément Ader, 8
B-6041 Gosselies, Belgium
malm@cetic.be, , gs@cetic.be

? Faculty of Computer Science
Namur University — FUNDP
Namur, Belgium
nha@info.fundp.ac.be

Abstract

Growing maintenance costs have become a major
concern for developers and users of software
systems. Predictive models of maintainability have
been developed to reduce such costs. Moreover,
predictive models based on internal measurements
represent a low-cost means to forecast the
maintenance costs and effort.

However, these measurements are not applicable to
dynamic languages. Indeed, such languages do not
declare the types of the variables. In that context,
usual internal measurement and the related
predictive models are not relevant.

Current paper analyzes the applicability of
predictive maintainability models on dynamic
languages, and proposes briefly some ideas of
solutions.

Keywords: predictive models, maintainability,
dynamic languages, software measurement,
metrology, semantic analysis.

1. Introduction

Today, the most important fraction of the IT budget
is allocated to the maintenance process. Indeed, 60%
of the IT costs are in the maintenance [14],[18].
Regarding this data, a goal to achieve would be to
decrease and better control the maintenance costs.

Predictive maintainability models represent a
strongly investigated mean to achieve such a goal
[1LI9],[11],[13],[15],[20]. The main idea of such
methods is to forecast the maintenance effort as early
as possible in the product lifecycle.

With such predictions, a suitable planning can be
done, and therefore, a better control and a decrease of
the costs can be possible. Moreover, predictive
models can be used as well gs to explore different
possibilities and to choose the less costly in terms of
predicted maintenance.

In the literature, many predictive maintainability
models can be found [1],[11],[15]. However, and in
order to be as clear as possible, two kinds of models
can be distinguished in the state of the art.

On the one hand, some models are based on the
measurements of attributes like bugs density, effort
to modify a program, or to understand it. Such
measurements are often called external measurement
[6]. In fact, “external” means two different things:
e measuring necessitates to execute the code,
i.e. bugs density
e the measure is related to the maintenance
process, i.e. effort to modify.

On the other hand, predictive models can also be
based on internal measurements. Internal means that
it is not necessary to execute the code to compute the
measurement result. For instance, the McCabe
cyclomatic number [15] is an internal measurement.

The current paper will only consider the second type
of model, that is, predictive models which take
internal measures as input.

Obviously, since most of the internal measurements
are automatic (done by a software tool), they
represent a low-cost means to predict maintainability.
This main characteristic represents the rationale
behind using such models in order to reduce IT costs.

Nevertheless, internal measurements present
important limitations with respect to their
applicability to some languages.

Indeed, most of the internal measures have been
developed for programming languages like Java or
C++. These languages hold an important property
that eases the use of these measurements. They are
statically typed.

The type of each variable is declared within the code.
So, to determine the type of a given object/variable
used in a given program some parsing would be
needed; furthermore determining the types remains an
achievable objective.

Moreover, some internal measurements need to
rigorously know the types within a program, e.g.
coupling. And, the predictive maintainability models
often use such measurements.

So, it means that if a given language (e.g., Python,
Smalltalk, VB...) does not declare their types, such
measurements and their related models are not
applicable. These languages called dynamic - because
the types are defined at the run-time — do not benefit
from the internal measurement, and therefore from the
predictive maintainability models

The current paper aims at understanding the
limitations within dynamic languages of internal
measurement-based predictive models. We highlight
the issues due to the dynamic typing of such
languages, and give some ideas of solution.

2. Dynamic Languages Issues

Predictive maintenance models based on internal
measurement are applicable for static languages like
C++, Ada or Java. Indeed, most of the measurements
used in such predictive models, e.g. coupling
cohesion, need to formally identify the types within
the program . In this case, types identification is
possible by only parsing the source code.

The coupling measurement is widely used in
predictive models. Indeed, measurements like fan
out, fan in, or coupling between objects (CBO)
represent useful measurement methods in order to
predict maintainability.

There are different definitions of the coupling
attribute. Roughly speaking coupling is the amount

of connections between modules or classes for the
object-oriented paradigm. According to Stevens et
al., the measure of the strength of association
established by a connection from one module to
another. [21]

Another example is the fan-out attribute which can be
defined as follows: the fan-out of a module M is the
number of local flows that emanate from M, plus the
number of data structures that are updated by
M.[11]. In other words, the fan-out measurement
counts the number of classes or modules used by a
given class or module.

However, to compute such a measurement, it is
necessary to previously identify the types of each
object. Moreover, this type identification must be
done by parsing the source code, since the
measurement is internal.

The same can be said for the other coupling
measurements. So, type identification is crucial for
predictive maintenance models.

Another example of internal measurement that needs
types identification is cohesion. Module cohesion
was introduced by Yourdon and Constantine as how
tightly bound or related the internal elements of a
module are to one anothe.r [22].

An important measurement for cohesion is the set of
lack of cohesion, that is, LCOM. Three authors have
suggested a definition of LCOM [5], [9],[15].
According to [1], these measurements seem to be
closely related to reusability of the source code. In
that sense, the reusability quality is relevant within a
predictive maintenance model.

To be correctly computed, each of the measurements
proposed for cohesion need to identify the types of
the variables. Indeed, the type of each variable within
the body of a method or function must be determined
in order to clarify whether the given class or module
uses all the variables. In other words, it is necessary
to know the type of all variables within a method in
order to compute the cohesion measure.

In that context, dynamic languages represent an
interesting and important issue for such predictive
models.

Indeed, dynamic languages do not declare the types
of their variables. So, internal measurement is
strongly impoverished.

Moreover, and since internal measurement is mostly
based on static analysis of the source code,
measurement like cohesion and coupling are difficult
to apply onto such languages.

Therefore, predictive models of maintenance based on
internal measurement are hardly relevant for dynamic
languages.

A static identification of the types seems to be
impossible in those languages. Only the name of the

variables is given by the code, but not their type, not
even their name. So, determining the types is made
up of uncertainty. In other words, only analyzing the
syntax of the source code written in a dynamic
language is not enough to collect information about
the types.

It is clear that there is a strong need for defining
internal measurement applicable to dynamically typed
languages. Since internal measures represent a key
point of predictive models of maintenance, today,
dynamic languages do not benefit of such useful
models.

Nevertheless, some applicable solutions exist, even if
they are still unused in the industry or the academic
world.

3. Some Ideas of Solutions

3.1. Calibration

A first idea of solution can be found in the
metrology. In fact the application of suitable
metrology concepts such as calibration and error
would represent a low-cost means to correct such
measurement.

Indeed, since the errors related to dynamic typing
arise thoroughly during measurement, the adjustment
could be rigorously the same for each execution of
the measure.

In that sense, such kinds of errors are well known
within the metrology field. They correspond to the
well-known concept systematic errors, which occur
each time the measurement is executed, regardless the
conditions.

According to [7], systematic errors are defined as a
component of error which, in the course of a number
of analyses of the same measurand, remains constant
or varies in a predictable way. It is independent of
the number of measurements made and cannot
therefore be reduced by increasing the number of
analyses under constant measurement conditions.
The measurand is the quantity to be measured.
Moreover, the systematic error can be controlled in
some cases thanks to its predictability. For example,
the cause of such an error can be a misconception of
the measuring instrument. In this case, a calibration
of the instrument can be enough in order to reduce
the effects of a systematic error [16].

This corresponds exactly with the problem we face.
Due to a misconception of the measuring instrument,
which is not able to infer the types, an error affects
systematically the measurement. And, most of the
types within a program are not counted.

Metrology suggests an easy means to handle this
predictable error, that is, calibration.

In [8], calibration is defined as a set of operations
that establish, under specified conditions, the
relationship between values of quantities indicated

by a measuring instrument (or values represented by
a material measure) and the corresponding values
realized by standards. The result of the calibration
can be considered as a correction of the values
indicated by the measuring instrument.

An important term is used within the definition, that
is, standard. 4 standard or etalon can be a material
measure, measuring instrument, reference material
or measuring system intended to define, realize,
conserve or reproduce a unit or one or more values
of a quantity to serve as a reference [8].

Therefore, in our case, the etalon would be a set of
pieces of code that show some relevant examples in
regard with the type inference for a given dynamic
language.

However, things are not as simple as previously
explained. Indeed, the need for an etalon for correctly
calibrating remains an important issue, which begin
to be discussed [1], [16]. And, even thought this
topic is a very interesting problem, it is out of the
scope to more detail such concept.

When etalons are clearly defined, the measurement of
the standards, i.e. examples of code, is manually
made. Each standard or piece of code is then linked
with the exact value, assuming that the manual
measurement is correct.

At this point of the calibration process, the correct
values of the standards are known. So, now it is
necessary to proceed to the measurement with the
measuring tool in order to obtain the values given by
the tool.

Now, a pair of values is available for each etalon. So,
a linear regression can be computed with these values
to get the relationship between the correct values
(manually obtained) and the values returned by the
measuring tool.

An important assumption has been made to compute
the linear regression. Indeed, the relationship between
the correct and the erroneous values is linear. This
hypothesis is acceptable, if and only if the definition
domain of the relationship is so small that the curve
is locally linear.

Finally, each time the measurement is executed, the
correct value is computed within the linear
relationship by using the value given by the
measuring tool.

3.2. Improved Semantic Analysis

A second idea of solution can be found in semantic
analysis. Enhancing the semantic analysis within
measurement tools is another way to correctly
compute measurements that need formal type
identification.

Now, the question is how can we determine the types
in a dynamic language, which does not declare its
types?

The main idea of such means is to build a set of rules
or heuristics that helps identifying the types of the
variables. These rules would be build thanks
empirical studies of source codes samples, for which
different variables typing cases are available.

An example will highlight this second point. Let the
following source code in Python.

Class A:
def methodA(self, attr):
for k, v in attrs :
print v

Source Code 1 Python Sample

The question is which is the type of the argument
attrs? This is an important question to compute
coupling.
Since there is a loop for exploded into two variables
k and v, it seems that attrs is a dictionary, that is, a
Python array. Now, the question is which is the type
of the element within this array?
It is important to know that in such construction for
k, v in attrs, the variable k represent the keys of the
array, and the variable v is the values of the elements.
So, since the value of the variable v is displayed at
the last line, the type of the variable v can be:

e Number: float, integer

e String
In that case, it is not decidable, and a coefficient of
uncertainty must be related to the type. This
coefficient could be empirically set up.
Moreover, the print statement can be an error of the
programmer, and in that case the content of v is a
memory address. But, based on a static analysis, it
is impossible to detect such method, unless a
stronger semantic analysis is done.

3.3. Models Using Other Definition
Measurement

A third solution to investigate would be to extent the
definition of the internal measurements involved in
the predictive maintainability models.

For instance, a « static » definition of the coupling
attribute is not relevant for a dynamic language, since
coupling depends on the history of execution of the
program.In that sense, it could be more useful to
define and measure another other attribute related to a
more « dynamic » coupling concept.

In other words, the model or meta-model of the new
coupling attribute would capture all properties of
dynamic languages which affect the software
maintainability.

Investigating this solution means that the usual
predictive maintainability models should be avoided

with dynamic languages, and therefore new internal
measurements have to be to redefined.

4. Conclusion

In this paper, we study the applicability of the
predictive maintainability models for the dynamic
languages.

The paper highlights the problematic use of the
internal measurements within dynamic languages.
The dynamic typing is showed to be a blocking
factor that strongly affects the usability of such
models.

However, three solution proposals are briefly
described in the paper. Firstly, the application of
well-known metrology concepts (e.g., uncertainty,
systematic, calibration) is explained in terms of
improving the internal measurements. Secondly, it is
proposed to investigate and improve semantic
analysis in order to infer the types. Thirdly, the paper
suggests redefining the internal attributes (coupling,
cohesion....) involved in the predictive
maintainability models in such a manner that these
measurements would be relevant for the dynamic
languages.

5. Acknowledgement

This research project is supported by the
European Union (ERFD) and the Walloon Region
(DGTRE) under the terms defined in the Convention
n° EP1A12030000072-130008.

6. References

1. A. Abran and A. Sellami. Measurement and
metrology requirements for empirical studies in
software engineering. Proceedings of the 10th
International Workshop on Software Technology
and Engineering Practice, 2002.

2. Victor R. Basili, Lionel Briand and Walcélio L.
Melo, “A Validation Of Object-Oriented Design
Metrics As Quality Indicators”, Technical
Report, Univ. of Maryland, Dep. of Computer
Science, College Park, MD, 20742 USA. April
1995.

3. Boehm, B. et al, “Software Cost Estimation
with COCOMO 1I”, Prentice Hall PTR, 2000

4. Briand, L., Bunse, C., Daly, J., “An
Experimental Evaluation of Quality Guidelines
on the Maintainability of Object-Oriented Design
Documents”, IESE-Report No. 038.97/E, 1997

5. Chidamber, S., R., Kemerer, C., K., A Metrics
Suite for Object Oriented Design, IEEE Trans.
on Software Eng., Vol.20, No.6, June 1994.

10.

11.

12.

13.

14.

15.

16

17.

18.

19.

.ISO/IEC

.Miguel Lopez,

9126-1 (2001) “Software
Engineering—Product Quality—Part 1: Quality
model”. June 2001.

ISO. Guide to the expression of uncertainty in
measurement., 1993

ISO. International vocabulary of basic and
general terms in metrology, international
organization for standardization, 1993.

Henderson-Sellers, B., Object-oriented metrics :
measures of complexity, Prentice-Hall, pp.142-
147, 1996

Hind Kabaili, Rudolf K. Keller and Frant;ois
Lustman, “Cohesion as Changeability Indicator
in Object-Oriented Systems”, Proceedings on
Fifth European Conference on Software
Maintenance and Reegineering (CSMR’01),
2001

Fenton, N. , Pfleeger, S.L., “Software Metrics A
rigorous & practical approach”, 2" Edition,
PWS Publishing Company, 1997

Marc Frappier Stan Matwin Ali Mili, “Software
Metrics for Predicting Maintainability”,
Technical Memorandum 2, Canadian Space
Agency 1994

Marcela Genero, Mario Piattini and Coral
Calero, “Empirical Validation of Class Diagram
Metrics”, Proceedings of the 2002 International
Symposium on Empirrcal Software Engineering
(IESE 2002), 2002

Huff, S. “Information systems maintenance”.
The Business Quarterly 55, 30-32, 1990

Li, W., and S. Henry. Maintenance metrics for
the object-oriented paradigm. Proceedings of the
First International Software Metrics Symposium,
Baltimore, MD, May 1993, pp. 52-60.

Simon Alexandre, Valerie
Paulus, Gregory Seront, “On the Application of
some Metrology Concepts to Internal Software
Measurement”, 8th ECOOP Workshop on
Quantitative Approaches in Object-Oriented
Software Engineering (QAOOSE 2004), Oslo,
2004

McCabe, T, “A Complexity Measure”, IEEE
Transactions On Software Engineering, Vol.
Se-2, No.4, December 1976

Port, O., “The software trap — automate or else”.
Business Week 3051 (9), 142-154, 1988

Harry M. Sneed Anecon GmbH, Vienna Austria,
“A Cost Model for Software Maintenance &
Evolution”, Proceedings of 20" International

Conference on Software Maintenance

(ICSM’04), 2004

20. Dimitris Stavrinoudis, Michalis Xenos, Greece

21

22.

.W. Stevens,

Dimitris Christodoulakis, “Relation Between
Software Metrics and Maintainability”,
Proceedings of the FESMA99 International
Conference, Federation of European Software
Measurement Associations, Amsterdam, The
Netherlands, pp. 465-476, 1999.

G. Myers, L. Constantine,
"Structured Design", IBM Systems Journal, 13
(2), 115-139,1974.

Edward Yourdon and Larry L. Constantine.
Structured Design. Prentice Hall, Englewood
Cliffs, N.J., 1979.

