
TANGO: Transparent heterogeneous hardware
Architecture deployment for eNergy Gain in Operation

K. Djemame D. Armstrong
R. Kavanagh

University of Leeds, UK
K.Djemame@leeds.ac.uk

J.C. Deprez
CETIC, Belgium

Jean-Christophe.Deprez@cetic.be

A.J. Ferrer D. Garcia Perez
Atos, Spain

ana.juanf@atos.net

R.M. Badia R. Sirvent J. Ejarque
Barcelona Supercomputing Center, Spain

R.M.Badia@bsc.es

Y. Georgiou
Bull, France

yiannis.georgiou@atos.net

Abstract
The paper is concerned with the issue of how software systems
actually use Heterogeneous Parallel Architectures (HPAs), with
the goal of optimizing power consumption on these resources. It
argues the need for novel methods and tools to support software
developers aiming to optimise power consumption resulting from
designing, developing, deploying and running software on HPAs,
while maintaining other quality aspects of software to adequate and
agreed levels. To do so, a reference architecture to support energy
efficiency at application construction, deployment, and operation is
discussed, as well as its implementation and evaluation plans.

Categories and Subject Descriptors C.1.4 [Parallel Architec-
tures]: Distributed Architectures; C2.4 [Distributed Systems]:
Distributed Applications

General Terms Measurement, Performance, Design, Security

Keywords Heterogeneous parallel architectures, low power com-
puting, energy efficiency, programming model, self-adaptation

1. Introduction
Recent years saw the emergence of Cyber-Physical Systems (CPS),
the Internet of Things (IoT), and the Smart Anything Everywhere
Initiative which have the potential to transform the way we live and
work [1]. For example, the IoT transformational impact in the long
term is expected to increase significantly with mass adoption, tens
of billions of things connected, and a multi-trillion-dollar economic
value, the key drivers being new business models taking advantage
of the data collected by the IoT, sophisticated application develop-
ment platforms, analytics applied to things, and distributed/parallel
architectures [2].

As the range of applications continues to grow, e.g. CPS, IoT,
connected smart objects, High Performance Computing (HPC),
mobile computing, wearable computing etc. there is an urgent need
to design more flexible software abstractions and improved system
architectures to fully exploit the benefits of the heterogeneous plat-
forms on which they operate. Heterogeneous parallel architectures
have received considerable attention, as an efficient approach to run
applications and deliver services, by combining different processor
types in one system to improve absolute performance, minimise
power consumption and/or lower cost. New platforms incorporat-
ing multi-core CPUs, many-core GPUs, and a range of additional

devices into a single solution are being introduced. These platforms
are showing up in a wide range of environments spanning super-
computers to personal smartphones. One of the challenges to future
application performance lies with not only efficient node-level ex-
ecution but power consumption as well, which is a key focal point
of this paper.

Although general complex engineering simulations come to
mind when identifying families of applications benefiting most
from heterogeneous parallel architectures, in the upcoming era of
IoT and Big Data, there is significant interest in exploiting the ca-
pabilities offered by customised heterogeneous hardware such as
FPGA, ASIP, MPSoC, heterogeneous CPU+GPU chips and hetero-
geneous multi-processor clusters all of which with various mem-
ory hierarchies, size and access performance properties. In fact,
Big Data online with nearly instantaneous results demand massive
parallelism and well devised divide-and-conquer approaches to ex-
ploit heterogeneous hardware, both client and server sides, to its
fullest extent. Moreover, heterogeneous systems can not only han-
dle workload with fewer and/or smaller servers (cost saving) but
also slash the energy used to run certain applications, which helps
gain clear benefits and addresses the growing interest in green so-
lutions and the pressure to reduce the environmental impact of, e.g.
data centres. A common theme across all scenarios is the need
for low-power computing systems that are fully interconnected,
self-aware, context-aware and self-optimising within application
boundaries [4].

Because the impact of heterogeneity on all computing tasks is
rapidly increasing, innovative architectures, algorithms, and spe-
cialized programming environments and tools are needed to effi-
ciently use these new and mixed/diversified parallel architectures.

The paper is concerned with low-power multi / many-core/
programmable computing systems development by addressing the
power consumption and efficiency of the software which runs on
these infrastructures. As software consumes energy in its opera-
tion, the primary aim of this research is to relate software design
and power consumption awareness, making it imperative that the
software to be developed is not only as low power consumption
aware as it possibly can be, but takes into account trade-offs with
other key requirements in the environment where it runs such as
performance, time-criticality, dependability, data movement, secu-
rity and cost-effectiveness as well.

The paper’s main contributions are: 1) the incorporation of a
novel approach that combines energy-awareness related to het-

PROHA’16, March 12, 2016, Barcelona, Spain 1 2018/1/2

ar
X

iv
:1

60
3.

01
40

7v
1 

 [
cs

.S
E

] 
 4

 M
ar

 2
01

6



erogeneous parallel architectures with the principles of require-
ments engineering and design modelling for self-adaptive software-
intensive systems. This way, the energy efficiency of both heteroge-
neous infrastructures and software are considered in the application
development and operation lifecycle, and 2) a proposed energy ef-
ficiency aware system architecture, its components, and their roles
to support key requirements in the environment where it runs such
as performance, time-criticality, dependability, data movement, se-
curity and cost-effectiveness.

The remainder of the paper is structured as follows: Section II
describes the proposed architecture to support energy-awareness.
Section III discusses optimisation issues supported through self-
adaptation to enact optimal, in terms of requirements and Key Per-
formance Indicators (KPIs), application deployment and operation.
Section IV discusses the implementation and evaluation plans of
the architecture. Section V presents related work. In conclusion,
Section VI provides a summary of the research and plans for future
work.

2. System Architecture
As stated in Section 1, it is clear the energy requirements of the
software applications which run on heterogeneous parallel archi-
tectures must be incorporated into the overall development and de-
ployment process. Determining the relationship between software
structure and its power usage will allow the definition of a set of
software power metrics similar in concept to those for hardware. By
associating those metrics with software components and libraries
it will be possible to not only populate a software development
environment with information to predict and illustrate the power
requirements of applications enabling the programmer to see the
consequences of their work, but also automatically optimise the
code by allowing alternative selections of software components to
be made [24], using power consumption as an additional selection
criterion. In addition to this, developers need to fully understand
the nuances of different hardware configurations and software sys-
tems (both rapidly evolving), as well as consider additional issues
in terms of performance, security mixed-criticality and power con-
sumption resulting from the heterogeneous system.

Next, the proposed architecture in Figure 1 is discussed in the
context of the application life cycle: construction, deployment, and
operation. It is separated into remote processing capabilities in
the upper layers, which in turn is separated into distinct blocks
that support the standard application deployment model (construct,
deploy, run, monitor, adapt) and local processing capabilities in
the lowest layer, which illustrates support for secure embedded
management of IoT devices and associated I/O.

2.1 Integrated Development Environment (IDE)
In this block, a collection of components interact to facilitate the
modelling, design and construction of applications. The compo-
nents aid in evaluating power consumption of an application during
its construction. A number of plug-ins are provided for a frontend
IDE as a means for developers to interact with components within
this layer. Lastly, this layer enables architecture agnostic deploy-
ment of the constructed application, while also maintaining low
power consumption awareness. The components in this block are:

Requirements and Design Modelling: aims at guiding the devel-
opment and configuration of applications to determine what can be
targeted in terms of Quality of Service (QoS), Quality of Protection
(QoP), cost of operation and power consumption behaviour when
exploiting the potential of the underlying heterogeneous hardware
devices. In particular, it is anticipated that different deployment al-
ternatives of an application will lead to different levels of quality,
power consumption behaviour and operational cost. The Require-
ments and Design Modelling tools must therefore help to better

understand deployment alternatives in particular situations. Rapid
prototyping with exploratory runs of an application or portion of an
application on actual heterogeneous hardware devices or on device
emulators will help developers with design decisions such as iden-
tify what software components to decouple from others so their ex-
ecution can exploit the parallelism of the provided underlying het-
erogeneous hardware. It is also at this state that developers can de-
termine what portion of an application could be compiled or rapidly
ported to programmable hardware to further optimise trade-off on
quality, energy and cost performance.

Programming model (PM): supports developers when coding
their applications. Although complex applications are often written
in a sequential fashion without clearly identified APIs, the PM
let programmers annotate their programs in such a way that the
Programming Model Runtime can then execute them in parallel
on heterogeneous parallel architectures. At runtime, applications
described for execution with the Programming Model runtime are
aware of the power consumption of components implementation.
In the task-based paradigm supported by the programming model,
tasks are annotated by the developer, indicating directionality of
the task parameters, and at runtime a task dependence graph is
built which inherently describes the parallelism of the application.
Heterogeneity is easily handled with this paradigm, since tasks
that better fit a given device will be executed there, and locality
aspects can also be easily taken into account by the runtime. A
hierarchy of task-based programming models will be used in a
project, combining coarser grain and finer grain tasks, which will
enable on one hand to better capture the high level structure of
the application (coarse grain) and the other hand, details of the
architecture (finer grain). Different instances of tasks would be
available, in such a way that at runtime the best one (in terms of
energy or time selected trade-off) can be chosen and executed in
the optimum device.

Code optimizer: plays an essential role in the reduction of en-
ergy consumed by an application. This is achieved through the
adaptation of the software development process and by providing
software developers the ability to directly understand the energy
foot print of the code they write. The proposed novelty of this com-
ponent is in its generic code based static analysis and energy pro-
filing capabilities (Java, C, C++, etc. available in the discipline of
mobile computing) that enables the energy assessment of code out-
of-band of an application’s normal operation within a developer’s
IDE.

2.2 Application Deployment
This block consists of a set of components to handle the placement
of an application considering energy models on target heteroge-
neous parallel architectures. It aggregates the tools that are able to
assess and predict performance and energy consumption of an ap-
plication. Application level monitoring is also accommodated, in
addition to support of self-adaptation for the purpose of making
decisions using application level objectives given the current state
of the application in question. The components in this block are:

Application Life cycle Deployment Engine: this component
manages the lifecycle of an application deployed by the IDE. Once
a deployment request is received, this component must choose the
infrastructure that is most suitable according to various criteria,
which include for example: 1) energy constraints/goals that indi-
cate the minimum energy efficiency that is required/desired for the
deployment and operation of an application; 2) application perfor-
mance constraints that indicate the minimum requirements in terms
of performance for the application (time-criticality, data location,
cost etc.) This will be made possible through the enhanced hetero-
geneous resources description as implemented within the resource
and job management system used, e.g. SLURM [25]. The different

PROHA’16, March 12, 2016, Barcelona, Spain 2 2018/1/2



Figure 1. Reference Architecture

application needs and criteria will be selected through the inter-
face provided by SLURM. The enhanced SLURM will perform
automatic workload execution upon the heterogeneous platform, in
addition to managing data (stage-in, stage-out), by applying effi-
cient scheduling techniques between jobs (fair sharing, backfilling,
pre-emption, etc.) and by selecting the best-suited resources for
each job (based on resources characteristics, network topology,
internal node topology, power management, etc.). Moreover, this
component’s role is also to optimize the life cycle of an application
to ensure its constraints are fulfilled considering: 1) the status of
the heterogeneous parallel devices in terms of power consumption
and workload; 2) the description of the cluster in terms of platform
type, hardware specification and its power consumption profile,
and 3) profile of application in terms of how it stresses each of
the devices (CPU, memory, network ...). Using SLURM’s support
for heterogeneous resources, the accounting and profiling of each
heterogeneous resource will take place for all jobs.

Monitor Infrastructure: this component is able to monitor the
heterogeneous parallel devices (CPU, memory, network ...) that
are being consumed by a given application by providing historical
statistics for device metrics. The monitoring of an application must
be performed in terms of power/energy consumed (e.g. Watts that
an application requires during a given period of its execution), and
performance (e.g. CPU that an application is consuming during a
given period of its execution).

Self-Adaptation Manager: This component provides key func-
tionality to manage the entire adaptation strategy applied to appli-
cations and Heterogeneous Parallel Devices (HPDs). This entails
the dynamic optimisation of: energy efficiency, time-criticality,
data movement and cost-effectiveness through continuous feedback
to other components within the architecture and a set of architecture
specific actuators that enable environmental change. Examples of
such actuators could be: redeployment to another HPD, restructur-
ing a workflow task graph or dynamic recompilation. Furthermore,
the component provides functionality to guide the deployment of

an application to a specific HPD through predictive energy mod-
elling capabilities and polices, defined within a decision support
engine, which specify cost constraints via Business Level Objec-
tives (BLOs). More details are available in Section 3.

2.3 Heterogeneous Parallel Devices Management
The last block above the network fabric line, addresses the het-
erogeneous parallel devices and their management. The applica-
tion admission, allocation and management of HPDs are performed
through the orchestration of a number of components. Power con-
sumption is monitored, estimated and optimized using translated
application level metrics. These metrics are gathered via a moni-
toring infrastructure and a number of software probes. At runtime
HPDs will be continually monitored to give continuous feedback
to the Self-Adaptation Manager. This will ensure the architecture
adapts to changes in the current environment and in the demand for
energy. Optimizations take into account several approaches, e.g. re-
deployment to another HPD, dynamic power management policies
considering heterogeneous execution platforms and application en-
ergy models. The components in this block are:

Device Supervisor: This component provides scheduling ca-
pabilities across devices during application deployment and op-
eration. This covers the scheduling of workloads of both clus-
ters (Macro level, including distributed network and data manage-
ment) and HPDs (Micro level, including memory hierarchy man-
agement). The component essentially realises abstract workload
graphs, provided to it by the Application Life-cycle Deployment
Engine component, by mapping tasks to appropriate HPDs. Meta-
scheduling heuristics manage multiple clusters efficiently, while
cluster level heuristics optimise the use of HPD resources and re-
source sets. Optimisation criteria (such as power consumption) and
environment state are provided as input by the Self-Adaptation
Manager and Monitoring Infrastructure components respectively.

Device Emulator: This component provides out-of-band appli-
cation deployment and operation to emulated HPD resources for

PROHA’16, March 12, 2016, Barcelona, Spain 3 2018/1/2



Figure 2. Architecture support for training application power profiles and deployment

the purpose of training application power profiles. Emulated HPD
resources execute application code while KPIs are monitored. The
output of this process calibrates metrics within a power model that
is provided to the Self-Adaptation Manager as a power profile, the
normalised performance results of as running an application on
a specific type or combination of HPD. Emulation of a range of
HPDs is realised through a generic back end driver that interfaces to
hardware emulators such as QEMU, OpenCL Emulator (ocl-emu)
or vendor specific ASIC (FPGA) emulators. The device emulator
could also be re-purposed to provide development time debugging
capabilities.

Furthermore, a Secure Gateway supports pervasive authentica-
tion and authorization, which at the core of the proposed archi-
tecture enables both mobility and dynamic security. This protects
components and thus applications from unauthorised access, which
in turn improves the dependability of the architecture as a whole.
The component provides embedded smart devices from the IoT
paradigm, secure access to remote processing resources through
the network fabric as well as enabling secure management of these
devices through the upper layers of the architecture. These smart
devices, comprised of a combination of discrete embedded compo-
nents (providing connectivity, embedded processing, sensors, etc.)
or a System on Chip (SoC), sense or actuate on an environment and
filter acquired data using limited processing capabilities. After this
local processing, data is sent securely over the network fabric for
further remote processing on more capable heterogeneous parallel
devices, supported by the upper layers of the architecture.

3. Self-Adaptation Support
This section discusses the interactions of these components in the
context power consumption and the ramifications this has on appli-
cation design, deployment and adaptation.

The proposed architecture is designed to support: 1) applica-
tion profiling at design time, and 2) actual deployment on hetero-
geneous parallel devices, as shown in Figure 2. This way, an ap-
plication can be trained for a specific parallel architecture. In do-

ing so, the Energy Modeller is able to create a better power con-
sumption prediction once the application is deployed. Furthermore,
programmers can identify portion of code worth re-writing and re-
annotating to augment self-adaptability at runtime, e.g. to better
exploit newly added hardware capabilities by the underlying pro-
gramming model.

In addition to support for application design and deployment,
the proposed architecture provides capabilities to perform contin-
uous autonomic self-adaptation during runtime as shown in Figure
3. This leverages fine-grained monitored metrics of heterogeneous
parallel devices and application software to create an adaptation
plan supporting the performance and cost goals of an application.
It is achieved through advances in modelling and prototyping that
enable power, cost and performance awareness during operation
through emulation and simulation under various ”what-if” scenar-
ios.

4. Implementation Plan
This research will create a new cross-layer programming flow for
heterogeneous parallel architectures featuring automatic code map-
ping and power optimization on the target architecture. Therefore,
as explained in section 2, it will consider the following aspects: 1)
application programming; 2) middleware, with support for power
consumption modelling and power-aware emulation to support the
actual code mapping, and 3) architecture(s) where the application
runs.

Mapping complex software on heterogeneous multi-core hard-
ware is performed as follows. The resource usage of the software
will be modelled as software metadata, which can be data flow,
Petri-net-based [27] or any other relevant formalism. This soft-
ware model is mapped to a similar hardware metadata represent-
ing the capabilities of the targeted hardware. Once this theoretical
mapping is found, the software configuration is adapted to the tar-
geted hardware, following the resulting mapping. This can involve
adding data movement, notably to manage scratchpad memory,
or selecting the proper compiler or parallelisation [16]. Software

PROHA’16, March 12, 2016, Barcelona, Spain 4 2018/1/2



Figure 3. Architecture support for self-adaptation at runtime

metadata can include a number of parameters ranging from the pro-
cess description (fork, synchronization), memory requirements (al-
location, free, communication), deadlines, switches annotated with
their associated probabilities, etc. Besides, hardware metadata in-
clude a description of the hardware, together with its particular cost
function (e.g. cost of data movement). Defining a model for soft-
ware and hardware metadata may encompass a probabilistic anno-
tation. Such annotation could be either expected pre-runtime, or
could be inferred statistically by observing the behaviour of the
software in operation in order to improve future optimisation deci-
sions. The actual mapping is performed by means of optimization
algorithms that optimize utility functions such as power consump-
tion, end to end timing, cost etc. To this end, this research will use
a generic optimization engine that is designed to support a realistic
model during the optimization phase, OscaR [26]. This will ensure
that the delivered mapping is as close as possible to the actual opti-
mum that will be encountered during the execution of the mapped
software on the targeted hardware. If the solution is found to be
sub-optimal after deployment, future optimisation will be enhanced
through self-adaptation.

The hardware is by definition heterogeneous and hence com-
plex but must be decoupled from the application. The Program-
ming Model will provide a graphical interface and enable the de-
velopment, analysis and profiling of the application in order to ex-
ecute in a low-power environment. The gap between the applica-
tion programmer and the heterogeneous parallel architecture will
be covered by a cross-layer approach presented in the architecture
section above. During development time, the cross-layer approach
will make use of software patterns to automatically generate the
required annotations as well as the runtime libraries/configurations
for the target architecture.

Subsequently at runtime, resource and job management where
jobs will be assigned to execute on specific hardware resources is
performed by the Application Life-Cycle Deployment Engine. To-
gether with the Application Monitoring, the Self-Adaptation Man-
ager, the Programming Model runtime and the underlying optimi-
sation engine, they will provide the necessary functionality to adapt
the execution of an application or a set of applications toward a
more optimal profile in relation to the targeted trade-offs on energy
behaviour and time performance. Pragmatically, the implementa-
tion plan proposes to adapt SLURM as well as the Programming
Model from the StarS family. SLURM is one of the first middle-
ware for performing resource and job management to provide func-
tionalities that enable power monitoring per node along with energy
accounting and power profiling per job which is a very useful fea-
ture for the project’s requirements. Another important aspect is the
support of the non-functional requirements of the application (e.g.
security, performance, data locality) while running on different ar-
chitectures. This reduces the need to make major changes to the ap-
plication implementation (source code) for different architectures.
The Programming Model from the StarS family such as OMPSs
or COMPSs work at a higher level of abstraction than SLURM as
they target application developers. An important implementation
decision will therefore be to determine if the Programming Model
and SLURM will integrate or if they will provide complementary
development approaches. In both cases, the other architecture com-
ponent will also require integration effort. For instance, the imple-
mentation of the Application Life-Cycle Deployment Manager, the
Self-Adaptation Manager, the selected programming models from
the StarS family as well as the implementation of the underly-
ing optimisation engine (OscaR [26]) will need to interface with
SLURM to augment it with their new capabilities.

PROHA’16, March 12, 2016, Barcelona, Spain 5 2018/1/2



5. Results and Evaluation
This research is expected to deliver a number of outcomes:

• A toolbox based implementation of the reference architecture
• Reference software development models and methodologies for

best practice
• A collection of reusable IDE plugins, programming models and

runtimes
• An adaptive quality model for holistic system performance
• Hardware and software energy models.

To validate this research, a heterogeneous parallel architectures
testbed is provisioned to host the toolbox and the implementation
of two Use Cases.

IoT: the objective is to demonstrate the capabilities of dynamic
reconfiguration of FPGA to allow versatile deployment of algo-
rithms applicable in various IoT business use case such as moni-
tor elderly people at home or TV-broadcasting related applications.
The reconfigurable power optimized connected platform aims to
develop a versatile platform dedicated to network management and
data processing. The platform electronics is built around a reconfig-
urable FPGA (e.g. K7 of Xilinx) with integrated multicore CPU ex-
ternally managed by either a small low power processor (e.g. ARM
M0) or higher end processor according to the business demand.
Based on the type of data to transmit and the QoS associated, the
low power processor will reconfigure on the fly the FPGA.

HPC: the objective is to validate the toolbox for HPC workloads
with miniapps gathered from different scenarios that can make use
of heterogeneous resources to leverage the trade-offs between per-
formance, power and energy consumption. A miniapp is a con-
densed partial implementation of the HPC application of interest
(e.g. weather forecast) that highlights one or multiple performance
aspects that can affect the parent application’s codebase. A work-
load of miniapps composed of MiniFE, which is memory sensitive
and phdMesh, which is compute bound might be more efficiently
executed upon one specific heterogeneous platform and would be
optimally executed through the self-adaptation provided by the ar-
chitecture.

Regarding program transformation, both use cases start from
existing applications made available by industry. It is clear that
some code transformation and code re-writing will be required in
order to better exploit the power offered by the architecture frame-
work. Simple scenarios will only require programmers to annotate
their program to associate application tasks and their dependencies
to follow the requirements of the programming model. In more
complex cases, programmers will initially profile an application to
identify the algorithmic portion worth adapting to capture inherent
algorithm parallelism. For instance, transforming current C/C++ in
OpenCL [19], current Java code to interface with APARAPI [20]
may be targeted at the lower level with the aim to compile parts of
an application for various type of heterogeneous hardware without
the need to write hardware specific code. In particular, The research
will rely on existing programming framework technologies such as
OpenCL SDKs or ROCCC [21] to generate hardware specific code
as proposed in [22].

6. Related Work
Several architectures to support low power computing in heteroge-
neous environments have been proposed in the literature, includ-
ing those in research projects such as ALMA [5], 2PARMA [8],
PEPPHER [7] [6], EXCESS [11], P-SOCRATES [9], FiPS [12],
HARPA [15] and ADEPT [14].

The PEPPHER [7] [6] architecture provides a programming
framework for C++ applications that targets heterogeneous many-

core processors with the aim of ensuring performance and portabil-
ity. This is achieved by utilising implementations variants for dif-
ferent types of hardware, which are then selected at runtime. Vari-
ants can themselves be parallelized in the most suitable framework.
The creation of variants was partly automated by libraries created
by expert programmers with the use of transformation and compi-
lation techniques. The 2PARMA [8] adopted a different approach
by using bytecode with a final stage of optimisation to target more
specific architectures. It also includes a runtime management com-
ponent that adapts the code while it is running. An outcome of this
project was the Barbeque Open Source Project [13].

It is common for these projects to target specific hardware en-
vironments that are deemed to be heterogeneous. ALMA [5] for
example utilises annotated Scilab code (a Matlab like language),
to target two very specific architectures, namely Recode and KIT
Kahrisma. The FiPS project [12] has the goal of reducing the power
performance ratio within data-centres by integrating FPGAs and
other accelerators in high-performance and low-power heteroge-
neous computing servers, with a focus on the RECS server archi-
tecture.

Aspects of power and time criticality have also featured in exist-
ing projects. The P-SOCRATES [9] examines time-criticality and
parallelization challenges for executing workload-intensive appli-
cations with real-time requirements on top of commercial-off-the-
shelf (COTS) platforms based on many-core accelerated architec-
tures. ADEPT [14] which is another ongoing EU Project aiming to
develop a tool that will guide software developers and help them
to model and predict the power consumption and performance of
parallel software and hardware. Also, time criticality and energy
are important in many fields of computing, such as Embedded Sys-
tems (ES) and HPC. Several past projects have attempted to bridge
the perceived gap between these two fields. The EXCESS project
[11] in this regards looked at programming methodologies to dras-
tically simplify the development of energy-aware applications over
a range of computing systems whilst considering performance. The
HARPA project [15] and its architecture is another example of this
with the overall aim of providing efficient mechanisms to offer per-
formance guarantees in the presence of unreliable heterogeneous
systems. Providing both proactive and reactive adaptive mecha-
nisms targeting both embedded and HPC-based systems.

Euroserver [23] aims to find power-efficient solutions for the fu-
ture datacentre. It is addressing these challenges in a holistic man-
ner: from the architecture point of view, investigating the use of
state-of-the-art low-power ARM processors, taking into account
the memory and I/O, all managed by new systems software pro-
viding transparent system-wide virtualisation and efficient resource
use by cloud applications.

The reference architecture in this paper goes beyond the current
state of the art by tackling self-adaptation of both heterogeneous
parallel devices and the applications that make use of them using
a wider range of optimization criteria (energy consumption, cost,
time criticality). Furthermore, the proposed architecture will pro-
vide broader support for a wide range of heterogeneous parallel
device resources from small (embedded) to large (HPC datacentre
environments) and with varying architectures (SoC, CPU, GPGPU,
FPGA, etc.). This support will not only be limited to the runtime
environment but also filter up the stack to enable device agnostic
deployment and provide capabilities to an application developer,
through a range of fully integrated software engineering tools (de-
sign time modelling, profiling etc.), which are energy aware.

7. Conclusion
This paper has highlighted the importance of providing novel meth-
ods and tools to support software developers aiming to optimise
energy efficiency resulting from designing, developing, deploying

PROHA’16, March 12, 2016, Barcelona, Spain 6 2018/1/2



and running software on HPAs while maintaining other quality as-
pects of software to adequate and agreed levels.

The specification of a proposed architecture has been presented,
which includes the architectural roles and scope of the components.
This architecture complies with standard HPAs and supports an
IDE, an application deployment on HPA environments, and het-
erogeneous parallel device environments. The design of the vari-
ous architectural components was described, with emphasis on the
requirements in order to support energy efficiency management,
which is addressed during the complete lifecycle of an application.
Future work includes its implementation and evaluation, which will
be showcased considering two industrial application deployment il-
lustrations.

Acknowledgments
This work is partly supported by the European Commission under
H2020-ICT-20152 contract 687584 - Transparent heterogeneous
hardware Architecture deployment for eNergy Gain in Operation
(TANGO) project.

References
[1] European Commission. Future Vision: Smart Everywhere. March

2015. Available http://ec.europa.eu/digital-agenda/en/smart-anything-
everywhere

[2] Survey Analysis: The Internet of Things Is a Revolution Waiting to
Happen. Gartner Report, January 2015

[3] Next Generation Computing Roadmap. European Commission, 2014.
ISBN 978-92-79-37580-4, DOI: 10.2759/4587

[4] D. Bortolotti, C. Pinto, A. Marongiu, M. Ruggiero and L. Benini.
VirtualSoC: A Full-System Simulation Environment for Massively
Parallel Heterogeneous System-on-Chip. IEEE International Sym-
posium on Parallel and Distributed Processing, Workshops and PhD
Forum (IPDPSW), Cambridge, MA, USA, 2013.

[5] The ALMA project. Available: http://www.alma-project.eu/.

[6] T. Bruckschloegl, O. Oey, M. Ruckauer, T. Stripf and J. Becker.
A Hierarchical Architecture Description for Flexible Multicore
System Simulation. IEEE International Symposium on Parallel and
Distributed Processing with Applications, Los Alamitos, CA, USA,
2014.

[7] PEPPHER Project - Programmability & Portability.
http://www.peppher.eu/.

[8] C. Silvano, W. Fornaciari, S. C. Reghizzi, G. Agosta, G. Palermo,
V. Zaccaria, P. Bellasi, F. Castro, S. Corbetta, E. Speziale, D.
Melpignano, J. M. Zins, D. Siorpaes, H. Hubert, B. Stabernack,
J. Brandenburg, M. Palkovic, P. Raghavan, C. Ykman-Couvreur,
A. Bartzas, D. Soudris, T. Kempf, G. Ascheid, H. Meyr, J. An-
sari, P. Mahonen and B. Vanthournout. Parallel Paradigms and
Run-time Management Techniques for Many-core Architectures:
The 2PARMA Approach. Proceedings of the 2012 Interconnection
Network Architecture: On-Chip, Multi-Chip Workshop, New York,
NY, USA, 2012.

[9] L. M. Pinho, E. Quinones, M. Bertogna, A. Marongiu, J. Pereira
Carlos, C. Scordino and M. Ramponi. P-SOCRATES: A Parallel
Software Framework for Time-Critical Many-Core Systems. Digital
System Design (DSD), 2014 17th Euromicro Conference on, 2014.

[10] P. H. Wang, J. D. Collins, G. N. Chinya, H. Jiang, M. Girkar, N. Yang,
G.-y. Lueh and H. Wang. EXOCHI: architecture and programming
environment for a heterogeneous multi-core multithreaded system.
Proceedings of the 2007 ACM SIGPLAN Conference on Program-
ming Language Design and Implementation, 2007.

[11] EXCESS Consortium. EXCESS - Execution Models for Energy-
Efficient Computing Systems. 2015. http://excess-project.eu/.

[12] FiPS Consortium. FiPS Project - Developing Hardware and Design
Methodologies for Heterogeneous Low Power Field Programmable
Servers. 2015. https://www.fips-project.eu/wordpress/.

[13] The Barbeque Open Source Project. A highly mod-
ular and extensible run-time resource manager. 2014.
http://bosp.dei.polimi.it/doku.php?id=compile.php

[14] ADEPT Consortium. ADEPT - Address Energy in Parallel Technolo-
gies. 2015. http://www.adept-project.eu/

[15] HARPA Consortium. Harnessing Performance Variability. 2015.
http://www.harpa-project.eu/

[16] A.J. Pena and P. Balaji. Toward the efficient use of multiple explicitly
managed memory subsystems. IEEE International Conference on
Cluster Computing (CLUSTER), September 2014, pp. 123-131. IEEE.

[17] OscaR. http://oscarlib.bitbucket.org/
[18] POLCA Consortium. Programming Large Scale Heterogeneous

Architectures. 2015. http://cluster013.ovh.net/∼polcapro/
[19] Khronos OpenCL Working Group. OpenCL: the open stan-

dard for parallel programming of heterogeneous systems.
http://www.khronos.org/opencl

[20] APARAPI. API for data parallel Java.
http://code.google.com/p/aparapi

[21] ROCCC. http://www.jacquardcomputing.com/roccc
[22] O. Segal, M. Margala, S.R. Chalamasetti and M. Wright. High level

Programming for Heterogeneous Architecture. Proceedings of the
1st International Workshop on FPGAs for Software Programmers
(FSP’2014). Sept. 2014, Munich, Germany, pp. 49-54.

[23] Euroserver Green computing node for European Micro-servers. 2015.
http://www.euroserver-project.eu/index.html

[24] S. Farokhi, P. Jamshidi, I. Brandic and E. Elmroth. Self-adaptation
Challenges for Cloud-based Applications: A Control Theoretic
Perspective. Proceedings of the 10th International Workshop on
Feedback Computing , Seattle, USA, Apr. 2015

[25] A.B Yoo, M.A. Jette and M. Grondona. SLURM: Simple Linux Utility
for Resource Management. Job Scheduling Strategies for Parallel
Processing: 9th International Workshop (JSSPP’2003), D. Feitelson,
L. Rudolph and U. Schwiegelshohn (Eds.), Seattle, WA, USA, June
2003, pp. 44-60. Springer Berlin Heidelberg

[26] OscaR. http://oscarlib.bitbucket.org/
[27] K. Jensen and L.M. Kristensen. Coloured Petri Nets. Springer-Verlag

Berlin Heidelberg 2009

PROHA’16, March 12, 2016, Barcelona, Spain 7 2018/1/2

http://ec.europa.eu/digital-agenda/en/smart-anything-everywhere
http://ec.europa.eu/digital-agenda/en/smart-anything-everywhere
http://www.alma-project.eu/
http://www.peppher.eu/
http://excess-project.eu/
http://bosp.dei.polimi.it/doku.php?id=compile.php
http://www.adept-project.eu/
http://www.harpa-project.eu/
http://oscarlib.bitbucket.org/
http://cluster013.ovh.net/~polcapro/
http://www.khronos.org/opencl
http://code.google.com/p/aparapi
http://www.jacquardcomputing.com/roccc
http://www.euroserver-project.eu/index.html
http://oscarlib.bitbucket.org/

	1 Introduction
	2 System Architecture
	2.1 Integrated Development Environment (IDE)
	2.2 Application Deployment
	2.3 Heterogeneous Parallel Devices Management

	3 Self-Adaptation Support
	4 Implementation Plan
	5 Results and Evaluation
	6 Related Work
	7 Conclusion

