
1

CoWare Confidential© CoWare, Inc. 1997-2003

SoC design methodologySoC design methodologySoC design methodology
Using SystemCUsing SystemC

Bart Vanthournout

CoWare Confidential© CoWare, Inc. 1997-2003

AgendaAgendaAgenda

•• ESL trendsESL trends
−− Network on Chip, Application Specific processors (ASIP)Network on Chip, Application Specific processors (ASIP)
−− SoC design requirements, SoC design requirements, Abstraction levelsAbstraction levels

•• SystemC Transaction level modelingSystemC Transaction level modeling
•• CoWare toolsCoWare tools

2

CoWare Confidential© CoWare, Inc. 1997-2003

Key Challenges With Chip DesignKey Challenges With Chip DesignKey Challenges With Chip Design
Relative Effort by Designer Role

0%

50%

100%

150%

200%

250%

350nm 250nm 180nm 130nm 90nm

Software
Validation
Physical
Verification
Architecture

Source: IBS, November 2002

Software effort
overtakes hardware effort

at 130 nm

Architecture effort
overtakes physical design

at 90 nm

CoWare Confidential© CoWare, Inc. 1997-2003

What is changingWhat is changingWhat is changing
•• Magarshack & Paulin (DAC’03)Magarshack & Paulin (DAC’03)

−− Cause:Cause:
−− Shrinking of design technologyShrinking of design technology
−− Increase in NRE cost for manufacturing (>1M$) and design (10Increase in NRE cost for manufacturing (>1M$) and design (10--100M$) 100M$)

of SoCof SoC
−− For non multiFor non multi--million chip volume cost needs to be amortized over multiple million chip volume cost needs to be amortized over multiple

productsproducts

−− Observation:Observation:
−− IP reuse is not sufficientIP reuse is not sufficient

−− IP is not fixed with shrinking technologies leading to verificatIP is not fixed with shrinking technologies leading to verification and designion and design--
for test issuesfor test issues

−− Methodology Requirement:Methodology Requirement:
−− Need for revolutionary design methods enabling:Need for revolutionary design methods enabling:

−− Faster ‘Time To Market’ through IP reuse, standard communicationFaster ‘Time To Market’ through IP reuse, standard communication interfaces interfaces
and scalable interconnect topology (NoC)and scalable interconnect topology (NoC)

−− Increased flexibility through SW programmability and configurablIncreased flexibility through SW programmability and configurable HWe HW
−− Enable to map an application to a platform to increase the produEnable to map an application to a platform to increase the productivity of a ctivity of a

platform userplatform user

3

CoWare Confidential© CoWare, Inc. 1997-2003

What is changingWhat is changingWhat is changing
•• Magarshack & Paulin (DAC’03)Magarshack & Paulin (DAC’03)

−− Solution:Solution:
−− Emergence of flexible, domainEmergence of flexible, domain--specific, SW programmable platforms specific, SW programmable platforms

(processor, IP, interconnect)(processor, IP, interconnect)
−− Methodology based on 4 distinct abstraction levelsMethodology based on 4 distinct abstraction levels

1.1. System application design System application design
−− embedded SW and platform configuration specificationembedded SW and platform configuration specification

2.2. Multiprocessor SoC platform design Multiprocessor SoC platform design
−− specification, assembly and configuration of IP blocksspecification, assembly and configuration of IP blocks

3.3. Highlevel IP block design Highlevel IP block design
−− ASIP, interconnect, HW IP for standards, standard I/O devices, eASIP, interconnect, HW IP for standards, standard I/O devices, etctc

4.4. Semiconductor technology and basic IPSemiconductor technology and basic IP
−− Process dependenciesProcess dependencies

−− Tool requirement:Tool requirement:
−− Correctly map of highlevel abstraction to the lower layersCorrectly map of highlevel abstraction to the lower layers

−− Topdown methodologyTopdown methodology

CoWare Confidential© CoWare, Inc. 1997-2003

What is changingWhat is changingWhat is changing
•• SangiovanniSangiovanni--Vincentelli & Grant Martin (CASES’01) Vincentelli & Grant Martin (CASES’01)

Embedded SW design VisionEmbedded SW design Vision
−− Situation:Situation:

−− Embedded SW is an implementation choice for a function that can Embedded SW is an implementation choice for a function that can be be
implemented as HW as wellimplemented as HW as well

−− Increasingly more ESW due to platform based design, where reIncreasingly more ESW due to platform based design, where re--use and use and
programmability are used to share development costprogrammability are used to share development cost

−− Methodology Requirement:Methodology Requirement:
−− Capture system requirements at higher levels of abstractionCapture system requirements at higher levels of abstraction
−− Close interaction between HW/platform definition and the ESW thaClose interaction between HW/platform definition and the ESW that will t will

run on itrun on it
−− Platform definition based on understanding of applications that Platform definition based on understanding of applications that will run on itwill run on it
−− SW design with good caracterisation of the HWSW design with good caracterisation of the HW

−− Solution:Solution:
−− Need to define a topdown methodology taking a global view on allNeed to define a topdown methodology taking a global view on all

interacting aspects of the systeminteracting aspects of the system

4

CoWare Confidential© CoWare, Inc. 1997-2003

SoC designs of the futureSoC designs of the futureSoC designs of the future

• Design questions
− Algorithm mapping
− SW development
− Custom HW design

• IP questions
− Reuse
− Selection
− Configuration

• Architecture
questions
− Optimization
− Exploration

Interconnect networkInterconnect network

RISC

Periph

DSP

MEMEXT

RTOS

Application

Application

Application

ASIPASIP

Custom

AlgorithmAlgorithm

CoWare Confidential© CoWare, Inc. 1997-2003

Why NoC?Why NoC?Why NoC?
•• Shrinking technology Leads to new interconnect strategiesShrinking technology Leads to new interconnect strategies

− Benini & de Michele (DATE 2002):
“Delays on wires will dominate:

global wires spanning a significant fraction of the chip size will carry signals whose
propagation delay will exceed the clock period.”

−− K. Goossens & Van Meerbergen (DATE 2002):K. Goossens & Van Meerbergen (DATE 2002):
− “A NOC hardware architecture based on a packet-switched router network … breaks the

fatal global timing closure loop by separating inter-IP from intra-IP communication, and can
so reduce global design iterations.”

• What is NoC?
− Less but ‘programmable’ wires by introducing switches (routers).

− Shared bus: communication bottleneck
− Point to point connection: many under-utilized long wires

− Structured approach to interconnect; wires are either
− short to get on the network,
− router to router.

− Separation of computation (IPs) and communication (NOC)

5

CoWare Confidential© CoWare, Inc. 1997-2003

ASIC
IP Core
ASIC

IP Core
ASIC

IP Core
ASIC

IP Core

ASIP
IP Core
ASIP

IP Core
ASIP

IP Core

MemoryMemory

ARM
IP-Core
ARM

IP-Core

MemoryMemoryMemoryMemory

Interconnect Trends - todayInterconnect Trends Interconnect Trends -- todaytoday

Sy
st

em
 o

n
C

hi
p

R
eq

ui
re

m
en

ts

Interconnect
Structure

- connect up to hundred Resources

- I/O requirements GBit/s range

- traffic management / QoS

- platform scalability

- power efficiency

- latency

B
us

 II

B
us

 I

Bridge

Traffic
Contract

Traffic
Contract

ASIC
IP Core

ASIP
IP Core

CPU
IP Core

Memory

Memory?

CoWare Confidential© CoWare, Inc. 1997-2003

Future SoC Interconnect Challenges Future SoC Interconnect Challenges Future SoC Interconnect Challenges

•• PhysicalPhysical
−− Clock distributionClock distribution
−− Latency managementLatency management
−− Transaction integrityTransaction integrity

•• FunctionalFunctional
−− Traffic managementTraffic management
−− Allocation of resourcesAllocation of resources
−− SignalizationSignalization

CPUDSP

ASICMem/
IO

6

CoWare Confidential11 © CoWare, Inc. 1997-2003

Why ASIPs? TheWhy ASIPs? The EnergyEnergy--Flexibility GapFlexibility Gap

Log P E R F O R M A N C E

Lo
g

 F
 L

 E
 X

 I
B

 I
L

I T
 Y

Lo
g

 P
 O

 W
 E

 R

D
 I

S
 S

 I
P

A
T

I O
 N

103 . . . 104

10
5

. .
 .

 1
06

Application
Specific Signal

Processors

Digital
Signal

Processors

General
Purpose

Processors

Field
Programmable

Devices

Application
Specific

ICs

Physically
Optimized

ICs

Source: T.Noll, RWTH Aachen

StrongARM110
0.4 MIPS/mW TMS320C54x

3MIPS/mW

ICORE
20-35 MOPS/mW

CoWare Confidential© CoWare, Inc. 1997-2003

Why ASIPs – technological and economicalWhy ASIPsWhy ASIPs –– technologicaltechnological and and economicaleconomical

TechnologicalTechnological
−− Power/Power/EnergyEnergy EfficientEfficient heterogenousheterogenous ProcessingProcessing PlatformsPlatforms in Mobile in Mobile

CommunicationCommunication
−− ApplicationApplication SpecificSpecific High Performance High Performance RequirementsRequirements

((NetworkNetwork ProcessorsProcessors))

EconomicalEconomical
−− Simple, Simple, butbut costcost--sensitivesensitive ApplicationsApplications

−− CostCost (N(No o RoyaltyRoyalty and and licencelicence FeeFee))

−− IP IP ProtectionProtection and Reuse (IP and Reuse (IP isis aboutabout applicationsapplications))
−− VerificationVerification
−− TimeTime--toto--marketmarket, , developmentdevelopment time time reductionreduction
−− FlexibilityFlexibility throughthrough programmabilityprogrammability

7

CoWare Confidential© CoWare, Inc. 1997-2003

Energy Efficiency – Optimization Example (I)Energy Efficiency Energy Efficiency –– Optimization Example (I)Optimization Example (I)

Overhead Energy

Intrinsic Energy

Tunopt.

Punopt.

P(t)

Intrinsic: refers to useful arithmetic operations / data routing

Runtime

Intrinsic energy nearly scheduling-independent
(serial/parallel processing does not matter)

CoWare Confidential© CoWare, Inc. 1997-2003

Tunopt.

Punopt.

Runtime

P(t)

Measurement results:
• overheadoverhead powerpower nearlynearly constantconstant

•• intrinsicintrinsic energy nearly constant (only scheduling changed)

Overhead Energy

Intrinsic Energy

Popt.

Topt.

reduce overhead energy

Energy Efficiency – Optimization Example (II)Energy Efficiency Energy Efficiency –– Optimization Example (II)Optimization Example (II)

8

CoWare Confidential© CoWare, Inc. 1997-2003

Constructive ASIP Design ApproachConstructiveConstructive ASIP Design ApproachASIP Design Approach

Start Start withwith minimumminimum „„basicbasic instructioninstruction setset architecturearchitecture“ “ e.ge.g. a . a registerregister--
registerregister RISC RISC architecturearchitecture::

comparecompare--setset--statusstatus, , unconduncond. and . and
condcond branchesbranches, , branchbranch to to
subroutinesubroutine, , returnreturn fromfrom
subroutinesubroutine, stop , stop runrun

ControlControl

and, and, oror, , xorxor, , logicallogical shiftshiftLogicLogic

+, +, --, *, , *, aritharith. . shiftshift, , absabsArithmeticArithmetic

readread//writewrite memorymemory and I/Oand I/OLoadLoad/Store/Store

⇒

→ apply application-specific optimization („constructive“)

CoWare Confidential© CoWare, Inc. 1997-2003

Optimization steps towards “best fit”Optimization steps towards Optimization steps towards “best fit”
• exploit regularity/parallelism in data flow/data storage

- optimize data organization and interfaces
- use appropriate memory and I/O bandwidth

• exploit regularity/parallelism in operation
- chain, parallelize and pipeline operations
- optimize frequently executed blocks like loop bodies
- provide the right degree of parallelism (functional units)
- use only resources that are really needed

• optimized control of computations
- add instructions/control mechanisms to exploit parallel funct. units
- use high instruction coding density
- use low-power guarding techniques and clock gating
- smart low-power encoding techniques to decrease toggle count

9

CoWare Confidential© CoWare, Inc. 1997-2003

CoWare’s system design visionCoWare’s system design visionCoWare’s system design vision

Create System specification
− Functional description
− Identify IP reuse and platform requirements

HW/SW architecture specification, Platform design
− Highlevel HW/SW Architecture exploration
− ‘Programmers view’ model, to enable SW design and HW/SW

trade-offs

HW implementation
− Platform and HW refinement, interconnect micro architecture

definition

Technology mapping
− RTL

Syste
mC

CoWare Confidential© CoWare, Inc. 1997-2003

It's time to move It's time to move up, yetup, yet again!again!

Netlist

Netlist

70 70 82 82 88 88 99 99

Design

Mask Mask

Netlist Netlist

Schematic Netlist

RTL RTL

Hardware centric history

Platform Based
Design

03

Application
Platform

TopDown
System level

Design

Implementation

10

CoWare Confidential© CoWare, Inc. 1997-2003

TopDown DesignTopDown DesignTopDown Design

ARM
Core

Arbiter

Addr
Decode

MuxM2S

MuxS2M

Retry
Slave

Internal
Memory

APB
IF

Reset
Ctrl

Default
Slave

Interrupt
Control

Remap
Pause

MuxP2B

Timers
FRC

APB

AHB

TIC

(+wrapper)

FRC

Peripheral
to Bridge

PRDATA

PWDATA

Executable specification (UT description)

•Take algorithm and map it to an application
platform
•Ensure HW/SW communication is
implemented correctly on the platform

SW

HW

•Reuse application platform over many
designs
•Simulation speed suffcient to do
development of large pieces of SW

CoWare Confidential© CoWare, Inc. 1997-2003

Transaction level modelingTransaction level modelingTransaction level modeling

11

CoWare Confidential© CoWare, Inc. 1997-2003

Transaction Level Modeling: What Is It?
A Higher Level Of Abstraction For Communication
Transaction Level Modeling: What Is It?Transaction Level Modeling: What Is It?
A Higher Level Of Abstraction For CommunicationA Higher Level Of Abstraction For Communication

•• RTL: The bus is merely wiresRTL: The bus is merely wires
−− Each device on the bus has Each device on the bus has

a pina pin--accurate interfaceaccurate interface
−− Each device interface must Each device interface must

implement the bus protocolimplement the bus protocol

BUS

MEM RISC

Periph Req

Grnt
Sel

Data
Addr

Clk

BUS

MEM RISC

Periph

TLM API TLM API

TLM API
Transaction HREQ

HADDR

HGRANT

HWDATA

HRESP

HREADY

ReqTrf
Grant

Trf

AddrTrf

WriteDataTrf

EotTrf

•• TLM: The bus model is keyTLM: The bus model is key
−− Bus model enforces the bus Bus model enforces the bus

protocolprotocol
−− Each device communicates Each device communicates

via transaction level APIvia transaction level API
−− Less code, fewer pins, fewer Less code, fewer pins, fewer

events => much fasterevents => much faster

CoWare Confidential© CoWare, Inc. 1997-2003

Range of abstraction levels covered by TLMRange of abstraction levels covered by TLM

Signal

Transfer

Transaction

Transaction/Packet

Message

RTL

TLM
AbstractionsCOMMUNICATION

Layers

HW Layer

High Level
protocol

12

CoWare Confidential© CoWare, Inc. 1997-2003

IP structure at TLMIP structure at TLM

Behavior :

For a complex IP, this is
where the real value is. At
TLM, IP reuse should be
based on behavior reuse.

Communication:
TLM is targeted for
communication modelling.
This is where the TLM API
calls are located.

Boundary :
This is where synchronization
between behavior and
communication is done

IP

Communication versus Behavior

CoWare Confidential© CoWare, Inc. 1997-2003

Transaction Level ModelingTransactionTransaction Level ModelingLevel Modeling

•• SW developers and HW SW developers and HW
designers/verifiers work designers/verifiers work
different parts of the different parts of the
curvecurve

Accuracy

Performance
Cycles/S

SW
 Zone

HW Zone

RTLCycle Acc.Inst. Acc.Untimed

100K

10K

•• Transaction level moves Transaction level moves
HWHW--SW coSW co--design to a design to a
new curvenew curve

TLM

TLMTLM allows complex SoC platforms to be simulated accurately allows complex SoC platforms to be simulated accurately
enough for architectural exploration, firmware development enough for architectural exploration, firmware development

and verification use modelsand verification use models

13

CoWare Confidential© CoWare, Inc. 1997-2003

Transactions & TransfersTransactions & Transactions & TransfersTransfers

I2B

B2I

I2T I2T

T2I

Transfer:
Atomic operation

HBURST / HWRITE /
HSIZE / HPROT

HREQ

HADDR

HGRANT

HWDATA

HRESP

HREADY

ReqTrf

Grant
Trf

AddrTrf

WriteDataTrf

EotTrf

Arbitration

Transaction

CoWare Confidential© CoWare, Inc. 1997-2003

•• TransferTransfer
−−Groups all attributes (Groups all attributes (““PinsPins””) that have the same) that have the same

timing timing
−−Represents the relevant events of a transactionRepresents the relevant events of a transaction

−−A transfer can be send when its attributes are allowed to A transfer can be send when its attributes are allowed to
be driven on the bus, but not later.be driven on the bus, but not later.
−−A transfer can be send only onceA transfer can be send only once

−−Performs Performs uniuni--directional data exchange directional data exchange
−−Between bus master, bus slave and the busBetween bus master, bus slave and the bus

−−The attributes have the same direction as the The attributes have the same direction as the
transfertransfer

Transactions & TransfersTransactions & Transfers

14

CoWare Confidential© CoWare, Inc. 1997-2003

TLM APITLM API

port.canSendTrfName()

TransfersTransactions

In bus clock
cycles

port.getTrfName()

port.canReceiveTrfName()

port.sendTrfName()

port.sendDelayedTrfName(delay)

port.getTransaction()

port.canSendTransaction()

port.sendTransaction()

port = TLM port

All the API are non-blocking

ReadDataReadDataTr
f StatusEotTrf

WriteDat
a

WriteDataTr
f

Address
Type
AccessSize
Kind
Group
BurstWrap
(etc...)

AddrTrf

GrantTrf

ReqModeReqTrf

AttributeTransfer Name

CoWare Confidential© CoWare, Inc. 1997-2003

•• Transfer sensitivity Transfer sensitivity
−− allows to query the timing of the bus to find out allows to query the timing of the bus to find out

when attributes can be send/receivedwhen attributes can be send/received
−− Prevents the user from violating the bus timingPrevents the user from violating the bus timing
−− Does not force the user to code the timing of the bus in Does not force the user to code the timing of the bus in

an FSM in every peripheralan FSM in every peripheral

−− Provides a generic coding style that allows to reProvides a generic coding style that allows to re--use use
peripherals within a certain class of busesperipherals within a certain class of buses

•• All the attributes of the transaction can be All the attributes of the transaction can be
accessed from a transferaccessed from a transfer
−− Prevents unnecessary bookkeeping in every Prevents unnecessary bookkeeping in every

peripherals in case of pipelined protocolsperipherals in case of pipelined protocols

TLM APITLM API

15

CoWare Confidential© CoWare, Inc. 1997-2003

TLM : Bus simulatorTLM : Bus simulator

AddrTrf ReqTrf

GrantTrf

WriteDataTrf

ReadDataTrf

Attributes

Transfers

Initiator

Initiator is allowed to
send a Write Data
transfer during this

time slot

Sending and Receiving transfers

WriteDataTrf

Target

The bus synchronizes the transfers with the
target according to the timing of the protocol

Bus

CoWare Confidential© CoWare, Inc. 1997-2003

if (P.getTransaction()) {
P.Transaction->setAddress(0x1000);
P.Transaction->setType(tlmWrite);
P.Transaction->setWriteData(0x2000);
P.sendTransaction();

}

Initiator

Concepts: Sending a transactionConcepts: Sending a transaction

Bus model handles
transaction as if all
transfers were sent

with the correct
timing.

Bus

Model

16

CoWare Confidential© CoWare, Inc. 1997-2003

HBURST / HTRANS
HSIZE / HPROT /HWRITE

HADDR
AddrTrf

// Initiator can send transfer

if (P.getAddrTrf()) {

P.AddrTrf->setAddress(1234);
P.AddrTrf->setType(tlmWrite);

P.sendAddrTrf();

}

// Target can receive transfer

if (P.getAddrTrf()) {

addr = P.AddrTrf->getAdress();
ftype = P.AddrTrf->getType();

}

Concepts: Sending/Receiving transfersConcepts: Sending/Receiving transfers

Initiator Target

CoWare Confidential© CoWare, Inc. 1997-2003

A systemC process can be sensitive to a transfer eventA systemC process can be sensitive to a transfer event..
The bus simulator will trigger this process whenever an action The bus simulator will trigger this process whenever an action

from the initiator or the target is allowed.from the initiator or the target is allowed.

Send or receive transferSend or receive transfer

TLM processTLM process

SC_MODULE (MyModule)

TLMTargetPort port;

void send_address(){

…

}

SC_CTOR(MyModule) {

SC_METHOD(send_address);

Sensitive << port.getSendAddressTrfEventFinder();

}

}

Static sensitivity

17

CoWare Confidential© CoWare, Inc. 1997-2003

Either one can be used in
case of sensitivity to the
specific transfer

Target : Target : Write transaction, 0 wait, Ok response (2)Write transaction, 0 wait, Ok response (2)

SC_METHOD(receiveWriteData);
sensitive << p_bus.getReceiveWriteDataTrfEventFinder();

dont_initialize();

SC_METHOD(sendEoT);
sensitive << p_bus.getSendEotTrfEventFinder();
dont_initialize();

void receiveWriteData() {
P1.getWriteDataTrf();
myVar = P1.WriteDataTrf->getWriteData();

}

void sendEotTrf() {
P1.sendEotTrf();

}

Coding style: static sensitivity to transfer
(Equivalent to previous example)

P1.getWriteDataTrf();
myVar = P1.WriteDataTrf->getWriteData();

myVar = P1.getWriteDataTrf()->getWriteData();

CoWare Confidential© CoWare, Inc. 1997-2003

Target : Target : Write transaction, 0 wait, Ok response (3)Write transaction, 0 wait, Ok response (3)

void receiveWriteData() {
P1.getWriteDataTrf();
myArray[P1.WriteDataTrf->getAddrTrf()->getAddress()] =
P1.WriteDataTrf->getWriteData();

}

void sendEot () {
P1.sendEotTrf();

}

The bus simulator provides a link
between a transfer and its transaction.
….Transaction

….Address

Provides access to
the address transfer

and its attributes

Write
Data

Address

Write
Data

Address

18

CoWare Confidential© CoWare, Inc. 1997-2003

Transactional Bus SimulatorTransactional Bus SimulatorTransactional Bus Simulator

•• A complete offA complete off--thethe--
shelf solutionshelf solution

•• Fully models the AMBA Fully models the AMBA
2.0 bus specification at 2.0 bus specification at
the transactionthe transaction--level level

•• Innovative CoWare Innovative CoWare
technology optimizes technology optimizes
performance while performance while
retaining cycle retaining cycle
accuracyaccuracy

•• Fully SystemC 2.0 Fully SystemC 2.0
compliantcompliant

AHB2 Internal
ROM

Internal
RAM

APB Display
Ctrl

Input
device

Interrupt
Ctrl

AHB

APB_cfg

APB

DMA_Int

AHB_I

AHB_D

AHB_m1

AHB_m2

AHB_sl

DMA
Ctrl

Inputstage

Inputstage1

Outputstage

A
R

M
92

6E
JS

Clk and rst

Inputstage2

Inputstage4

Inputstage3

Outputstage1

Outputstage2

SMI_external
memory

INT_displ

INT_inp

AHB

Transactional Bus Simulators

FIQ

IRQ

CoWare Confidential© CoWare, Inc. 1997-2003

CoWare toolsCoWare toolsCoWare tools

19

CoWare Confidential© CoWare, Inc. 1997-2003

ConergenSC product family: Platform CreatorConergenSC product family: PlatformConergenSC product family: Platform CreatorCreator

System Workspace

CoWare Confidential© CoWare, Inc. 1997-2003

Platform Creator Usage – Platform-based DesignPlatform Creator Usage Platform Creator Usage –– PlatformPlatform--based Designbased Design

System Workspace

2. Drag and drop
blocks and bus
nodes from the IP
libraries into the
Design Editor
window. The block
appears in your
Workspace

3. Connect
elements with
Connection Tool

4. Select blocks and
nodes to set
memory map and
other parameters

5. Export system
design
(Tools menu)

1. Open IP libraries

20

CoWare Confidential© CoWare, Inc. 1997-2003

Platform Creator Usage – Top-down DesignPlatform Creator Usage Platform Creator Usage –– TopTop--down Designdown Design

1. New Workspace

2. Open
Scenario
Library

3. Open
TLM
Platform

4. Open UT
specification
(application)

5. Partition
the HW and
SW blocks

6. Resolve the
abstract
channels

7. Set the
memory map
and parameters

8. Export the
system

Double-click
here to view the

SW blocks

CoWare Confidential© CoWare, Inc. 1997-2003

System-Level Analysis
ConvergenSC System Designer
SystemSystem--Level AnalysisLevel Analysis
ConvergenSCConvergenSC System DesignerSystem Designer

•• Superior Hardware, Software, Superior Hardware, Software,
Memory, and Bus Analysis for Memory, and Bus Analysis for
SystemCSystemC
−− Which masters and slaves should be on Which masters and slaves should be on

which bus layer? which bus layer?
−− Is the cache the right size?Is the cache the right size?
−− How much memory is needed?How much memory is needed?

•• Comprehensive APIsComprehensive APIs
−− Fully customizable data collection and Fully customizable data collection and

displaydisplay
−− Fully accessible to designerFully accessible to designer

Enables the Right System
Architecture, Performance, and

Embedded SW Trade-offs Sooner

Enables the Right System
Architecture, Performance, and

Embedded SW Trade-offs Sooner

SW Task Gantt

Cache Hits/Misses

Memory Reads/Writes

Transaction Counts

Bus Contention

21

CoWare Confidential© CoWare, Inc. 1997-2003

Mixed Language SystemC-HDL SimulationMixed Language SystemCMixed Language SystemC--HDL SimulationHDL Simulation

•• UseUse VerilogVerilog and VHDL models and VHDL models
−− To verify implementationTo verify implementation
−− For legacy IP reFor legacy IP re--useuse

•• ConvergenSC supports the ConvergenSC supports the
following simulatorsfollowing simulators::
−− Cadence NCCadence NC--SimSim
−− Synopsys Synopsys VCSVCS
−− MTI modelsimMTI modelsim

•• Capabilities:Capabilities:
−− Automated SystemCAutomated SystemC--HDL HDL

executable generationexecutable generation
−− Fast, single process Fast, single process

simulationsimulation
−− Multiple HDL blocksMultiple HDL blocks
−− Mixed HDL language (if Mixed HDL language (if

supported by HDL supported by HDL simsim.).)

CoWare Confidential© CoWare, Inc. 1997-2003

LISATEK product familyLISATEK product familyLISATEK product family

•• Flexible platforms…include more processorsFlexible platforms…include more processors
•• Embedded FPGA to allow customers to extend processor Embedded FPGA to allow customers to extend processor

instruction setinstruction set

Architecture & Application Profiling

Assembler &
Linker

Assembler &
Linker

SimulatorSimulator

Application

AssemblerAssembler

LinkerLinker

SimulatorSimulator

regs

data
mem

prog
mem

pipeline controlprog
seq

IF/ID ID/EX EX/WB

C CompilerC Compiler

LISA 2.0 Description

LISATekLISATek

Processor Processor
DesignerDesigner

RTL GenerationRTL Generation

SoftwareSoftware
ToolsTools

RTLRTL
ImplementationImplementation

Architecture & Application Profiling

Assembler &
Linker

Assembler &
Linker

SimulatorSimulator

Application

AssemblerAssembler

LinkerLinker

SimulatorSimulator

regs

data
mem

prog
mem

pipeline controlprog
seq

IF/ID ID/EX EX/WB

regs

data
mem

prog
mem

pipeline controlprog
seq

IF/ID ID/EX EX/WB

regs

data
mem

prog
mem

pipeline controlprog
seq

IF/ID ID/EX EX/WB

C CompilerC Compiler

LISA 2.0 Description

LISATekLISATek

Processor Processor
DesignerDesigner

RTL GenerationRTL Generation

SoftwareSoftware
ToolsTools

RTLRTL
ImplementationImplementation

NoNo
Design goals Design goals

met ?met ?
YesYes

•• LISATek offers a complete LISATek offers a complete
design flow for design flow for ASIPsASIPs
−− Allows existing designers to Allows existing designers to

automate processor developmentautomate processor development
−− Creates ISS, C Compiler and S/W Creates ISS, C Compiler and S/W

development toolsdevelopment tools
−− Synthesises RTL from processor Synthesises RTL from processor

descriptiondescription

•• ConvergenSC offers the best ConvergenSC offers the best
solution for designing platformsolution for designing platform

22

CoWare Confidential© CoWare, Inc. 1997-2003

LISA 2.0 – Instruction Set ModellingLISA 2.0 LISA 2.0 –– Instruction Set Instruction Set ModellingModelling

•• Integrated design environment (GUI)Integrated design environment (GUI)

•• Hierarchical description styleHierarchical description style

•• Instruction (binary) encodingInstruction (binary) encoding

−− Arbitrary Arbitrary bitwidthbitwidth and formatand format

•• Instruction (assembly) syntaxInstruction (assembly) syntax

•• Hardware BehaviorHardware Behavior

−− Pure C or C++ codePure C or C++ code

−− Integration of existing librariesIntegration of existing libraries

−− Additional dataAdditional data--types ease modelingtypes ease modeling

Instruction SetInstruction Set

C / C++ BehaviorC / C++ Behavior

• Design complex instruction sets

VLIW
Multi - Word

Parallel Instructions

CoWare Confidential© CoWare, Inc. 1997-2003

Integrated Simulator-Debugger-ProfilerIntegrated Integrated SimulatorSimulator--DebuggerDebugger--ProfilerProfiler
•Immediately explore the architecture prototype

Loop &
Instruction

Profiler

Loop &
Instruction

Profiler
Command-
line control

Command-
line control

Memories &
Registers

Memories &
Registers

Unit &
Resource
Utilization

Unit &
Resource
Utilization

Source-code &
Disassembly

Source-code &
Disassembly

Model
Debugging

Model
Debugging

TracingTracing

23

CoWare Confidential© CoWare, Inc. 1997-2003

DebuggerDebuggerDebugger
CoverageCoverage

C/C++ VariablesC/C++ Variables

GDB Command LineGDB Command Line

BacktraceBacktrace

Source ProfilingSource Profiling

CoWare Confidential© CoWare, Inc. 1997-2003

CoSy compiler system (ACE)CoSyCoSy compiler system (ACE)compiler system (ACE)

© ACE - Associated
Compiler Experts

•• Universal retargetable Universal retargetable
C/C++ compiler C/C++ compiler

•• Extensible intermediate Extensible intermediate
representation (IR)representation (IR)

•• Modular compiler Modular compiler
organizationorganization

•• Generator (BEG) for code Generator (BEG) for code
selector, register selector, register allocatorallocator, ,
schedulerscheduler

•• Permits building working Permits building working
compilers quicklycompilers quickly

24

CoWare Confidential© CoWare, Inc. 1997-2003

C-Compiler GUI approachCC--Compiler GUI approachCompiler GUI approach

•• Analysis Analysis toolstools extractextract as as
muchmuch compilercompiler informationinformation as as
possiblepossible fromfrom LISA LISA modelmodel
(e.g. (e.g. instructioninstruction latencieslatencies, ,
registersregisters, ASM , ASM syntaxsyntax))

•• GUI GUI guidedguided extensionextension and and
refinementrefinement byby useruser (e.g. (e.g. codecode
selectionselection, , stackstack layout, layout, typetype
bitwidthsbitwidths))

•• Emission of Emission of compilercompiler
descriptiondescription filefile

CoWare Confidential© CoWare, Inc. 1997-2003

RTL generation GUIRTL generation RTL generation GUIGUI

25

CoWare Confidential© CoWare, Inc. 1997-2003

CoWare ESL Solution FlowCoWare ESL Solution FlowCoWare ESL Solution Flow

ConvergenSCConvergenSC
Platform Creator

IP

Architectural
Validation

Refinement
& Verification

Implementation

System
Functional
Validation

System

ConvergenSCConvergenSC
System Designer
System Verifier Vendor

PSPs

Periphs &
Mem IP

RTL2GDSII

HW Impl.
Option

HDS Verification
(Incisive etc.)

SPWSPW

Algorithms
Vertical
Apps.

Libraries

Algorithm

LISATek
PSPs

LISATekLISATek
Processor
Designer

Processor
Specs

Bus
Models

Bus
Compiler

Bus
Specs

SW

ESP

C Compiler

ISS & S/W tools

