
Software Metrics
An Overview
Version 1.0

Simon Alexandre
CETIC asbl - University of Namur

Software Quality Lab
Belgium

July 2002

Contents

1 History and Definitions 3
1.1 A brief history of the metrics . 3
1.2 Definitions . 3

1.2.1 Measurement activity . 3
1.2.2 Software metrics . 4

2 Theory of Measure 5
2.1 Theory . 5

2.1.1 Direct measurement . 6
2.1.2 Indirect measurement . 7

2.2 Measurement scales . 7
2.3 Validation . 9

3 Software measures 10
3.1 Classes and attributes . 10
3.2 Processes . 10
3.3 Products . 11

3.3.1 External attributes . 11
3.3.2 Internal attributes . 11

3.4 Resources . 11

4 Models 12
4.1 Measures and Models . 12
4.2 Goal-Question-Metric paradigm 12

4.2.1 Origins . 12
4.2.2 The paradigm . 13

4.3 Other models : quality models 14

5 Function Points 15
5.1 Goals of the Function Points . 15
5.2 History and evolution of function points 15
5.3 Reliability of the function point’s method 16

6 Object Oriented Measurement 17
6.1 Introduction . 17
6.2 Size measures . 17
6.3 Design measures . 18

1

CONTENTS 2

7 Collect, store, analyze and comment metrics 19
7.1 The data . 19

7.1.1 Data properties . 19
7.2 Data collection . 19
7.3 Analyze and comments . 20

8 Glossary 21

Chapter 1

History and Definitions

1.1 A brief history of the metrics
Software metrics lies on the ancient discipline of measurement mainly developed
by scientists (physicians). On this basis, some take up measurement principles
in order to measure software activities.

So metrics origin goes back to the sixties with the Lines of Code (LOC)
metric used to measure programmer’s productivity and program quality (e.g.
number of defects per KLOC1). The main aim was to provide information to
support quantitative managerial decision-making during the software lifecycle
[20, p.357].

1.2 Definitions
There’s two main concepts to define at this point : the measurement activity
and the software metrics.

1.2.1 Measurement activity
Norman Fenton gives the two following definitions of the measurement activity
[22, p.28]:

Formally, we define measurement as a mapping from the empirical
world to the formal, relational world. Consequently, a measure is
the number or symbol assigned to an entity by this mapping in order
to characterize an attribute.

He gives this second definition introducing the numerical aspect [22, p.5]:

Measurement is the process by which numbers or symbols are as-
signed to attributes of entities in the real world in such a way as to
describe them according to clearly defined rules.

1KLOC for thousands of lines of codes

3

CHAPTER 1. HISTORY AND DEFINITIONS 4

1.2.2 Software metrics
The first definition of software metrics is proposed by Norman Fenton [20,
p.358]:

(...)software metrics is a collective term used to describe the very
wide range of activities concerned with measurement in software en-
gineering. These activities range from producing numbers that char-
acterize properties of software code (these are the classic software
’metrics’) through to models that help predict software resource re-
quirement and software quality. The subject also includes the quan-
titative aspects of quality control and assurance - and this covers
activities like recording and monitoring defects during development
and testing.

An other definition of software metrics is due to Paul Goodman [25] :

The continuous application of measurement-based techniques to the
software development process and its products to supply meaningful
and timely management information, together with the use of those
techniques to improve that process and its products". Applied To
Engineering & Management Processes, Products & To Supply

Chapter 2

Theory of Measure

2.1 Theory
Measurement theory has first been developed as a particular discipline of physics.
Physicians defined fundamental rules in order to use correctly the new frame-
work of measures. Further research led to develop several theories of measures.
Among them the representational theory of measurement has been used to build
the software metrics [22, p.24].

The representational theory of measurement aims at formalizing our intu-
ition about the way the world works. We collect a set of data, the measures,
which should represent attributes of the entities observed. Manipulation of these
data must preserve the relationship observed among these entities [22, p.24-25].
Actually we collect measures about the real world and try to understand these
measures by comparing them. By example, we observe that certain people are
taller than others without measuring them. In fact, says Fenton, our observa-
tion reflects a set of rules that we are imposing on the set of people.[22, p.25].
So we define some binary relations between these entities.

Example 1 : When we say that X is taller than Y we define a binary
relation between X and Y. In this case, "taller than" is an empirical
relation for height.

The measurement activity is then defined as the mapping between the em-
pirical and the formal world1. So a measure is a number or symbol assigned to
an entity in order to characterize an attribute.

Basic rules are simple : the real world is the domain and the mathematical
world, the range. When we map an attribute to a mathematical system the
following rules must be respected :

(...)the representation condition asserts that a measurement map-
ping M must map entities into numbers and empirical relations into
numerical relations in such a way that the empirical relations pre-
serve and are preserved by the numerical relations.[22, p.31]

1See Section 1.2.1

5

CHAPTER 2. THEORY OF MEASURE 6

The key stages of the formal measurement are easily representable :

Identify attribute for some real
world entities.

Identify empirical relations for
Attribute.

Identify numerical relations
corresponding to each empirical

relation.

Define mapping from real world
entities to numbers.

Check that numerical relations
preserve and are preserved by

empirical relations.

Representation
condition

figure 2.1: Formal measurement [22, p.33]

To avoid traps (compare measures from entities which are not comparable)
several models have been introduced2. A model is an abstraction of reality, al-
lowing us to strip details away and view an entity or concept from a particular
perspective. [22, p.36-37] Several models are likely to interest software metrics
: cost-estimation model, quality models, capability-maturity model,.... The use
for such models avoid to focus only on the formal and mathematical systems
and neglect the empirical one. A model will show fundamental characteris-
tics and how they are articulate. This will allow to define a metric for each
characteristic.[22, p.38]

The model chosen, entities and attributes defined, measures can be defined
too. But when there are complex relationships among attributes, or when an
attributes must be measured by combining several of its aspects, then we need
a model for how to combine the related measures. For this reason, direct and
indirect measurements are distinguished.

2.1.1 Direct measurement
Direct measurement of an entity attribute involves no other attribute or entity.
For example, we can measure the length of a physical object without any other
object. Measures below are direct measures used in software engineering :

2More details on models in chapter 3

CHAPTER 2. THEORY OF MEASURE 7

• Length of source code (LOC)

• Duration of testing process (Hours)

• Number of defects discovered (counting defects)

• Time a programmer spent on a project (Months)

2.1.2 Indirect measurement
Indirect measurement are measures of an attribute obtained by comparing dif-
ferent measurements. For example, Number of defects divided by module size
gives the Module defect density.[22, p.40]

2.2 Measurement scales
Previous section shows how direct measurement assigns a representation or map-
ping from observed relation system to numerical relation system. These kind
of measures are done in order to extract relationship between data and to draw
conclusion about them. However all the mappings are not the same. Differ-
ences between them restrict the possible kind of comparison and analysis. To
avoid unappropriate analysis, measurement scale concept has been intro-
duced as a principle by scientists.[22, 45-47] Five major measurement scales are
identified[37][22] :

• Nominal

• Ordinal

• Interval

• Ratio

• Absolute

A nominal scale puts each entity into a particular category, based on the
value of the attributes. It’s the same process when we identify a programming
language. By reading the code you can recognize it and classify it. This scale
has two major characteristics :

• The empirical relation system only consists of different classes ; there is
no notion of ordering among the classes.

• Any distinct numbering or symbolic representation of the classes is an
acceptable measure. But there isn’t any notion of magnitude associated
with the number or symbol.

Example : For instance, we try to classify the set of software faults
in the code. We choose a measurement scale where faults are entities
and their location are attributes. So fault location could be in three
different sets : specification, design or code. Then we can define a
mapping M that assign the different classes to a particular number.
45 if x is a specification fault, 2 if x is a design fault and 37 if x is a
code fault. The value is not important here.

CHAPTER 2. THEORY OF MEASURE 8

An ordinal scale ranks items in an order, such as when we assign failures a
progressive severity like minor, major, and catastrophic. This scale has three
characteristics :

• Empirical relation system consists of ordered classes with respect to the
attribute.

• Any mapping that preserves the ordering is acceptable.

• Numbers represent only ranks, so addition, and other mathematical oper-
ations have no sense.

Example : You want to classify the different modules of your soft-
ware in three classes which denote the complexity (trivial, simple,
complex). Then you choose a mapping M like in the nominal scale :
1 if x is trivial, 2 if x is simple and 3 if x is complex. The difference
with the previous scale lies in the fact that the measurement map-
ping must preserve the complexity order. 3 is bigger than 1 preserve
the relation more complex.

An interval scale defines a distance from one point to another, so that there
are equal intervals between consecutive numbers. This property permits compu-
tations not available with the ordinal scale, such as calculating the mean value.
However, there is no absolute zero point in an interval scale, and thus ratios do
not make sense. Care is thus needed when you make comparisons. The three
main characteristics are :

• Order are preserved.

• Differences are preserved but not ratios.

• Addition and substraction are acceptable but not multiplication and divi-
sion.

Example : Take the temperature measurement on a Celsius or Fahren-
heit where each degree is a class related to heat. We say that the
temperature in a place X is 20 degrees Celsius and, at the same time,
30 degrees Celsius in place Y. If the temperature move, in X, from
20 to 21 the heat will increase exactly in the same way if it change
from 30 to 31 in place Y. So the relationship is preserved.

The scale with more information and flexibility is the ratio scale, which incor-
porates an absolute zero, preserves ratios, and permits the most sophisticated
analysis. Measures such as lines of codes or numbers of defects are ratio mea-
sures. It is for this scale that we can say that A is twice the size of B. There
are four characteristics :

• Ordering, size of the intervals between entities and ratios are preserved.

• There is a zero element (represents total lack of attribute).

• Measurement mapping start at zero and increases at equal intervals (units).

CHAPTER 2. THEORY OF MEASURE 9

• All arithmetic can be applied to the classes in the range of the mapping.

Example : You use a ratio scale when you measure the physical size
of entities. The scale start at zero which represent the total lack of
size (theoretical - no existence). You can measure size in centimeters,
meters,...

The absolute scale of measurement is the more restrictive scale. For any
two measures, M and M’, there is only one admissible transformation : the
identity transformation. So there’s only one way in which the measurement can
be made, so M and M’ must be equal. The absolute scale respects the four
following properties :

• The measurement is made simply by counting the number of elements in
the entity set.

• The Attribute always takes the form "number of occurrences of x in the
entity".

• There’s only one measurement mapping, namely the actual count.

• All arithmetic analysis of the resulting count is meaningful.

Example : Lines Of Codes (LOC) is an absolute scale measure-
ment of the attribute "number of lines of codes" of a program. But
"number of centimeters" is not an absolute scale measurement of an
person’s size because you can also use inches, meters,...

2.3 Validation
Validation of the measures is necessary to do before analysis. It aims prove that
metrics used are actually measuring what they claim they do. Pfleeger[37] say
that a measure is valid if it satisfies the representation condition : if it captures
in the mathematical world the behavior we perceive in the empirical world. For
example, we must show that if H is a measure of height, and if A is taller
than B, then H(A) is larger than H(b). But such a proof must, by nature, be
empirical and is difficult to demonstrate. So, we must consider wether we are
using direct measure (size) or an indirect measure (number of decision points as
measure of size) and which entity and attribute are being addressed.Currently
there isn’t any accepted standard for validating a measure [22, p.106-108].

Chapter 3

Software measures

3.1 Classes and attributes
In the previous section measurement basis and rules have been presented. The
first activity to achieve in measurement is the entity and attribute identification.
In software there are three classes :

• Processes : collection of software-related activities.

• Products : artifacts, deliverables and documents resulting from processes

• Resources : entities required by a process activity.

In each class of entity, we distinguish between internal and external at-
tributes :

• Internal attributes of a product, process or resource are those that can be
measured purely in terms of the product, process or resource itself. In other
words, an internal attribute can be measured by examining the product,
process or resource on its own, separate from its behavior.[22, p.74]

• External attributes of a product, process or resources are those that can be
measured only with respect to how the product, process or resource relates
to its environment. Here, the behavior of the process, product or resource
is important, rather than the entity itself.[22, p.74]

3.2 Processes
Processes are measured to inform on duration, cost, effectiveness and efficiency
of software development activities. There is several internal process attributes
which can be measured directly :

• the duration of the process or activity

• the effort associated with process or activity

• the number of incidents of a specified type arising during process or ac-
tivity

10

CHAPTER 3. SOFTWARE MEASURES 11

Example 1 of measure for a process [22, p.77]:

(...)we may be reviewing our requirements to ensure their quality
before turning them over to the designers. To measure the effective-
ness of the review process, we can measure the number of require-
ments errors found during specification. Likewise, we can measure
the number of faults found during integration testing to determine
how well we are doing. And the number of personnel working on
the project between May 1 and September 30 can give us insight into
resources needed for the development process.

Example 2 of measures from AT&T [22, p.77] :

AT&T developers wanted to know the effectiveness of their software
inspections. In particular, managers needed to evaluate the cost of
the inspections against the benefits received. To do this, they mea-
sured the average amount of effort expended per thousand lines of
code reviewed. As we will see later in this chapter, this information,
combined with measures of the number of faults discovered during the
inspections, allowed the managers to perform a cost-benefit analysis.

3.3 Products
Products can be also measured. By products we mean not only items delivered
to customer. All the artifacts, documents and prototypes produced during the
process are considered as products. All these process outputs can be measured
in term of quality, size,... For all of them we distinguish both external and
internal attributes.

3.3.1 External attributes
External product attributes depend on product behavior and environment that
influence the measure. Example of external attributes are : usability, integrity,
efficiency, testability, reusability, portability, operability [22, p.78].

3.3.2 Internal attributes
Internal products attributes are easy to measure in terms of size, length, func-
tionality, correctness.[22, p.78] Code clarity is an example of internal attribute
according to defined rules like "avoid GOTO".

3.4 Resources
Last measurable entities are the resources like personnel, materials and methods.[22,
p.82] Measuring resources help managers to understand and control the process.
Programmer’s productivity is often measured in terms of lines of code.

Chapter 4

Models

4.1 Measures and Models
As explained in chapter 2 models must be used with metrics to avoid metrics
misuse. A Model is an abstraction of reality, allowing us to strip away detail
and view an entity or concept from a particular perspective[22, p.36]. Models
can take the form of equations, mapping or diagrams. It allow to understand
relationship between the component parts related one to another in the model.
Fenton gives an example of this kind of relation highlighted in a model :

To measure length of programs using lines of code, we need a model
of a program. The model would specify how a program differs from
a subroutine, wether or not to treat separate statements on the same
line as distinct lines of code, wether or not to count comment lines,
wether or not to count data declarations, and so on. The model
would also tell us what to do when we have programs written in
a combination of different languages. It might distinguish delivered
operational programs from those under development, and it would tell
us how to handle situations where different versions run on different
platforms.[22, p.37]

A model gives the domain and range of the measure mapping and it describes
the entity and attribute being measured, the set of possible resulting measures,
and the relationship among several measures.

Another characteristic of models is that they distinguish the prediction from
the assessment (measure to estimate future characteristics from previous ones
or the determination of the current condition of a process, product or resource).

4.2 Goal-Question-Metric paradigm

4.2.1 Origins
The Goal Question Metrics approach (GQM) has been suggested by Basili and
his colleagues in 1984.[5][4] They proposed an original approach to selecting and
implementing metrics. The GQM principle consists first in expressing overall
goals of the organization. On this basis, questions whose answer to these goals

12

CHAPTER 4. MODELS 13

are derived. Finally each question is analyzed in terms of what measurement is
needed to answer each question.

4.2.2 The paradigm
GQM provides a measurement framework involving three steps :

1. List the major goals of the development or maintenance projects.

2. Derive from each goal the questions that must be answered to to determine
if the goals are being met.

3. Decide what must be measured to answer the questions adequately.

The following figures illustrate how metrics are generated :

figure 4.1: GQM example tree

Fenton gives an example [22, p. 84]:

Suppose your overall goal is to evaluate the effectiveness of using a
coding standard (...). That is, you want to know if code produced
by following the standard is superior in some way to code produced
without it. To decide if the standard is effective, you must ask sev-
eral key questions. first, it is important to know who is using the
standard, so that you can compare the productivity of the coders who
use the standard with the productivity of those who do not. Like-
wise, you probably want to compare the quality of the code produced
with the standard with the quality of non-standard code. Once these
questions are identified, you must analyse each question to deter-
mine what mst be measured in order to answer the question. For
example, to understand who is using the standard, it is necessary to

CHAPTER 4. MODELS 14

know what proportion of coders is using the standard. However, it is
also important to have an experience profile of the coders, explaining
how long they have worked with the standard, the environment, the
language, and other factors that will help to evaluate the effective-
ness of the standard. The productivity question requires a definition
of productivity, which is usually some measure of effort divided by
some measure of product size. (...) the metric can be in terms of
lines of code, function points, or any other metrics that will be useful
to you. Similary, quality may be measured in terms of the number
of errors found in the code, plus any other quality measures that you
would like to use. In this way, you generate only those measures
that are related to the goal. Notice that, in many cases, several mea-
surements may be needed to answer a single question. likewise, a
single measurement may apply to more than one question; the goal
provides the purpose for collecting the data, and the questions tell
you and your project how to use the data.

4.3 Other models : quality models
Quality models aims at capturing the composite characteristics and their rela-
tionship in order to measure quality. Among them, the McCall [32]and Boehm
[9]software quality model propose a decompositional approach.

Since 1992 ISO [28] proposes the Software Product Evaluation : Quality
Characteristics and Guidelines for their use also know as ISO9126.

Chapter 5

Function Points

5.1 Goals of the Function Points
In 1979, Allan J. Albrecht proposed the first function point’s model and analysis
method called Function Point Analysis[1].1

This method’s goals were to measure achievement and refine valuation. Al-
brecht proposes the three following definitions for the function points :

• Function points are a measurement of the software product based on the
user’s function information treatment.

• Function points measure software by counting number of functionality of
the information’s treatment associated with external and control data,
output and files types.

• This particular treatment is adjusted for the global function of information
treatment by applying an adjustment based on the software characteris-
tics.

So function points are essentially based on the software’s number of func-
tionality proposed to the user. The goal was to obtain a technique to measure
productivity among different IBM’s projects from 1974 to 1978. These projects
had been developed with different programming languages and tools. So the
objective was to provide a fitted method to measure services provided to the
users.

5.2 History and evolution of function points
Albrecht began his research on this topic in the 70’s. In the same time, Tom
DeMarco has also leading research on the same topic. His results are quite
the same in the concepts but not on the form. DeMarco’s function points
have been recently used as basis for new research like : FFP (Full Function
Points), COSMIC-FFP (Common Software Measurement International Con-
sortium - Full Function Points)[16].

1A large part of the content of this chapter comes from the following thesis :[35]

15

CHAPTER 5. FUNCTION POINTS 16

In November 1983 Symons published a simplified version of Albrecht’s func-
tion points called Mark II function points.[45]

In 1984 IBM proposed a major review of the function points counting rules.
They added a evaluation procedure to assess complexity. This method became
the basic one to count function points taken by the IFPUG (International Func-
tion Points User Group2). The function point’s success and expansion and the
IFPUG creation contributed to the normalization of the function points mea-
surement method.

5.3 Reliability of the function point’s method
Navlaka proposes two fundamental rules that must be respected by measurement
method [34]:

• Correctness : from the same data and rules, the same results must always
be obtained.

• Repetitiveness : it doesn’t matter the person who makes the measurement,
results must always be exactly the same at different time.

According industrial experiments the observed accuracy is more or less 95%.[48]

2http://www.ifpug.org

Chapter 6

Object Oriented
Measurement

6.1 Introduction
This section present several concepts on Object Oriented metrics. The impor-
tance of the current research lead on this subject conduct us to devote it a
particular chapter.

6.2 Size measures
Object-Oriented systems generally grow in size between requirements analysis
and the testing phase. So different research have been done on this topics.
Pfleeger used objects and methods as a basic size measurements which is more
accurate than COCOMO according to commercial applications [38, p.294].

An other method has been developed by Lorenz and Kidd [31]. They defined
nine aspects of size that reflect how the class characteristics affect the product.
They propose the following aspects :

Number of scenario scripts (NSS) : It’s the number of scenario scripts counted
in the use cases. This measure is correlated with application size and the
number of tests. NSS mainly allow to predict development and testing
efforts.

Number of key classes : This measure evaluate the high-design effort.

Number of support classes : This measures evaluates the low-level design.

Average number of support classes per key class : This measure gives an
idea of the system’s structure.

Number of subsystems : This one provide more information on the system’s
structure.

Class size : This measure include the number of operations and attributes.

17

CHAPTER 6. OBJECT ORIENTED MEASUREMENT 18

Number of operations overridden by a class : Allow to evaluate inheri-
tance effects.

Number of operations added by a subclass : Measures also the inheritance
effects.

Specialization index

6.3 Design measures
Chidamber and Kemerer have also provide a suite of metrics for object-oriented
developments [15]. They focuse their work more on design than on size so
they complement the Lorenz and Kidd’s method. They focuse on the coupling
between objects, the response of a class and the lack of cohesion in methods[38,
p.297].

They calculate weighted methods per class in order to measure complexity.
They also define a class’s depth of inheritance (It’s the maximum length of the
path in the hierarchy from the class to the root of the inheritance tree). So more
deeper is a class in the hierarchy, more methods are inherited by this class.

Similarly, the number of children is the number of immediate subclasses
subordinated to the given class.

Chapter 7

Collect, store, analyze and
comment metrics

7.1 The data

7.1.1 Data properties
Before analyzing the data collection process there are several points to clarify.
Data that will be collected must satisfy several essential properties [22]:

Correctness The data were collected according to the exact rules of definition
of the metrics. For example, if comments are not supposed to be included
in the lines of codes count, then a check for correctness assures that no
comments were counted.

Accuracy This property refers to the differences between the data and the
actual value. For example, time measurement will be less accurate on an
analog clock than on a digital one.

Precision It deals with the number of decimal places needed to express the
data.

Consistent In fact data must be consistent from one measuring device or per-
son to another, without large differences in value.

Time-Stamped We must know exactly when data has been collected in order
to allow comparison.

Replicated Last fundamental property hat assumes that the data definition
must be very accurate to allow other person to replicate the same mea-
surement.

7.2 Data collection
There are two ways to collect data : the manual and the automatic. Manual
collection often conduct to bias, error, omission and delay. The automatic data
collection is preferable but often more difficult to implement. Fenton gives the
following guidelines to collect data :

19

CHAPTER 7. COLLECT, STORE, ANALYZE AND COMMENT METRICS20

• keep procedures simple;

• avoid unnecessary recording;

• train staff in the need to record data and in the procedures to
be used;

• provide the results of data capture and analysis to the original
providers promptly and in a useful form that will assist them
in their work;

• validate all data collected at a central point.

Data collection forms are interesting because they provide a frame to collect
data. But this form must be self-explanatory. 1 The GQM method previously
explained also provides methodology to collect data.

The data collection must be planned as ordinary project which is linked to
other projects to measure.

The collected data could be stored in database to allow further manipulations[22].

7.3 Analyze and comments
Data analysis and comment implies statistic methods and tools. They must be
used in an appropriate way. According to Fenton Data sets of software attributes
values must be analyzed with care, because software measures are not usually
normally distributed [22, p.235] There are different techniques that address a
wide variety of situations. Fenton gives the following advice :

• describe a set of attribute values using box plot statistics (based
on median and quartiles) rather than on mean and variances;

• inspect a scatter plot visually when investigating the relation-
ship between two variables;

• use robust correlation coefficients to confirm whether or not a
relationship exists between two attributes;

• use robust regression in the presence of atypical values to iden-
tify a linear relationship between two attributes, or remove the
atypical values before analysis;

• always check the residuals by plotting them against the depen-
dant variable;

• use Tukey’s ladder to assist in the selection of transformations
when faced with non-linear relationships;

• use principal component analysis to investigate the dimension-
ality of data sets with large numbers of correlated attributes.

In fact, the most important point, underlined by Fenton is the correlation
between the choice of the analysis technique and the goals of the investigation.
In this way you can support or refute the hypothesis you are testing.

1For recent experiences of web-based data collection see [41].

Chapter 8

Glossary

Attribute (An) is a feature or property of an entity.Typical attributes in-
clude the area or color (of a room), the cost (of a journey), or the elapsed
time (of the testing phase). [22]

Class is a particular set of entities. In software there are three classes : pro-
cesses, products and resources.

COCOMO COnstructive COst MOdel. software cost estimation model devel-
oped by Boehm.

Entity (An) is an object (such a person or a room) or an event (such a journey
or testing phase of a software project) in the real world. [22]

Measurement is the process by which numbers or symbols are assigned to
attributes of entities in the real world in such a way as to describe them
according to clearly defined rules. [22]

21

Bibliography

[1] Albrecht, A. Measuring application development. In Proceedings of
IBM Applications Development Joint SHARE/GUIDE Symposium (1979),
pp. 83–92.

[2] Albrecht, A., and Gaffney, J. Software Function, source Lines of
Code, and Development Effort Prediction : A Software Science Validation.
IEEE Transaction On Software Engineering SE-9, 6 (1983), 639–648.

[3] Archer, C., and Stinson, M. Object-oriented software measures. Tech.
Rep. ESC-TR-95-002, 1995.

[4] Basili, V. R., and Rombach, H. D. The TAME project: Towards
improvement-oriented software environments. tose 14, 6 (June 1988), 758–
773.

[5] Basili, V. R., and Weiss, D. M. A methodology for collecting valid
software engineering data. IEEE Transactions on Software Engineering
10, 6 (Nov. 1984), 728–738.

[6] Bennett, W. R., and Jr. Predicting software system development effort
very early in the life-cycle using idef0 and idef1x models.

[7] Bieman, J., and Kang, B. Measuring design-level cohesion. IEEE Trans-
actions on Software Engineering 24, 2 (1998), 111–124.

[8] Boehm, B. Metrics-based feedback cycles for software life-cycle manage-
ment and process improvement.

[9] Boehm, B. W., Brown, J. R., Kaspar, H., Lipow, M., Macleod,

G., and Merritt, M. Characteristics of Software Quality. TRW Series
of Software Technology. North-Holland, 1978.

[10] Briand, L., Daly, J., Porter, V., and Wst, J. A comprehensive
empirical validation of product measures for object-oriented systems, 1998.

[11] Briand, L., Morasca, S., and et al. An operational process for goal-
driven definition of measures.

[12] Briand, L. C., Differding, C., and Rombach, H. D. Practical guide-
lines for measurement-based process improvement. Special issue of Interna-
tional Journal of Software Engineering & Knowledge Engineering (1997).

22

BIBLIOGRAPHY 23

[13] Briand, L. C., Morasca, S., and Basili, V. R. Property-based soft-
ware engineering measurement. Software Engineering 22, 1 (1996), 68–86.

[14] Chidamber, S. R., Darcy, D. P., and Kemerer, C. F. Managerial use
of metrics for object-oriented software: An exploratory analysis. Software
Engineering 24, 8 (1998), 629–639.

[15] Chidamber, S. R., and Kemerer, C. F. A Metric Suite for Object-
Oriented Design. IEEE Transactions on Software Engineering 20, 6 (June
1994), 476–493.

[16] Desharnais, A. A. J.-M. Measurement manual. version 2.1, 2001.

[17] Emam, K. E. A methodology for validating software product metrics.

[18] Fenton, N., Krause, P., and Neil, M. Software Metrics: Uncer-
tainty and Causal Modelling. In Proc 2nd European Software Measurement
Conference (FESMA’99) (2001). EuroSPI conference,Limerick Institute of
Technology, Limerick, 10th-12th October 2001.

[19] Fenton, N., and Neil, M. Software Metrics and Risk. In Proc 2nd
European Software Measurement Conference (FESMA’99) (1999), pp. 39–
55.

[20] Fenton, N., and Neil, M. Software metrics: roadmap. In ICSE - Future
of SE Track (2000), pp. 357–370.

[21] Fenton, N., and Ohlsson, N. Quantitative analysis of faults and failures
in a complex software system. IEEE Transactions on Software Engineering
26, 8 (Aug. 2000), 797–814.

[22] Fenton, N., and Pfleeger, S. L. Software Metrics - A Rigorous and
Practical Approach, 2 ed. International Thomson Computer Press, London,
1996.

[23] Florac, W. Software quality measurement:a framework for counting prob-
lems and defects. Technical Report ESC-TR-92-022, CMU, 1992.

[24] Goethert, W., and Hayes, W. Experiences in implementing measure-
ment programs. CMU/SEI, 2001.

[25] Goodman, P. Practical Implementation of Software Metrics. McGRAW
HILL, New-York, 1993.

[26] Hitz, M., and Montazeri, B. Measuring Product Attributes of Object-
Oriented Systems. In Proc. 5th European Software Engineering Conf.
(ESEC 95) (Sitges, Spain, 1995), W. Schafer and P. Botella, Eds., vol. 989,
Springer-Verlag, Berlin, pp. 124–136.

[27] Idri, A., Kjiri, L., and Abran, A. COCOMO Cost Model Using Fuzzy
Logic. In 7th International Conference on Fuzzy Theory & Technology
(2000). Atlantic City, New Jersey.

[28] ISO. Information technology - software product evaluation - quality char-
acteristics and guide lines for their use. iso/iec 9126, 1991.

BIBLIOGRAPHY 24

[29] Lamb, D., and Abounader, J. Data model for object-oriented design
metrics, 1997.

[30] Lewerentz, C., and Simon, F. A product metrics tool integrated into a
software development environment. In ECOOP Workshops (1998), pp. 256–
260.

[31] Lorenz, M., and Kidd, J. Object-Oriented Software Metrics: A Practical
Guide. Prentice-Hall, 1994.

[32] McCall, J. A., Richards, P. K., and Walters, G. F. Factors in
software quality, volume I: Concepts and definitions of software quality.
Tech. Rep. RADC-TR-77-369, vol. I, II, III, Rome Air Development Center,
Griffiss AFB, Rome, NY 13441-5700, July 1977. Available from Defense
Technical Information Center, Cameron Station, Alexandria, VA 22304-
6145, order number AD-A049 014.

[33] Mills, E. Software metrics. sei curriculum module. CMU/SEI, 1988.

[34] Navlaka, J. Software productivity metrics : some candidates and
their evaluation. In proceedings of National computer Conferences (1986),
pp. 69–75.

[35] Ndagijimana, S. Etude de la mesure des points de fonction : appli-
cation de la méthode de mesure fonctionnelle cosmic-ffp et analyse de la
documentation fonctionnelle. Master’s thesis, University of Namur, rue
Grandgagnage, 21 - 5000 Namur(Belgium), June 2002.

[36] Park, R. Software size measurement: A framework for counting source
statements, 1992.

[37] Pfleeger, S., Jefferey, R., and Kitchenham, B. C. B. Status report
on software measurement. IEEE Software 14 (march/april 1997), 33–43.

[38] Pfleeger, S. L. Software Engineering: Theory and Practice. Prentice-
Hall, Upper Saddle River, NJ, 2001.

[39] Poels, G. Towards a size measurement framework for object-oriented
specifications.

[40] Poels, G., and Dedene, G. Complexity metrics for formally specified
business requirements, 1997.

[41] Rob Pooley, D. S., and Christie, D. Collecting and analyzing web-
based project metrics. IEEE Software 19, 1 (Jan. 2002), 52–58.

[42] Robert Park, W. G., and Florac, W. Goal-driven software measure-
ment a guidebook. CMU/SEI, 1996.

[43] Robert Park, W. G., and Webb, J. T. Software cost and schedule
estimating: A process improvement initiative. CMU/SEI, 1994.

[44] Strike, K., Emam, K. E., and Madhavji, N. H. Software cost estima-
tion with incomplete data. Software Engineering 27, 10 (2001), 890–908.

BIBLIOGRAPHY 25

[45] Symons, C. Software ii fpa, sizing and estimating mark wiley series. Soft-
ware Engineering Practice (1991).

[46] University, V. C. Cocomo ii model definition manual.

[47] W. Goethert, E. B., and Busby, M. Software effort & schedule mea-
surement: A framework for counting staff-hours and reporting schedule
information. Tech. Rep. ESC-TR-92-021, CMU/SEI.

[48] Whisehunt, C. How to implement function points both ways (right and
wrong) and still survive. In 8th QAI international conference on Measuring
(1990), pp. 119–129.

