Bridging KAOS and Event B

Xavier Devroey

Facultés Universitaires Notre-Dame de la Paix
2009 - 2010

Contents

Contents ii
(1 Bridging KAOS and Event B: existing approaches| 1
1.1 Expressing KAOS Goal Models with Event-B: A. Matoussi|. . 1
[1.1.1 First phasel 3

[1.1.2° Second phase] 5

1.2 From Goal-Oriented Requirements to Event-B Specification: |

[B Azizetal 1. 7
[1.2.1 Notion of triggered event| 7

[1.2.2 Operationalisation patterns| 7

1.3 Deriving Event-based Security Policy from Declarative Secu- |

| rity Requirements: R. De Landtsheer|. 8
2 Bridging KAOS and Event B: proposed approach| 9
[2.1 Overview of the approach| 9
2.2 KAOS Object model to Event-B Context and Machine| 12
[2.2.1 Object types and Attributes|. 12

[2.2.2 Associations and Specializations| 13

[2.3 Decomposition of the initial model according to Agents|. . . . 16
[2.3.1 State-Based Decomposition| 18

[2.4 Traceability between KAOS and Event-B| 25
241 Definitions] 25

242 TImtialmodello 26

2.4.3 Other machines in the Fvent-B modell 27

2.5 What happens it ...| oL 28
[2.5.1 ...an element is added in the KAOS object model| . . 28

[2.5.2 ...an element is removed from the KAOS object model| 28

[2.5.3 ...an agent i1s added in the KAOS modell 28

[2.5.4 ...an agent is removed from the KAOS model|. 28

2.5.50 ... a control nkis added i the KAOS modell 29

2.5.6 .. .a control link is removed from the KAOS modell . . 29

2.5.7 ... amonitor ink s added 1n the KAOS modell 29

2.5.8 ... a monitor link is removed from the KAOS modell 30

CONTENTS

[2.5.9 ...a responsibility links is moved trom an agent to an-

[otherl

[A° Linear Temporal Logic notations|
IA.1 Time operators|

(B Decomposition according to Agents: Mine pump example|

[C Event-B metamodel : simpleeventb.ecore|
|C.1 Metamodel elements hierarchy|.

Ig:.z l]!g:ll!_li lllil! llllls: i!llsl !:!!lllg I;ll
|C.3 Traceability links|

Chapter 1

Bridging KAOS and Event B:
existing approaches

This chapter presents three existing methods to derive Event-B model from
a KAOS model. The first one, proposed by Matoussi works on a KAOS
goal diagram, build with "Immediate Achieve" goals, built with milestone-
driven and or-refinement patterns. The second approach, proposed by Aziz
et al. add the notion of trigger conditions for events to derive an Event-B
model from a KAOS model. The last approach, proposed by De Landtsheer
takes linear temporal logic formula expressed exclusively with past operator
on input and produce a event-based security policy expressed in Polpa. A
syntactic change can translate this policy to Event-B.

1.1 Expressing KAOS Goal Models with Event-B:
A. Matoussi

Matoussi describes in [Matoussi, 2009,|Gervais et al., 2009,[Matoussi et al.,
2008| a process to transform a KAOS goal model into an Event-B specifi-
cation. This process takes on input a KAOS goal model that is not opera-
tionalized and produces an Event-B model corresponding to a specification
that satisfies the requirements described in the input model.

/Achieve[so me conditiony

Achieve] AB from A] Achieve[B from AB] Achiwz[condition Achive[condition
A==<=AB AB=> <=>B in one way] in another way]

Figure 1.1: Milestone-driven refinement and Or-refinement

CHAPTER 1. BRIDGING KAOS AND EVENT B: EXISTING APPROACHES2

This process is based on refinement patterns. Each refinement pattern
used in the KAOS model will correspond to a refinement step in the Event-
B model. Actually the process works with functional "Immediate Achieve"
goals which are the most commonly used goal type. Those goals have to be
formally defined with an assertion of the form A = (B, which says that from
a state where A is true, another state where B is true can be reached someday.
The supported patterns are the milestone-driven refinement pattern, used
when a target condition B can be reached from a current condition A with
an intermediate condition AB and the or-refinement pattern, used when a
goal can be satisfied in different ways.

ﬂ Abstract Event-B Model

- l
Step 1
/Sub—goal Gl/ lﬁub'gﬁ' ‘32/ Refinement 1

|

KAOS goal diagram Event-B representation of
the KAQOS goal diagram

S —

Step 2

Abstract Event-B Model

!

Refinement 1

!

Event-B system specification

Figure 1.2: Expressing KAOS Goal Models with Event-B: process overview

The process in figure has two phases: the first one creates an Event-

CHAPTER 1. BRIDGING KAOS AND EVENT B: EXISTING APPROACHES3

B representation of the goal model. The initial Event-B model includes the
definition of a context with all the types used for data and the definition
of an initial machine. This initial machine represents the root goal of the
KAOS model and each refinement in this model has to follow one of the two
patterns described here above. Each refinement step in the goal model will
correspond to a refinement step of the Event-B machine, so we have a chain
of refined machines where each machine will correspond to a "stage" in the
goal model.

The second phase formally derives an Event-B specification that satisfies
the requirements expressed in the goal model. To do this, it takes on input
the goal model and the Event-B representation of this model created in the
first phase. This second phase correspond to the operationalization process
that can be performed in KAOS and guaranty that operations preserve all
the properties of the goal model. As in the first phase, the initial Event-B
model will be defined for the root goal of the model and each refinement
in the goal model following one of the two patterns will correspond to a
refinement in the Event-B model.

1.1.1 First phase

Formally speaking, a KAOS goal is seen as a property that the system has
to establish:

Achieve|G]
A= OB

This property will be represented as an event in the Event-B model where
the premise of the implication is transcribed in the initialization event of the
machine and the consequence of the implication is transcribed in the then
part of the event EvtG associated to the goal. An execution of this event
means that the goal G has been satisfied. The guard of EvtG is set to true
to express the fact that at this level the goal can always be achieved.

Listing 1.1: KAOS expressed in Event-B: initial machine

MACHINE EventBGoalModel level 0

SEES ModelContext
VARIABLES
Manipulated data

INVARIANTS
inv: Data types definitions
EVENTS
Initialisation
begin N
end act :
Event FEvtG =

CHAPTER 1. BRIDGING KAOS AND EVENT B: EXISTING APPROACHES4

h
W ergerd: TRUE
then c. B
act :
end
END

Milestone-driven refinement

When we have a milestone-driven refinement, it means that the parent goal
is satisfied when all the sub-goals have been satisfied. The EvtG event of the
parent machine is refined into a new event EvtG taking as pre-condition the
conjunction of the functional post-conditions of the children. The refinement
of goal G following the pattern described in figure will give a machine:

Listing 1.2: KAOS expressed in Event-B: milestone refinement machine

MACHINE EventBGoalModel level 1
REFINES EventBGoalModel level 0
SEES ModelContext

VARIABLES
Manipulated data
INVARIANTS
inv: Data types definitions
EVENTS
Initialisation
begin
act: ANAB
end
Event FEvtGl1 =
h
v:l ergerd : TRUE
t
enact : AB
en
Event EvtG2 =
h
W ergerd: TRUE
then c. B
act :
end

Event EvtG =
refines EviG

h
WO d: ABAB
then c. B
act :
end

END

CHAPTER 1. BRIDGING KAOS AND EVENT B: EXISTING APPROACHESS

Or-refinement

When we have an or-refinement, it means that the parent goal is satisfied
when one or more of the sub-goals have been satisfied. The EvtG event of the
parent machine is refined into a new event EvtG’ taking as pre-condition a
formula expressing that one or more of the two sub-goals have been satisfied.
It does not seem to be a generic approach here and the knowledge and
competence of the analyst will play an important role. For instance in the
case described by Matoussi et al. in [|Gervais et al., 2009], the guard of a
refined EvtG’ event uses the union of two sets, one for each of the sub-goals
and compare it to the set of all the elements:

...ALocalisedElements =
(Localised ByGPSElements U Localised ByW IFI Elements)A . ..

1.1.2 Second phase

In the second phase, functional and non-functional goals are treated the same
way. The main idea here is to say that an operation can be executed while
the associated goal has not been satisfied (considering the non-functional
properties too), which is the same as while it’s post-condition has not been
verified. However, this is not sufficient to ensure that an "Achieve" goal has
been reached. A new event called "closing" is added with a guard equals
to the post-condition (without the non-functional properties) of the goal to
reach. So for the initial machine corresponding to the root goal G we will
have an event Evt0pG that can be executed while G has not been reached and
an event Closing that can be executed when G is satisfied. This Closing
event will finalize the system. As in the first phase, the machine will be
refined following the refinement pattern used in the goal model and each
level in the goal model will correspond to a machine in the Event-B model.

Note that in their example, Matoussi et al. in [Gervais et al., 2009] are
working with sets and express the negation of the initial goal post-condition
with universal quantifiers. The initial machine for goal G will be:

Listing 1.3: Operationalization Event-B: initial machine

MACHINE EventBOperationalSpecification level 0

SEES ModelContext
VARIABLES
Manipulated data

INVARIANTS
inv: Data types definitions

EVENTS
Initialisation
begin
act: A
end

CHAPTER 1. BRIDGING KAOS AND EVENT B: EXISTING APPROACHES6

Event FEvtOpG =
where

grd: B
then . . .
4 act : Do something that makes things going further
en
Event Closing =
where) . .
grd : B without non-functional properties
then .
act : Fxit := OK
end
END

As in the first phase, the initial model will be refined according to the
refinement patterns used in the goal model. The Closing event is taken as it
and the sub-goals will be translated to events like in the machine here over.

Milestone-driven refinement

When a parent goal G is refined into sub-goals Gy, ..., G, according to the
milestone-driven refinement pattern, it means that the goal G can be de-
composed into n steps and that G is satisfied if the final step G,, is reached.
The sub-machine will thus have Evt0pG1, . .. ,Evt0pGn declared events where
the pre-condition is the negation of the post-condition of the corresponding
EvtGi event in the Event-B model of phase one and the action is something
that makes things going further to the step G;y1. The realization of the last
sub-goal G,, implies the realization of the patent goal G, so the last event
EvtOpGn will refine the Evt0pG event of the parent machine. The refinement
of goal G following the pattern described in figure will give a machine:

Listing 1.4: Operationalization Event-B: initial machine

MACHINE EventBOperationalSpecification level 1
REFINES EventBOperationalSpecification level 0

SEES ModelContext
VARIABLES
Manipulated data

INVARIANTS
inv: Data types definitions
EVENTS
Initialisation
begin
act: A
end

Event FuiOpG1 =
h
v erg‘;ard : -AB
then . . .
act : Do something that makes things going further

end
Event EuvtOpG2 =

refines EvtOpG

CHAPTER 1. BRIDGING KAOS AND EVENT B: EXISTING APPROACHES7

h
v ergerd]
then . . .

4 act : Do something that makes things going further
en

Event Closing =
refines Closing

where i . .
b grd : B without non-functional properties
the
nact . Exit .= OK
end
END

Or-refinement

As for phase one, when we have an or-refinement, it means that the parent
goal is satisfied when one or more of the sub-goals have been satisfied. The
Evt0pG event of the parent machine is refined into a new event EvtOpG’ taking
as pre-condition the negation of the corresponding event in the Event-B
model of phase one, possibly simplified and where possible ambiguities have
been removed.

The two sub-goals are handled as in the general case by having a pre-
condition equals to the negation of the post condition of the corresponding
event in the model coming from phase one.

1.2 From Goal-Oriented Requirements to Event-B
Specification: B. Aziz et al.

1.2.1 Notion of triggered event
1.2.2 Operationalisation patterns

Table presents the operationalisation patterns for the three most used
goals types. A and B in the KAOS requirement’s formal definition repre-
sents first-order logical formulae defined over objects of the KAOS model.
Those objects are translated into variables in the Event-B model and thus
A’ represent the equivalent to A formula defined over those variables and B’
represent, the generalised substitution derived from predicate B, which will
be seen as the post-condition of the substitution.

CHAPTER 1. BRIDGING KAOS AND EVENT B: EXISTING APPROACHESS

Table 1.1: Patterns for Operationalising Requirements into Event-B [Aziz
et al., 2009|

Requirements | Formal Event-B Operationalisation
Definition

Immediate A= oB EVENT ¢ WHEN A’ NEXT B’ END

Achieve

Bounded A= O04yB | EVENT e WHEN A’ WITHIN d NEXT B’

Achieve END

Unbounded A= OB EVENT e WHEN A’ EVENTUALLY B’

Achieve END

1.3 Deriving Event-based Security Policy from Declar-
ative Security Requirements: R. De Landtsheer

Chapter 2

Bridging KAOS and Event B:
proposed approach

2.1 Overview of the approach

Chapter [I| presents existing techniques to translate a goal requirement model
to an Event-B model. Some of them, like those proposed by Matoussi or Aziz
et al. can be directly used with KAOS. Others like the procedure described
by De Landtsheer can be used to derive Event-B model from first order
temporal logic formula.

The problem with all those methods is that they are limited to a subset of
KAOS elements. Matoussi’s approach [Matoussi et al., 2008, Matoussi et al.,
2009, Matoussi, 2009} Gervais et al., 2009| is limited to one goal type, the
unbounded Achieve goals which correspond to the formal definition pattern
A = OB and to two refinement patterns, the milestone refinement and the
or-refinement. The method proposed by Aziz et al. [Aziz et al., 2009] uses the
notion of trigger, which is not standard in Event-B, to translate the three
more used goal patterns, the immediate Achieve, the unbounded Achieve
and the bounded Achieve into triggered events. Although more patterns
can be discovered, the notion of trigger hide quite a complex mechanism
of event scheduling that can quickly introduce misinterpretation errors. De
Landtsheer’s procedure [Landtsheer, 2007a] was created to work with Polpa
policy language, a language to express acceptable sequences of events. As
underlined by De Landtsheer the notions of events, conditions and actions
present in Polpa are similar to those present in Event-B with a syntactic
translation. The limitation is that the procedure works exclusively with the
since A S B , the always been BA and the once ¢A past operators.

Another difficulty with all those methods is that they are monolithic in
the sense that they are executed once from the requirement to the Event-B
model and a change in the first need the replay of the method to regenerate
the second. It is also not possible to go on the other way, modify the Event-B

CHAPTER 2. BRIDGING KAOS AND EVENT B: PROPOSED APPROACH10

model and have the modifications reflected in the KAOS model.

To answer these two problems, we propose here a semi-formal method to
build a bridge between the KAOS model and the Event-B model. Starting
from the requirements expressed in a KAOS model, we will build step by step
an Event-B model where each element will be justified by a requirement. This
justification will be implemented through traceability links between the two
models and a set of rules that have to be respected to keep the links between
the models consistent. The KAOS model may be incomplete and enriched
later, even if the elaboration of the Event-B model has started. Contrary
to the methods here over, the construction process may be iterative and the
analyst can travel between the two models as long as the traceability rules
are respected.

Figure 2.1] presents an overview of the process. Starting from the KAOS
object model, an initial machine and context are created to represents the
data and very general update events to represent the fact that those data
evolve in time. Those elements are then reused to dispatch the update events
between the different machines, where each machine correspond to an agent,
according to the control links defined in the agent model. The requirements
and expectations under the responsibility of the agents express the effective
update of the controlled data. The responsibility model is thus used for
the refinement of update events. As an element of the object model can be
controlled by one and only one agent, the update event corresponding to this
element will be refined in one and only one machine. In one agent’s machine,
the update of the elements that are not controlled by the agent will be
represented by the very general update events defined in the initial machine.
The elaboration of concrete machines for each agent can be parallelized and
may be recomposed after to get a general model.

The first step is presented in section The second step is described
in section [2.3] Section [2.4] presents the traceability links between the KAOS
model and the Event-B model with a list of criteria to keep the links between
the two models consistent. In section some examples describe what
happen if one model is modified.

CHAPTER 2. BRIDGING KAOS AND EVENT B: PROPOSED APPROACH11

KAOQOS Object model to
Event-B Context and
Machine

KAQS Object
Model|

Y

v
Initial Event-B

Context

Initial Event-B
Machine

Traceability

links

KAOQOS Agent Decomposition of the

Model|

initial model according

Y

to Agents

Enriched

traceability
Machines refining links

Agents Event-B

Initial Machine

KAOS Agent'’s Deriving Events from Agent's

Responsibility o
Model

> assigned

F 3

Reguirements/Expectations

I __

O

Enriched
Event-B model traceability

links

Figure 2.1: Proposed method overview

CHAPTER 2. BRIDGING KAOS AND EVENT B: PROPOSED APPROACH12

2.2 KAOS Object model to Event-B Context and
Machine

In KAOS, every concept used in a definition in the goal model has to be
defined in the object model. It means that when the goal model is complete,
all predicates used in the formal definition of goals and in particular require-
ments have been defined in the object model [van Lamsweerde, 2009\|Landt-
sheer, 2007b|. It seems thus interesting to translate in a way or another
the object model to Event-B, so concepts manipulated in formulas have an
equivalent in the Event-B model.

As Event-B uses the set theory to define and manipulate data, the KAOS
object model could be quite easily transformed into an ERA model. Tools
like DB-Main [REVER, 901 can automatically transform such model into
a relational model compliant with relational databases. The relational na-
ture of the diagram allows getting an Event-B model from it with a simple
syntactic transformation. Moreover, as relational databases are the most
used database management systems, the relational diagram could be used
to generate SQL data definition code. This method implies more than one
transformation. Another negative point is that the generated data definition
in the Event-B Context and Machine may be more difficult to manipulate.

Snook et al. define in [Snook and Butler, 2006, yah Said et al., 2009]
a method to transform a UML Class diagram into a classical B machine.
This method may be adapted to transform the KAOS Object model which
corresponds to a simplified UML Class diagram to an Event-B Machine and
its associated Context.

From now we will take the following conventions: the name of the KAOS
model elements will be those defined in the KAOS meta-model [van Lam-
sweerde, 2009]; the first letter of those meta-concepts will be in capital.

2.2.1 Object types and Attributes

A set 0BJECT_SET of all possible objects belonging to a certain Object type
is defined in the Context for each Object type. The set O0BJECTS of all the
existing instances of a certain Object type is defined in the Machine that
will see the Context and belongs to the powerset of 0BJECT_SET.

The domains of the Attributes have to be defined in the Context. In
particular, non standard types or enumerated domains have to be specified in
comprehension or in extension. Attributes are represented in the Machine by
a partial or total function according to the Multiplicity of the Attribute, from
an element of the 0BJECT set to an element of the domain of the attribute.
The table gives the transformation rules for the different Multiplicities
of an attribute of Object type T.

CHAPTER 2. BRIDGING KAOS AND EVENT B: PROPOSED APPROACH13

Table 2.1: Transformation rules for KAOS Attributes

KAOS at- | Corresponding function Event-B Invariant

tribute

a : type [1..1] | Total function to TYPE acT—TYPE

a : type [0..1] | Partial function to TYPE acT-+TYPE

a : type [1..n] | Total function to non-empty sub- | a € T — P1(TY PE)
set of TYPE

a : type [0..n] | Total function to subsets of TYPE | a € T — P(TY PE)

2.2.2 Associations and Specializations

Associations may be directed or not and will be represented in the Machine
by functions. Table gives the transformation rules for the different kinds
of directed associations. An undirected association corresponds to two op-
posite directed associations and can be manage as two directed associations
with an additional invariant saying that if on exists, then the other exists
too. For an association linking A to B with multiplicities [al..a2] and [bl..b2]

A —al..a2 bl..b2—B

The result in Event-B will be :

A set AtoB according to the rules in table 2.2]
A set BtoA according to the rules in table

An additional invariant:

Va,y-(x € ANy € B) & (AtoB(x) =y & BtoA(y) = x)

Entity1

Entity2

Entity3

Figure 2.2: N-Ary Association are seen as an Entity with N directed Asso-

ciations

As show in figure[2.2] an N-Ary Association will be seen as an Entity with
N directed Associations to the different Objects of the N-Ary Association.

CHAPTER 2. BRIDGING KAOS AND EVENT B: PROPOSED APPROACH14

In case of Specialization, usually instances belong to one and only one
sub-Object type and sub-Objects instances are disjoints. As stated by Snook
and Butler [Snook and Butler, 2006|, when translating from KAOS to Event-
B, the instances of the sub-Objects will be declared as a subset of super-
Object’s current instances. Three Object types, one Parent and two sons
Sonl and Son2 specializing Parent will become in Event-B :

PARENT € P(PARENT _SET)
SON1 € P(PARENT)
SON2 € P(PARENT)

SON1N SON2 =g

The Specialization may be more precise like in ERA, e.g. if all the in-
stances must be one of a sub-Object type then the sub-Objects instances
sets cover the set of super-Object instances :

SON1U SON2 = PARENT

CHAPTER 2. BRIDGING KAOS AND EVENT B: PROPOSED APPROACH15

Table 2.2: Transformation rules for KAOS directed Associations

The two Object types are A and B and al..a2 — b1..62 in the table
represents the multiplicities for an association :

A —al..a2

———bl.b2—> B

According to our convention, the Objects sets in Event-B will be called

A and B.

The disjoint macro in the table is defined as:
(Val,a2-(al € dom(AtoB) A a2 € dom(AtoB) A al #

a2 = AtoB(al) N AtoB(a2) =

9))

KAOS as- | Corresponding function Event-B Invariant

sociation

multiplic-

ity

0..x — 0..1 | Partial function to B AtoBe A+ B

0..x — 1..1 | Total function to B AtoBe A— B

0.« — 0..x | Total function to subset of B AtoB € A — P(B)

0..x — 1..x | Total function to non-empty sub- | AtoB € A — P1(B)
set of B

0.1 — 0..1 | Partial injection to B AtoB € A~ B

0..1 - 1..1 | Total injection to B AtoBe A— B

0.1 = 0..x | Total function to subsets of B | AtoB € A — P(B) A
which don’t intersect disjoint

0..1 — 1..x | Total function to non-empty sub- | AtoB € A — P1(B) A
sets of B which don’t intersect disjoint

1.x — 0..1 | Partial surjection to B AtoBe A+ B

1l.x — 1..1 | Total surjection to B AtoBe A— B

l.x+ — 0..x | Total function to subsets of B | AtoB € A — P(B) A
which cover B union(ran(AtoB)) =

B

1.« — 1..x | Total function to non-empty sub- | AtoB € A — P1(B) A

sets of B which cover B union(ran(AtoB)) =
B

1..1 - 0..1 | Partial bijection to B (partial in- | AtoB € A »» B A
jection defined for all the ele- | Vb-(b € B = (Ja-(a €
ments of B) AN (a—b) € AtoB)))

1..1 — 1..1 | Total bijection to B AtoB € A—» B

1.1 = 0..x | Total function to subsets of B | AtoB € A — P(B) A
which cover B without intersect- | union(ran(AtoB)) =
ing B A disjoint

1.1 = 0..x | Total function to non-empty sub- | AtoB € A — P1(B) A

sets of B which cover B without
intersecting

union(ran(AtoB)) =
B A disjoint

CHAPTER 2. BRIDGING KAOS AND EVENT B: PROPOSED APPROACH16

2.3 Decomposition of the initial model according to
Agents

Decomposition makes it possible to manage the complexity of models that
increases through the refinement process. It may be interesting to have an
early decomposition to break an initial machine into smaller pieces pertinent
with the KAOS agents. This choice is made because the KAOS meta-model
says that an association or an attribute can be controlled by one and only one
agent [van Lamsweerde, 2009, Landtsheer, 2007b} Letier, 2001]. The idea is
thus to have separate machines with the attributes monitored and controlled
by the agent. Let us recall that an attribute or association is controlled by an
agent if the agent performs one or more operation that modifies the attribute
value and that an attribute is monitored by an agent if the attribute is an
input of one or more operation performed by the agent.

Ball presents in [Ball, 2008] a description of the two techniques used to
split a machine into smaller pieces. The first one, called Event-Based De-
composition or B-style decomposition [Pascal and Silva, 2009] encapsulates
the variables in different machines together with the events or parts of events
that concern those variables. The events that have been split will need to be
synchronized in order to ensure the functionalities of the original machine.
The synchronization will take place by an exchange of inputs and outputs
between the synchronized machines events |Butler, 2009].

The second technique, called State-Based Decomposition or A-style de-
composition |[Pascal and Silva, 2009] splits the variables in different machines
with some shared variables. Events are added to components to simulate
how the shared variables are used in other components. Shared variables
and events must be kept synchronized between the different machines dur-
ing the refinement. Theoretically the system could be rebuilt into a single
machine at the end of the process, but in practice this will never be done
since the different machines will lead to different software components.

This State-Based Decomposition, proposed by Abrial in |[Abrial, 2009b),
Abrial, 2009a,Métayer et al., 2005] seems to fit more our problem. For a gen-
eral model, variables and events will be distributed to several sub-machines
with some of those variables presents in more than one sub-machine. It is
important to notice here that the sub-machines are not refining the general
machine, but are decomposing it. In the sub-machines, a distinction is made
between the internal variables used only in a particular sub-machine and the
shared variables used in more than one sub-machine. So, shared variables
can be modified by more than one event in more than one sub-machine. Fig-
ure [2.3] shows an example of decomposition, a sub-machine A has an event
evtA that will modify the value of a shared variable and another sub-machine
B has an event evtB using the variable’s value in its guard. To express the
fact that the variable is not a constant in B, an event evtExtA will be added

CHAPTER 2. BRIDGING KAOS AND EVENT B: PROPOSED APPROACH17

to B corresponding to an abstraction of the event evtA in A. The added
event evtExtA will be called an external event, which is just present in B to
synchronize the update of the shared variable in the general machine.

GeneralMachine

Variables
vl, v2, v3, sharedV

Invariant

Events
el, e2, e3, evtA, evtB

7 R

Decomposing Decomposing

MachineA MachineB
Internal variables Internal variables
vl, v2 v3

- External variables
External variables
sharedV sharedV
. Invariant
Invariant
Internal events
Internal events e3, eviB
el, ez, evtA External event
extEvtA
L — — — —

=- Ab_straction of
Figure 2.3: Decomposition of a general machine into two sub-machines

It is clear now that shared variables coming from the abstract machine
will be replicated in each sub-machine. The problem is that each sub-
machine could normally refine its variables and the same replicated variable
could be refined in one way in one refinement and in another way in another
refinement. If this happens, the two sub-machines can’t communicate any
longer as they are not using the same convention on the shared variable.
Such a variable has a special status in the sub-machines where they stay
saying that this variable has to be always present in the state space of any
refinement of the machine. A shared variable can thus not be data-refined
or if it is, the variable has to be refined in the same way in each sub-model
using the variable, which can be quite heavy.

CHAPTER 2. BRIDGING KAOS AND EVENT B: PROPOSED APPROACH18

2.3.1 State-Based Decomposition

We propose to use the State-Based Decomposition after an initial creation
of the Event-B model from the KAOS object model, as presented in section
[2.2] with one sub-machine per agent. The reason of this choice is simple, the
KAOS meta-model states that an attribute or association cannot be con-
trolled by more than one agent [van Lamsweerde, 2009} Letier, 2001,|Landt-
sheer, 2007b|. So it means that in Event-B, a shared variable will be updated
in one and only one sub-machine, while an external event will be placed with
each variable coming from the KAOS object model in all other sub-machines.

The question is: do we have to place each variable coming from the
KAOS object model in all sub-machines? On one side, if we place the vari-
ables coming from the controlled and monitored attributes and associations
of the KAOS object model only in the sub-machines representing the con-
cerned agent, the model in its all will be more readable. On the other
side, decomposition link is for now informal and not implemented in exist-
ing tools [RODIN, v 11] and have thus to be done manually. Moreover, the
re-composition of all sub-machines in one big machine proposed in [Métayer
et al., 2005], which could be used at some moment in the development pro-
cess as a verification of the consistency of the model, could not be done in
RODIN since a machine cannot refine more than one other machine. It could
thus be interesting to have a more "concrete" decomposition.

For recall, an external event representing the update of a certain shared
variables has to be an abstraction of the concrete event updating the variable
in another sub-machine. Since KAOS meta-model impose to have only one
agent controlling the update of an attribute or an association, the update
of a variable coming from the KAOS object model will not be performed
in more than one sub-machine. The idea is to add to the general machine
coming from the KAOS object model very general update operations for
each variable, and generate from this machine one refinement per agent.
The variables that are not controller by the agent will be marked as shared
variables and the events updating those variables will be marked as external
events in the sub-machines. Those events and variables cannot be refined one
the sub-machine or its refinements. All the events that update the controlled
variables of the agent will be refinements of the general update event defined
in the general machine. The re-composition of sub-machines will simply be
a new machine, declared as a refinement of the initial machine generated
from the KAOS object model where each non-external events and internal
variables coming from the different sub-machines will be copy-pasted. By
doing so, we guaranty that each external event is indeed an abstraction of the
update of a non-controlled shared variable, because of the refinement link.
The cost here is to have each shared variables and each abstract update event
of the non-controlled variables repeated in each machine and its refinement,
whether the corresponding agent is controlling or monitoring the variable

CHAPTER 2. BRIDGING KAOS AND EVENT B: PROPOSED APPROACH19

or not. This may be overcome in the modelling tools by hiding in a sub-
machine the variables and corresponding external update events that are not

controlled or monitored by the corresponding agent.

Example

Here is a small example inspired by the mine pump model presented in [Aziz
et al., 2009|. In this model we have a mine that has to be kept safe from
flooding and explosion. For this we have a mine pump that start pumping
if the water level is too high and if there is no methane detected.

Maintain[SafeMine]
%

nnnnnn

Avoid[Flooding] .
oded] Explosion

Achieve[Mine Evacuated
WHEN Gas Detected]

Achieve[Pump ~ Stopped WHEN
LowWater EXPT if Gas Detected]

Achieve[Alarm
Triggered
WHEN Gas]

Stopped WHEN

Evacuating
Mine WHEN
Alarm On

jieve[Pump Started WHEN
HighWater ~ EXPT if Gas
Detected]

WaterLevel Under Control
WHEN Pump ON

Figure 2.4: Mine pump goal model

Figure[2.5|presents the goal model and the different agents responsible for
the requirements and expectations. Figure shows the agent model with
controlled and monitored objects: the PumpController controls the pump
attribute and monitors the methane and waterLevel attributes, the Alarm-
Controller controls the bell attribute and monitors the methane attribute,
the WaterLevelSensor controls the waterLevel Attribute, the MethaneSensor
controls the methane attribute and the Miner monitors the bell attribute.

CHAPTER 2. BRIDGING KAOS AND EVENT B: PROPOSED APPROACH20

e 2
I

3 pump : OnOff
WaterLevelSensor bell : Boolean

methane : Boolean

waterLevel : Level

AlarmCaontraller

FumpContraller

Figure 2.5: Mine pump agent model

By applying the procedure described in section[2.2] we get an initial Con-
text in listing 2.1 and an initial machine in listing [2.2] describing the objects
of the KAOS object model. The initial machine includes the attributes and
the update methods for all those attributes, note here that in the listing [2.2]
only the update method for the pump has been shown. The update methods
of the others attributes follows the same pattern. The complete machines of
this example can be found in annex [B]

Listing 2.1: Mine pump example: Initial context

CONTEXT MineContext
SETS
ONOFF, LEVEL, MINE_SET

CONSTANTS
ON, OFF, LOW, MEDIUM, HIGH, M

AXTOMS
axml : partition(ONOFF,{ON},{OFF})
axm? : partition(LEVEL,{LOW },{ MEDIUM },{ HIGH })
axm3 : partition(MINE _SET,{M})

END

Listing 2.2: Mine pump example: Initial machine

MACHINE MinePump

SEES MineContext
VARIABLES
MINE, pump, bell, methane, waterLevel

INVARIANTS
inv1: MINE € P(MINE _SET)

CHAPTER 2. BRIDGING KAOS AND EVENT B: PROPOSED APPROACH?21

inv2: pump € MINE — ONOFF
inv3: bell € MINE — BOOL
inv4 : methane € MINE — BOOL
inv5 : waterLevel € MINE — LEVEL
EVENTS
Initialisation
begin
d actl: MINE, pump, bell, methane, waterLevel := &, 3,3, D, D
en
Event wupdatePump =
any
gatus

h
WHOISd1 : m € MINE

grd2 : status € ONOFF
then
actl: pump(m) := status
end
END

Starting from this, machines will be created by refining the initial ma-
chine for each agent of the KAOS model. The listing shows the machine
defined for the PumpController. This machine and all the other machines of
this example can be found in annex [Bl The re-composed machine can also
be found in listing in annex [B] where the update methods have been
replaced by their refinements in the different sub-machines. Figures and
shows a summary of the created machines.

Listing 2.3: Mine pump example: PumpController machine

MACHINE PumpController
REFINES MinePump
SEES MineContext

VARIABLES
MINE, pump, bell, methane, waterLevel
EVENTS
Initialisati
R Ttended
begin
4 actl: MINE, pump, bell, methane, waterLevel := @, 3,3, F, D
en
Event high water detected =
Internal Event
refines updatePump
any
where
grd2: m € MINE
grdl : waterLevel(m) = HIGH
__grd3: methane(m) = FALSE
Wlthstatus : status = 0N
then
actl: pump(m) := ON
end

Event low water detected =
Internal Event

CHAPTER 2. BRIDGING KAOS AND EVENT B: PROPOSED APPROACH?22

refines updatePump
any
where
grdl : m € MINE
grd2 : waterLevel(m) = LOW

Wlthstatus : status = OFF
then

actl: pump(m):= OFF
end

Event wupdateBell =
External Event
extends updateBell
any
Status

h
WREIRd1 : m € MINE

grd2 : status € BOOL
then
actl: bell(m) := status
end
Event wupdateMethane =
External Event
extends updateMethane
any
Status

h
WREIEd1 : m € MINE

grd2: status € BOOL
then
actl: methane(m) := status
end
Event update WaterLevel =
External Event
extends update WaterLevel
any
evel

h
WREIE-d1 : m € MINE

grd2 : level € LEVEL
then
actl: waterLevel(m) := level

end
END

CHAPTER 2. BRIDGING KAOS AND EVENT B: PROPOSED APPROACH?23

dwndajepdn wieyaiepdn

‘lanauaieaalepdn
SINIAT TYNYILXT

Jea| sueyiaw
S1INIAT TVNYILNI

|2naa3em aueylaw
‘lIeq dwnd INIW
STIBVIHVA

losuasaueyiaw

S3NIH3H

dwndaiepdn aueyiawaiepdn
‘|anapalemalepdn
SINIAT TYNYILXT

paldalep aueylaw
SIN3IAT TYNYILNI

|9ASa1EM 'BUBYISW
‘ll2g'dwnd 3NN
STNGYIUVA

JajjoljuocHwiely

Jo uoPERSqY A

S3NIH3Y

dwndajepdn
‘aueylaa1epdn’|jagalepdn
S1INIAT T¥NYILXT

ybiy o3 wnipaw wnipaw 0] mo|
‘Mo 01 wnipaw wnipaw o1 ybiy
SIN3IAT TYNYILNI

|anaualemalepdn
‘aueyiaaiepdn|j2g23epdn
SAINIAT TYNYILXS

[ena31EM 'BUEBY W
‘ll2q dwnd INI
STAVIYYA

pa1o2lap 1a1em Mol
‘palaalap Jaiem ybiy
SINIAT TYNYILNI

10SuUas|aAaTI9IEM

|aASIa1EM 'BUBYISW
‘ll2q'dwnd 3NIN
SINGYIUYA

SANIH3Y

EELIEER.]

<- J0 uoQiensqy

HOIH WNI33IW MO 440 NO
SINYISNOD

1357 3NN 13A3T '440NO
5135

jxajuodauli

llegaiepdn‘janapaleamalepdn
‘aueyiaaiepdn'dwndaiepdn

SIN3A3

Ja|osuordwing

[2As U 31EM BUBYIaW
‘ll9q‘dwind aNIN
SINAVIdvA

5335

dwingasuiw

10 UoIIIEIISqY >

Figure 2.6: Decomposition of the initial machine

CHAPTER 2. BRIDGING KAOS AND EVENT B: PROPOSED APPROACH?24

MinePump
MineContext
VARIABLES
MINE.pump.bell, | SEES = SETS
methane, waterLevel OMOFF, LEVEL, MINE_SET
CONSTANTS
EVENTS ON,OFF, LOW,MEDIUM,HIGH
updatePump,updateBell,
updateWaterLevel,updateMethane

REFINES

MinePumpReunification

VARIABLES
MINE,pump,bell,
methane, waterLevel

EVENTS

high_water detected,
low water detected,

high_to_medium,medium_to_low,
low_to_medium, medium_to_high,

methane_detected,

methane_leak

Figure 2.7: Recomposition of the initial machine

CHAPTER 2. BRIDGING KAOS AND EVENT B: PROPOSED APPROACH?25

2.4 Traceability between KAOS and Event-B

The idea here is to have rules to justify every element in the Event-B model
by an element coming from the requirement. The goal is to avoid over-
specification and guaranty that if requirements are discovered or corrected
during the elaboration of the Event-B model, the requirements documents
will be adapted too.

2.4.1 Definitions

Before going further, let us introduce some definitions used to express rules
hereafter :

e An abstract object in KAOS is an entity, an agent or an event. Both
agents and events may, like in UML, have a "data part" with attributes.

e An attribute domain in KAOS is a domain of values defining the type
of an attributes. This domain may be built-in or user defined.

e An N-Ary association in KAOS is an association with a multiplicity
strictly greater than two.

e An undirected association is a bidirectional association.

e An IsA link in KAQOS is a specialization link taking place between two
abstract objects.

e A domain property in KAOS is a property guaranteed by the environ-
ment. This property is assumed to be always true.

We also define here what are the initial context and machine :

Definition 2.4.1. The initial context is the context derived from the KAOS
object model.

Definition 2.4.2. The initial machine s the machine derived from the
KAOS object model with all its variables, invariants and events justified by
elements of the KAOS object model.

Now we are clear with the vocabulary, let us define criteria for the Event-
B model derived from the KAOS model. The links that we are talking about
are Derivation links as defined by van Lamsweerde in his hierarchy [van
Lamsweerde, 2009|. A dependency links between two model A and B express
the fact that changing A may require changing B. This kind of link is vertical
in the sense that they take place for a single version, opposed to horizontal
links, such as a variant or revision link that take place between different
versions.

CHAPTER 2. BRIDGING KAOS AND EVENT B: PROPOSED APPROACH26

2.4.2 Initial model

First, we will define criteria for the initial machine and context. Those two
elements are build by the transformations described in section[2.2] Those cri-

teria are expressed must be respected to keep the Event-B model consistent
with the KAOS model.

Initial context

Here are the criteria for the sets, axioms and constants that can be found in
the initial context.

Criterion 2.4.1. Fach carrier set in the initial context must be linked to
one abstract object, or one attribute domain or one N-Ary association.

Criterion 2.4.2. FEach constant in the initial context must be linked to an
attribute domain.

Criterion 2.4.3. Each aziom in the initial context must be linked to an
attribute domain.

Initial machine

Here are the criteria defined for the invariants, variables and events defined
for the update of those variables.

Criterion 2.4.4. Fach variable in the initial machine must be linked to one
abstract object or one attribute or one directed association or one undirected
association or one N-Ary association.

Criterion 2.4.5. Fach tnvariant in the initial machine must be linked to
one abstract object or one directed association or one undirected association
or an 1sA link or an N-Ary association or a domain property.

We will call an update event an event corresponding to the update of
one KAOS element which can be an abstract object, an attribute, an N-Ary
association, a directed association or an undirected association.

Criterion 2.4.6. Each event in the initial machine must be an update event
and s thus linked to one abstract object or one attribute or one directed
association or one undirected association or one N-Ary association.

Note that one element in KAOS may be translated in more than one
variable in Event-B, e.g. the undirected association that is transformed into
two sets and an additional invariant.

Criterion 2.4.7. FEach variable in the initial machine must appear in one
and only one update event.

Criterion 2.4.8. Fach KAOS element which can be an abstract object, an
attribute, an N-Ary association, a directed association or an undirected as-
soctation that is controlled by an agent must appear in the initial machine.

CHAPTER 2. BRIDGING KAOS AND EVENT B: PROPOSED APPROACH?27

2.4.3 Other machines in the Event-B model

Starting from the initial machine and context, other machines will be defined
for agents according to our proposed approach. Those machines will then be
refines independently to describe the behavior of each agent of the system
under study. Here are criteria for those machines.

Machines

A machine is said as directly linked to an agent of the KAOS model if it is
refining the initial machine and if a link is defined between the machine and
one agent of the system. A machine directly linked to an agent is a part of
the decomposition of the initial machine.

A machine is said as indirectly linked to an agent, if it is refining a machine
directly linked to an agent or a machine indirectly linked to an agent.

A machine will be said as linked to an agent if it is directly linked to an
agent or indirectly linked to an agent.

Criterion 2.4.9. Fach machine in the Event-B model that is not the initial
machine must be linked to one agent or must be a re-composition, as defined
mn section of several machines.

Events

An event is said as linked to a requirement or an expectation if it is directly
linked to a requirement or an expectation or if it is refining an event linked
to a requirement or an expectation.

Criterion 2.4.10. Each event in the machines that are not the initial ma-
chine must be linked to a requirement or expectation under the responsibility
of the agent linked to the machine.

Note that a recomposed machine is implicitly linked to all the agents
corresponding to the machines that are participating in the re-composition.

We will say that an event refines another event if it refines it directly or
if it refines a third event that refines the other event.

Criterion 2.4.11. If an event in a machine that is not the initial machine
updates the value of variables corresponding to a KAOS element, which can be
an abstract object, an attribute, an N-Ary association, o directed association
or an undirected association then the event must refine the update event
corresponding to this KAOS element.

Criterion 2.4.12. If an event in a machine that is not the initial machine
refines an update event, the agent linked to the machine must control the
KAOS element, which can be an abstract object, an attribute, an N-Ary as-
sociation, a directed association or an undirected association in the KAOS
model.

CHAPTER 2. BRIDGING KAOS AND EVENT B: PROPOSED APPROACH?28

Criterion 2.4.13. FEach update event in the initial machine may be refined
by events in machines corresponding to at most one and only one agent.

2.5 What happens if ...

2.5.1 ...an element is added in the KAOS object model

Adding an element to the KAOS object model will result in a modification
of the initials machine and context. This element is added according to the
rules described in section 2.2] to the initial machine and context and will be
propagate to all machines and context refining them.

2.5.2 ...an element is removed from the KAOS object model

When an element is removed from the KAOS object model, the invariants,
variables, update event, sets and axioms issued from its translation, accord-
ing to the rules described in section in Event-B are removed from the
initial machine and context and all the machines and contexts that are re-
fining them. Note that before deleting a piece of element, all the control and
monitor links will be removed too. For recall a KAOS meta-constraint im-
pose that all the elements used to define goals, requirements and expectations
must be defined in the object model. An element will thus not be removed
while at least requirements and expectations are using it and thus events
linked to requirements and expectations will stay correct, even elements are
deleted from the Event-B model.

2.5.3 ...an agent is added in the KAOS model

Adding an agent to the KAOS model means that a new active entity has
been identified. The Event-B model will thus be enriched by a new machine,
decomposing the initial machine. For recall, the decomposition link is for
now informal in RODIN [RODIN, v 11] and we propose to use a refining link
between the new machine and the initial machine (see section [2.3)).

2.5.4 ...an agent is removed from the KAOS model

Removing an agent from the KAOS model means that an active part of the
system is removed. All the responsibility links between the agent and the
requirements/expectations will probably be moved to other agents before re-
moving it. As an agent may be responsible for a requirement/expectation if
and only if he can control all the data that are modified by the requirement /-
expectation and monitor all the data read by the requirement/expectation,
all the monitor and control links will also probably be moved before the
deletion of an agent.

CHAPTER 2. BRIDGING KAOS AND EVENT B: PROPOSED APPROACH?29

If an agent is removed from the KAOS model, the corresponding machine
and all its sub-machines will be removed from the Event-B model. If one of
those machines has been used in a re-composition, all the events coming from
the machine will be removed of the decomposition. Pay attention that if the
agent was still controlling a piece of data when it is removed and that one
of the deleted event in the re-composition was refining the update event of
this piece of data, the general update event coming from the initial machine
has to be added in the re-composed machine.

2.5.5 ...a control link is added in the KAOS model

If a control link is added in the KAOS model, the update event of the con-
trolled piece of data will become an internal event that may be refined in
the machine corresponding to the agent. Of course, we suppose here that
the KAOS meta-constraint saying that a piece of data can be controlled by
one and only one agent is respected.

2.5.6 ...a control link is removed from the KAOS model

In the Event-B model, when an agent is controlling a piece of data, it means
that the update event of this piece of data is an internal event in the machine
linked to the Agent. Removing a control link will thus means that the agent
can no longer modify a certain piece of data. All the events in the machine
linked to the agent and its refinements that are refining the update event of
the piece of data have to be removed. They will be replaced by the update
event coming from the initial machine and will be marked as external.

Deleting a control link may only occur in KAOS when the agent is no
longer responsible for requirements/expectations that update the previously
controlled element. A more frequent situation will be to move requirements/-
expectations responsibilities to another agent and in the same time, move
control and monitor links needed to be responsible for those requirements/-
expectations to this other agent too.

2.5.7 ...a monitor link is added in the KAOS model

When a monitor link is added to the KAOS model, it means that an agent
will be notified when a certain piece of data is updated. In Event-B, it means
that the update event linked to this piece of data is executed in the machine
linked to the agent and all its refinements as an external event.

As we are using refinement links in place of decomposition links, all the
events of the initial machine have to be refined by one or more event in the
agent’s machine. [Métayer et al., 2005] When the agent is monitoring a piece
of data linked to the update event, this update event in the agent’s machine
will correspond to a copy paste of the abstract event. Note that it is the

CHAPTER 2. BRIDGING KAOS AND EVENT B: PROPOSED APPROACH30

default RODIN |[RODIN, v 11| behavior when a refinement of a machine is
created.

2.5.8 ...a monitor link is removed from the KAOS model

The update event, variables and invariants linked to the previously monitored
piece of data may be hidden to the analyst in a tool, but in the effective
Event-B model nothing happens because of the refining link between the
agent’s machine and the initial machine. As explained in section [2.3] this
is the small cost to pay for using refinement links in place of decomposition
links.

2.5.9 ...aresponsibility links is moved from an agent to an-
other

A responsibility link in KAOS is translated into an event or an invariant
in the agent’s machine of the Event-B model. If it is an event, it refines
all the update events corresponding to the data that are modified by the
requirement /expectation. The agent has thus the ability to control those
data in the KAOS model. Moving a responsibility from an agent to another
will thus mean that the implied control links will be moved in the same time.

MACHINE Agent A O MACHINE Agent B O
EVENTS EVENTS
Reqg_1 Reg_1
- Req_2

Refines J:‘\Efines

MACHINE Agent A_1 MACHINE Agent B_1

EVENTS
Req 1 p 1refinesReq 1
Req 1 p 2refines Req 1

EVENTS
Req 1 p 1refines Req 1
Req_1_p_2 refines Req_1
Req_2

Figure 2.8: Moving responsibility link in Event-B

At the agents’ machines level it means that the events linked to the
requirement /expectation is moved from a machine to another. The update
events of the data concerned by the moved control links will be replaced
by the update event coming from the initial machine and will be marked as
external. If the event linked to the requirement/expectation has already been
refined in sub-machines, the refinements may be moved from the previous
agent’s "refinement tree" to the new one by completing the actual machines
and creating new ones if the new tree is shorter than the previous one. Figure

CHAPTER 2. BRIDGING KAOS AND EVENT B: PROPOSED APPROACH31

shows an example of a refined requirement moved from the agent A to the
agent B, where the agent B’s machine has not yet been refined. A refinement
is created, in blue dotted on the figure, to have the same refinement level as

agent A’s machine.

Appendix A

Linear Temporal Logic
notations

This section presents the temporal operators used in KAOS [van Lamsweerde,
2009].

A history H is a function : H : N — State(X) where X is the set
of system variables and State(X) is the set of all possible states for the
corresponding variable in X.

If temporal assertion P satisfied by a history H at time position i, we
say that :

(H,i) = P

If 4 is the initial position 0, then the assertion P is said to be satisfied by
the entire history H :

(H,0) = P

A.1 Time operators

The tables and summarize the time operators used with KAOS and
they associated semantics.

32

APPENDIX A. LINEAR TEMPORAL LOGIC NOTATIONS 33

Table A.1: Future time operators

Notation | Informal Explanation | Semantic
OP Sooner or later P (H,i) = OP iff 35,5 > i
(H,j)EP
arP Always P (H,z) = OpP iff V5,5 > i
(H,j) E P
P U Q | Always P until Q (Hyi) =P U Qiff (35,5 >
(H,j) E Q) AN(Vki <k <j:
(H,k) = P)
P W @ | Always P unless @ (H,i) =P W Qiff (H,i) =P
U Q)V((H,i)EDOP)
oP Next P (H,i) EoPiff (H,i+ 1) P
P=@Q | P entails Q Equivalent to O(P — Q)
P& Q P is congruent to @ Equivalent to (P «+ Q)
Table A.2: Past time operators
Notation | Informal Explanation Semantic
P Some time in the past P (H,i) = P iff 35,5 <i
(H,j)EP
mPr P has always been (H,i) =RPiff vy, j
(H,j) EP
P S Q | Always P in the past since Q (Hyi) P S Q iff
(F,J <i:(HJ)EQ)A
(Vk,j <k <i:(Hk) [E
P)
P B @ | Always P in the past back to Q | (H,i) = P B Qiff ((H,1)
EPsQ)V((H,i) - WP)
oP Previous P (H,i) | oP iff (H,i —
1) P with i > 0
Qp To P Equivalent to (e—P) A P

Appendix B

Decomposition according to
Agents: Mine pump example

This annex present the complete machines of the mine pump example de-
scribed in section 2.3l

Listing B.1: Mine pump example: Initial context

CONTEXT MineContext
SETS

ONOFF

LEVEL

MINE SET

CONSTANTS
ON
OFF
LOW
MEDIUM
HIGH

M
AXTOMS
axml : partition(ONOFF,{ON},{OFF})

axm2 : partition(LEVEL,{LOW },{ MEDIUM },{HIGH})
axm3 : partition(MINE _SET,{M})
END

Listing B.2: Mine pump example: Initial machine

MACHINE MinePump

SEES MineContext
VARIABLES
MINE
pump
bell
methane
waterLevel

INVARIANTS

34

APPENDIX B. DECOMPOSITION ACCORDING TO AGENTS: MINE PUMP EXAMPLE35

invl: MINE € P(MINE SET)
inv2: pump € MINE — ONOFF
inv3: bell € MINE — BOOL

inv4 : methane € MINE — BOOL
inv5 : waterLevel € MINE — LEVEL
inv6 : dom(pump) = MINE

inv7 : dom(bell) = MINE
inv8 : dom(methane) = MINE
inv9 : dom(waterLevel) = MINE

EVENTS
Initialisation
begin
actl: MINE = g
act2:]gump =0
act3: bell (=&
act4d : methane .= @
acth : waterLevel := &
end
Event updatePump =
any
g%atus

h
WHELS 41 m e MINE

grd2 : status € ONOFF
then
actl: pump(m) := status
end
Event wupdateBell =
any
g%a,tus

h
WHELS 41 . m € MINE

grd2 : status € BOOL
then
actl: bell(m) := status

end
Event updateMethane =
any
h ?%atus
where
grdl: m € MINE
grd2 : status € BOOL
then
actl: methane(m) := status
end
Event update WaterLevel =
any
l
whergve

grdl: m € MINE
grd2: level € LEVEL
then
actl : waterLevel(m) = level

end
Event addMine =
h
WHeL 41 . MINE = @
then

actl: MINE :={M}
act2: pump(M) := OFF

APPENDIX B. DECOMPOSITION ACCORDING TO AGENTS: MINE PUMP EXAMPLE36

act3: bell(M):= FALSE
act4d : methane(M) := FALSE
act5 : waterLevel(M) := LOW

end

END

Listing B.3: Mine pump example: PumpController machine

MACHINE PumpController
REFINES MinePump

SEES MineContext
VARIABLES

MINE

pump

bell

methane

waterLevel
EVENTS

Initialisati
nH e:{ctenlﬁag

begin
actl: MINE =g
act2: Eum =g
act3: bell ;=g
act4d : methane :=J
actb : waterLevel := &
end
Event high water detected =
Internal Event
refines updatePump
any
where
grd2: m € MINE
grdl : waterLevel(m) = HIGH
__grd3: methane(m) = FALSE

with
status : status = ON
then
actl: pump(m):= ON
end
Event low water detected =
Internal Event
refines updatePump
any
where
grdl : m € MINE
grd2 : waterLevel(m) = LOW
with
status: status = OFF
then
actl: pump(m) := OFF

en
Event updateBell =
External Event
extends updateBell
any

APPENDIX B. DECOMPOSITION ACCORDING TO AGENTS: MINE PUMP EXAMPLE37

then
actl: bell(m) := status
end
Event updateMethane =
External Event
extends updateMethane
any

grdl : m € MINE
grd2 : status € BOOL

end
Event update WaterLevel =
External Event
extends update WaterLevel
any
evel

here
WHELR 41 © m € MINE

grd2 : level € LEVEL

then
actl: waterLevel(m) := level

end
END

Listing B.4: Mine pump example: WaterLevelSensor machine

MACHINE WaterLevelSensor
REFINES MinePump

SEES MineContext
VARIABLES
MINE
pump
bell
methane
waterLevel
EVENTS
Initialisati
extencﬂg
begin
actl: MINE :=J
act2: Eum =
act3: bell .= 9
act4d : methane := J
acth: waterLevel :=J
end
Event high_to medium =
Internal Event
refines update WaterLevel
any
where
grdl : m € MINE
__grd2: waterLevel(m) = HIGH
Xllthlevel . level = MEDIUM
en
actl : waterLevel(m) := MEDIUM

end

APPENDIX B. DECOMPOSITION ACCORDING TO AGENTS: MINE PUMP EXAMPLE38

Event medium_to low =
Internal Event
refines update WaterLevel

any
where o1 e MINE
. grd2: waterLevel(m) = MEDIUM
with) 1. level = Low
then
actl : waterLevel(m) := LOW
end

Event low to medium =
Internal Event
refines update WaterLevel

any

h
WHeISd1 . m € MINE

_grd2: waterLevel(m) = LOW
Xllthlevel . level — MEDIUM

en

actl : waterLevel(m) := MEDIUM

end

Event medium_to high =
Internal Event
refines update WaterLevel

any
where . m e MINE
. grd2: waterLevel(m) = MEDIUM
With) 1 level — HIcH
then
actl : waterLevel(m) := HIGH
end

Event updatePump =
External Event
extends updatePump
any
gtatus

h
WREISd1 : m € MINE

grd2 : status € ONOFF

then
actl: pump(m) := status

Event wupdateBell =
External Event

extends updateBell
any

grdl : m € MINE
grd2 : status € BOOL
then
actl: bell(m) := status
end
Event wupdateMethane =
External Event
extends updateMethane
any

APPENDIX B. DECOMPOSITION ACCORDING TO AGENTS: MINE PUMP EXAMPLE39

grdl : m € MINE
grd2 : status € BOOL

actl: methane(m) := status

Listing B.5: Mine pump example: AlarmController machine

MACHINE AlarmController
REFINES MinePump

SEES MineContext
VARIABLES
MINE
pump
bell
methane
waterLevel
EVENTS
Initialisati
e:vtencﬂg
begin
actl: MINE =9
act2: Eum =
act3: bell .= O
act4d : methane ;= J
acth: waterLevel .= g
end
Event methane detected =
Internal Event
refines updateBell

any
h
WHeLS 41 - m e MINE
grd2 : methane(m) = TRUE
grd3: bell(m) = FALSE
with
status : status = TRUE
then
actl: bell(m) := TRUE
end

Event wupdatePump =
External Event
extends updatePump
any
Status

h
WIS 41 : m € MINE

grd2 : status € ONOFF
then
actl: pump(m) := status
en
Event updateMethane =
External Event
extends updateMethane
any

h
WREISd1 : m € MINE

APPENDIX B. DECOMPOSITION ACCORDING TO AGENTS: MINE PUMP EXAMPLFEAQ

grd2 : status € BOOL

then
actl: methane(m) := status

end
Event update WaterLevel =
External Event
extends update WaterLevel
any

grdl : m € MINE
grd2 : level € LEVEL
then
actl: waterLevel(m) := level
end
END

Listing B.6: Mine pump example: MethaneSensor machine

MACHINE MethaneSensor
REFINES MinePump

SEES MineContext
VARIABLES
MINE
pump
bell
methane
waterLevel
EVENTS
Initialisati
extencﬂg
begin
actl: MINE =9
act2: Eum =y
act3: bell .= 9
act4d : methane ;= J
acth: waterLevel :=J
end
Event methane leak =
Internal Event
refines updateMethane

any
h
WHeLR 41 m € MINE
with
thenstatus : status = TRUE
actl: methane(m) := TRUE
end

Event updatePump =
External Event

extends updatePump
any

'$rdl : m € MINE
grd2 : status € ONOFF

actl: pump(m) := status

APPENDIX B. DECOMPOSITION ACCORDING TO AGENTS: MINE PUMP EXAMPLFA1

Event wupdateBell =
External Event

extends updateBell
any

grdl : m € MINE
grd2: status € BOOL

n
actl: bell(m) := status
Event update WaterLevel =
External Event

extends update WaterLevel
any

grdl P m € MINE

actl: waterLevel(m) := level

Listing B.7: Mine pump example: re-composed machine

MACHINE MinePumpReunification
REFINES MinePump

SEES MineContext
VARIABLES
MINE
pump
bell
methane
waterLevel
INVARIANTS
invl: MINE € P(MINE SET)
inv2: pump € MINE — ONOFF
inv3: bell € MINE — BOOL
inv4 : methane € MINE — BOOL
invb : waterLevel € MINE — LEVEL
EVENTS
Initialisation
begin
actl : MINE = @
act2: pump =
act3: zell = @
actsd : methane = @

act5 : waterLevel := &
end

Event methane detected =
Internal Event
refines updateBell
any
where
grdl: m € MINE
grd2 : methane(m) = TRUE
grd3: bell(m) = FALSE

APPENDIX B. DECOMPOSITION ACCORDING TO AGENTS: MINE PUMP EXAMPLFEA2

rﬁigsta‘cus : status = TRUE
actl: bell(m) := TRUE
end
Event methane leak =
Internal Event
refines updateMethane

any
h
WHeLS 41 : m € MINE
with
thenstatus : status = TRUE
actl: methane(m):= TRUE
end
Event high water detected =
Internal Event
refines updatePump
any
where
grd2: m € MINE
grdl : waterLevel(m) = HIGH
grd3 : methane(m) = FALSE
with
status : status = ON
then
actl: pump(m) := ON
end

Event low water detected =
Internal Event
refines updatePump

any
where .. m e MINE
grd2 : waterLevel(m) = LOW
with
status : status = OFF
then
actl: pump(m):= OFF
end
Event high to_ medium =
Internal Event
refines update WaterLevel
any
where
grdl: m € MINE
_grd2: waterLevel(m) = HIGH
::ZElevel . level = MEDIUM
actl: waterLevel(m) := MEDIUM
end

Event medium_to low =
Internal Event
refines update WaterLevel
any
where
grdl: m € MINE
_grd2: waterLevel(m) = MEDIUM
With, 1. level = Low
then

APPENDIX B. DECOMPOSITION ACCORDING TO AGENTS: MINE PUMP EXAMPLFA3

actl : waterLevel(m) := LOW
end
Event low to medium =
Internal Event
refines update WaterLevel

any

h
WHeLR 41 . m € MINE

_grd2: waterLevel(m) = LOW
Xl‘thlevel . level = MEDIUM

en

actl: waterLevel(m) := MEDIUM

end

Event medium_to_high =
Internal Event
refines update WaterLevel

any

h
WHeISd1 . m € MINE

_grd2: waterLevel(m) = MEDIUM
:‘Ethlevel . level — HIGH

en

actl: waterLevel(m) := HIGH

end

Event addMine =
extends addMine

h
WRCrd1 : MINE = @

then
actl: MINE := {M}

act2: pump(M) := OFF

act3: bell(M) := FALSE
act4 : methane(M) := FALSE
acth: waterLevel(M) := LOW

end
END

Appendix C

Event-B metamodel :
simpleeventb.ecore

This annex presents the complete metamodel used to represent an Event-B
machine and its traceability links with a KAOS model. The first section
describe the Event-B elements hierarchy and the traceability links hierarchy
belonging to a project. The second section presents the Event-B machine
and context anatomy and the third section describe the traceability links
associated with those elements.

C.1 Metamodel elements hierarchy

44

45

APPENDIX C. EVENT-B METAMODEL : SIMPLEEVENTB . ECORE

woKy | uomy g ssaulm plens g J3jaueled 5 uruomsoduwoday H MRIAMEII0D H
WESUOD H uruonisodwosag g OISUEPIREI0D
V
1e5l3LIE) § QUBAZBUILREIN EeLEA § JUELEAUL uoissaudxaiuaragiuang | 3|qeLen § MEMEICIIELEN=] BWBULEHRUILPEN
V AV Vv
uoissaIdxgpRuoDgIuaT B uoIss2dxgaLyIDEIIAT B pEuod g BUIPEN B JuITgILaAT [
buLysy : uoissaudxe o «0 Buss i pl &
uossaidggiuasg g 1alqogiuaa | spUawE|E Buysy @ aweu o
paloidd H
v
Buisa:pr &

BULIST : JUBWIWIOD o
BuLysy ! sWel o

1daouoDgiuang E

Figure C.1: Event-B concepts hierarchy

46

APPENDIX C. EVENT-B METAMODEL : SIMPLEEVENTB . ECORE

Buinsy @ awenLUYU o
Bulisy : ppossyilyl o

BULIST ¢ AWENUOREDOSSE o

onealaguonenossylayn g

Bulys3 : swepjuswaanbal o
Buys3y : ppuzwaanbal o

BuLis3 @ PIUONEDOSSE o
oneAlagUONeRossypabald §

bulis3y @ swenuonepadie o

BuLasy : puonepadie o

uoneAUzMusRINbay §

0NEID0sSYPaalldaIeIpaLLEIUYN

fanuzatelpaLLEIAYN H

BULIST | BUENIIEA o
BuLIST PRURAR o

uoneaizguonepad< g

Busy : swenuzbe o

BuLsy : ppuzbe o

BuLIST : AWENUOREDOSSE o

uonenizqiuzby §

onealagralgowasg g

BuLIST : BWENUIELIOP o
Bulysy @ pluewop o

Bulisy @ awepzbe o
Buiysy @ ppusbe o

BuLIST | PIUOREDOSSE o
OlEAaJUONEDOSSYpaalpuUn §

BuLyST | UBJp|IYDsAWEd o
Bulysy @ Juadedatey o
Buulsy : pIvs! o=

oneAlagUEWIod3INgUIY

oneALagRalqoueby B

ueajoogd | B30} o
ueajoogsy pelsp o

Buisy : swepAanUE o

Buns3 : pranus o

onesuagpalgofnua g

Bullsy | swenNARuISINgURIE o
Bulisy : aweNINgLRE o
Bulysy @ prRIngURe o

uoReAaaysl

UOREAUZAZINGUNY [

uoisinay g

olsJapUELE H

uonealzd § juasn §

AV

[CHENEE|

uoisianenul §

Huzpuadag {

Busa i pl &

]

o OULIST [3UEU o

unfijgeasell §

S30E1}

palboid §

Traceability links hierarchy

Figure C.2

APPENDIX C. EVENT-B METAMODEL : SIMPLEEVENTB . ECORE 47

C.2 Event-B machine and context

E Machine | 0.1 VI®WE 'H ContextView
eeingMachine 0.

isViewed | g * H carrierset

seenContext/g 1

extendingContext| H Context 0.1 constants H constant
0.1 context 0.”
0.1 0.1
conte
extendeddontext
axioms H axiom
0”*
0..*| extends
E ContextExtension g »
extended

Figure C.3: Event-B context anatomy

48

APPENDIX C. EVENT-B METAMODEL : SIMPLEEVENTB . ECORE

uopY H

piEnS g ssalM | Js13WElEd H

" . 0 L
SUooe .0 Aj@/ \E\. 0 < zaweled

ENET-CINEY,
WBAIPBURI b3 0083 ¢ |EUIRUES! o urpasodwonal
T0
SIETEENEE OS] -0
0 |Aapauyad .0 uuonisodwodzy
. waazbuyal [, SJUEA
+0
awsullsiusA B sauysd
0 saulyzepBYisodwooad
pEERE Y] SyiBREA +0 auILpEpPesodwooal
. SUILYSE 0 0
10 uppasoduwoap
0 n aupepasodwooap «'0 _
e AEEE T S uIpEN Buisodwooap frmissodwonsg]
JUELIEALT F T BUILDEL
: : sauyReBuIso
sa|gELEA
191 0
+0 BUILDEY BRI
3|qeLen §

maod

WAUOTIUBES

0

f..D

pamaIAs|

20 malpaueD §

saUad

] MEENIENENIEE =]

tomy

me ana

Event-B machi

Figure C .4

APPENDIX C. EVENT-B METAMODEL : SIMPLEEVENTB . ECORE 49

C.3 Traceability links

50

APPENDIX C. EVENT-B METAMODEL : SIMPLEEVENTB . ECORE

palgoiusbywoldpasla
buLis3 : sWENUBAE o P2l0WAILOIIPRALIEP .n H___.._w Hep buLysy : swenuabe o
BbuLsy : ppuang o T°0 bulLis3 @ ppusbe o
oneauagpelgozal g oneauadpalgosby g
1°0 . . l[qowzbywaodpasuag
palgoIuaATRIOIJpaALIER 10 o 0 0
. palg AJLIOI4PEALIER palgosbywssHpaiuap
0 I ! palqouaby
palgouaagwplipasuzp
10
-~ WBAIPIALIEP JELIBAUIPEALIBP 3| (BB APBALIZP
d] .
NELERIET] ” 0 o
0 BAIPREALIBP UBLIEAUIPAALIE[10
T0 ELETI 1a5paaliap uaajauiyoe LELIEALI 3|ELE
18stalled H quasrjaullpey el I§=] [qeLen B SIGELEADOALISP
Uargpasiap \r
WIBAIPSALIZP N0 wenealpaalap 170
W@EPaALEp | U0 B|QELEAPRALRR [T70
palgofnuiwoipasuzp uIwoljpasIzp
T 0
AnuIwoldpaalEp buisy | sWenNANUE o o
0 Buysy : priagua o fnuzwoidpaauzp
oneausgealqofinug §

0J4paALIER

Figure C.5: Traceability between KAOS abstract objects and Event-B

51

APPENDIX C. EVENT-B METAMODEL : SIMPLEEVENTB . ECORE

S3|qELEARRALRR

0

0
UOMEDOSSYRIPRIPUNWLOIJP AR
0
BULIST | BLENUOIEIDOSSE o _— uBAIpEALED

BuLlST : plUoNeDossE o

LOREALZJUONED0SSYRaRaIIpUN B

T°0 | UONREDOSSYRIDAIPUNWOIJPRALER

WELIBAUIPEALIZP £70

3|qeLes

MELEENIEEE!

weLeal] g

F|ELIEADIALIBP

UOREDOSSYpaEalguoldpanuzpl 1 o

10 J0SSYAQUIOI{PaALIEP

JBAIPRALIZP

UDREIDOSSYRADAIdUOIJPAALIEP

0

0

buLisy @ aLWENUDNEDOSSE o
BuLIST @ PIUOREDOSSE o

UoNEAIZQUONEID0SSYP1Ra.d

10

WeLEAUIPaALIER [T0

JUBLIEAUIPEALIEP

T70 \ wsloJddpaadzp

BuLasy @ usJp|IyIsRWEd o
Buligy @ uaIedael o
Buwisy : pIwsl o
Ues|00g3 B0} o
uea|oogdy :ofEp o

uoneALz Qs g

Figure C.6: Traceability between KAOS associations and Event-B

52

APPENDIX C. EVENT-B METAMODEL : SIMPLEEVENTB . ECORE

JUELIEAUIPRALIZP

"0

}354a1ieD H 0
12spRALEp [T70

RNTHIEEN I EWINEN A8 ST FE[sERNETs!

0
UOREROsSEUYNWOI4paAIER ESCE TSN

WELEAUL B pUELIEAUIRIALIZR

0 0557318 IPRLLIBIULLYNOI4paALEp

"0

LiolenossypapaligaieipaulzuilyN B

AnuIsIeIPALLIBILI BTN IVEENI T ENNENN A NTTN [« [« AR T o) SLOIEIDOSSYR]ED I WLLIZIUI
0 ro sossyaieipawlsiurbyNwoldpandap
"0
"0 0
a|gelleapaalEp] B|geUen F B|qRUBADRIALEP

0 BuLisy : swenyu o

T0

UCIEID 0SSyl LLIOIJpaalap buLys3 : ppossylivu o
LoneAlsguonenossylivy §

UORERDOSSYUGNLOpaAIEp | 170

SUONE OSSNy NWOIJPaALIEP

WaApAALIEP

T'0 puaAgzuyDen H

+ 0

Figure C.7: Traceability between KAOS N-Ary associations and Event-B

APPENDIX C. EVENT-B METAMODEL : SIMPLEEVENTB.ECORE 53
H wvariable H Invariant H MachineEvent
0.1 | derivedvariable 0.1 | derivedinvariant 0.1 | derivedEvent
derivedfromAtribute
0.1
0.1 H attributeDerivation
“— = attributeld : EString 0.1
derivedFromAttribute| = attributeMame : EString - .
= attributeEntityMame @ EString derivedFromAtiribute
H AttributeDomainDerivatio]) :
derivedFromAttributeDomain | o gomainid : EString derivedFromattributeDomain
0.1 = domainName ; EString 0.1
0.1 \derivedFromattributeDomain

0.1| derivedsSet 0.1/ derivedaxiom 0.1 derivedCaonstants
H carrierset H axiom H constant

Figure C.8: Traceability between KAOS attributes and Event-B

APPENDIX C. EVENT-B METAMODEL : SIMPLEEVENTB . ECORE 54

H DomainPropertyDerivation
= domainPropertyld : EString
= domainPropertyMame : EString

0.1\ derivedFromDomProp

0.1/ derivedinvariant
derivedinvariant] El Invariant 0.1
0.1 derivedInvariant

)) 0.4 derivedFromRequirement
0.1| derivedFromExpectation

H ExpectationDerivation H RequirementDerivation
= expectationld : EString = requirementld : EString
= expectationMarme : EString = requirementMName : EString
derivedFromExpectation |0.1 derivedFromRequirerment | 0.1

derivecEvent |El MachineEventi 0.1
0.1 derivedBvent

Figure C.9: Traceability between KAOS requirements, expectations and do-
main properties and Event-B

H AgentDerivation _ .
= agentld : EString 0.1 derivedMachine | H Machine

= agentName : EString | derivedFromAgent 0.1

Figure C.10: Traceability between KAOS agents and Event-B

Appendix D

ATL transformation :
KAOS2EventB.atl

This annex presents the ATL transformation used to process the initial trans-
formation of the KAOS object model to the initial Event-B machine and
context. It also create a machine per agent refining and decomposing the
initial machine. See chapter [2| to have more details about the method.

The input model is a KAOS model serialized in a XMI E]ﬁle with Objec-
tiver [Respect-IT, 300]. Tools to connect to Objectiver and get a XMI version
of the model are part of the FAUST project (http://faust.cetic.be/) and
can be found at http://sourceforge.net/projects/faust/.

The output format of this transformation is a simplified Event-B model,
also serialized in a XMTI file, that has to be completed by the analyst and the
traceability links with the KAOS model where it came from. The metamodel
of the output model is described in annex [C]

XML Metadata Interchange (specification available at http://www.omg.org/
technology/documents/formal/xmi.htm)

29

http://faust.cetic.be/
http://sourceforge.net/projects/faust/
http://www.omg.org/technology/documents/formal/xmi.htm
http://www.omg.org/technology/documents/formal/xmi.htm

56

APPENDIX D. ATL TRANSFORMATION : KAOS2EVENTB. ATL

T eUIYdRIN[RIIIUT, —> PI
) PUIRIN | AINIAHAIINIS @ oulydew
09
} ()108lorg ema jurodAijus
"U011297109 syus] £11719D29DLY puv 3TIJU0D VLIUIL oulyoDW JDUIUIL —

§, 2% puv j120loud D 91D24D 0) ISDYd UOLIDSIIDLILUL Y] D PIJIDI IYNY —
Jipue
(. .)Ilveoerdear-afour-jyoas
9s[9
(. ¢)Irveoerdear- ()Iomo o) dweu: O SYUI[" J[OS

woy) () PIuIFOPUNSI[I0 S0 JTOS JI
= 8urIjg : oweNA}JUS : JOP UL SOV 2xX9juo0d aadisy

‘peunepun (O = Yuruonisodwodsq (GINAAIAIINIS @ uorjtsodwoosieijiul :jap radiay
LpoulepuUN[RO = 1X91U0) [INHATATINIS : 1X91uopeiep :jop Jaadiay

LpeulepuN[PQ = OUIYIRIN [JINHAFAIJINIS @ oulydoey[eisaussd :jop iadiay

spouyapun(rO = 100l01d (JINHATATINIS @ 309foxd :jop 1adpay

SOV * NI woqy gINIATAINIS @ INO 23edId
fgIIOATZSOV dmpowt

94000 *sony/uado/ou4s /Jopow - 42a1322Lq0 21320 "29/=COVY yivdp —
94002 " QQU2099)dws /qruaas /japown)aus/Qiuanagsony " 019199 " 2Q/=gINIAHATINIS Y1rdp —
900140 4a]1dwod)ny —

sosed asn 0} suoljerado MIOIJ 9POd UOIJRULIOJSURI} TV :T'(] SUNSIT

O = N M H 10O O© I~-~00 O O — AN M H 10
— o = = =~ =~ — — AN AN NN NN

— N M <1 O D~ 0 O

57

APPENDIX D. ATL TRANSFORMATION : KAOS2EVENTB. ATL

) MOTAIXOITOD) [AINHAHATINIS © MOTAXYD

“({}19g —> popuoyxae
‘“{}19g —> spuoixo
“{}10g —> swoixe
‘{}10g —> sjueysuoo
‘{}19g —> sjos
“{morAxI0}10g —> pomarpst
‘. epow 309lqo GOV ® WOIJ Pajeald,
+,u\ uorjeindiuew wejep [9POUL I10] I1X9)U0D IR, —> JUITWIUIOD
¢ 9Xajuoneie(], —> SwWeRU
foAxejuopIeIdIUL, —> Pl
) 1x0310)) [GINFATTTINIS © X139

“({}19g —> urpesodwmooaz
‘{}19g —> ulpesoduwosap
“{MmdTAXID} 910G —> smola
“{}rog — Lgpouyjeu
‘{}19g —> sourjou
“{}1eg —> sjueas
‘“{}19g —> sjuerirea
‘{}19g —> sjuerieaul
‘“{}19g —> so[qeriea
‘. [PpouW GOV ® UIOIJ PajeaId,
+,u\ [epow oY} JO AUIYIRW [RIDUAS JSOW Y], —> JUSTIUIOD
¢ QUIYDRIN[RI}IU], —> oUWeu

1¢
0¢
6V
8¥
Ly
9¥
Gy
a4
ev
4%
v
0¥
6€
8¢
LE
9¢
53
43
€€
(43
1€
0€
6¢
8¢
LC
9¢

58

APPENDIX D. ATL TRANSFORMATION : KAOS2EVENTB. ATL

12poy 129090 SOVM 2Yy3 buiusaouos sajny ——

todwoosp —> uorjrsodwoos([RIJIUL " S[NPONSIYY
LX90 —> 1X0)UO0)RIRD " [NPONSIYY

LOUIYORW —> QUIYIRIA[BISULS " S[NPONSIYY

tfxd —> 3o00loxd -ompoNsiys

{}10g —> seuryoeSursodwooap

‘ouryoewr —> oulysRNpPosodwossp

¢ eulyoeul [RBIYIUI 91} Jo uoryisodmossa(, —> JUOUIUIOD
¢, uorjrsodwood(RI}IU], —> dWRU

¢ ,uorjrsodwonaeIlziU], —> PI

) quruoryisodwods(jGINIANITIINIS @ odurosop

{}198 —> soorIy
“{ma1AXx910‘odwooep‘ x)0 ‘ duUIYdRW } 19§ —> S)ULWD[
‘,100loxd g—guea pojeIoULL), —> OWRU
C liggiueag, —> prt
) 1oelo1d [INIATATINIS © [ad

‘ (ouryoewr —> auUIYIRINIUISAS
‘X130 —> 1X93U0)UdIS

L.
9L
G
2
€L
¢L
12
0L
69
89
19
99
g9
79
€9
¢9
19
09
64
8¢
LG
9¢
Gg
[
€g
(45

59

APPENDIX D. ATL TRANSFORMATION : KAOS2EVENTB. ATL

“()zeddpnoy-(, ‘.)1Iveoe(dol owru A)1jue —> uOIssardxo
[OPOIN 290[q(O SOV Ul ,foweu- A313Ud+, AJ11UH WOIJ POALId(], vaq@ﬁSEou
“()raddpnoy - (, ., .)IIvVeoe[dol owreu’ £313Ud —> OWeRU
CITAVIIVA teureu” £314uot 1epoNfqO. —> PpI
)o1qerie A [AINIAXATINIS © oTqeriea
“(qurp —> A3UFUWOIJPOATIOP
‘1x9juU0D®IRD " J[O8 —> JX9)U0D
. IAS . +H()reddpoyc (¢,) 11Veoeldel owru A)1jus —> UOIssoIdxo
[OPON 199(q(OQ SOV Ul ,fowreu: £913Ud+, AJ13UY WOIJ] POATIS(, —>)JUIUIUWIOD
C.IAS +()reddnoyt (¢,) 1Iveore[dor oureu’ £313U0 —> omWRU
C LdS (Aoureur £313ue+ T PPON[qO., —> PI
)10g1011IR) [GINTATATINIS & 9958
0}
L£Muyg iSOV : A313Ud
woajy

} emyg£yniug ena

“9Indg fizn] 9INYINQLLIIYIIDILD DY) —

burppoo fiq oog ayna siyy fiq passooouad ouv fizrygus 2yy fo S9Inqgru3in Y] ——
AUIYODUWE JDIPIUL Y] UL JUDILDAUL UD —

pUD UIYIDUL JDLIIUL Y] UL Juaausd 3opdn uD 2UYIDUWL [DIJLUL DY) UL ——
2]qD14DA D ‘THIU0D JDLIIUL BY] UL 325 D 03 pagp)sun.siy st fAjuguy —

10T

001
66
86
L6
96
g6
76
€6

¢6
16
06
68
38
L8
98
g8
78
€8
¢8
18
08
6.
8L

60

APPENDIX D. ATL TRANSFORMATION : KAOS2EVENTB. ATL

[OPON 190[q(O SOV Ul ,fowreu: £913Ud+, AJ19UY WOIJ] POATIS(, —>)JUSUIUIOD
“oovepdn (Y,) IIVeoer[dor oureu’ £313U0 —> omWRU
L HLVadn eweu L3713+ PpoNiqO, —> PI

) YUOAFAUTYORIN | AINAAHTTANIS © 349

‘(198 —> j10gpoATIap
‘9A9 —> JUDAPOALISP
‘ JURTIBRAUI —> JURIIRAU[POALIDP
‘9IqRIIRA —> O[(QRIIBAPOALIID
‘omreu £9)19U0 —> QWRNAIIJUD
‘proAjryus —> préynue

) woryeAr1o@199(qOLINIUY [GINIAHATINIS © Ul

“(S[urp —> £UFWOIJPIATIID
‘QUIYORIN[BIOULS “ JT0S —> QUIYIBW
““ A“
+. IS +()reddpoy- (¢,)1rveoserdar ouren” £919us+ JMOI ¢
+()raddpnoy-(, ,“,)1Iveoe(der owru- A)1jus —> uolssardxas

¢
¢

[OPOIN 228[q(SOV Ul ,f+oweu- A13uUd+, A913U WOIJ POALIS(], —>IUdWWOD
CoadAT (. Y.) ITveor[dor-oureur £313U0 —> owWRU
“ (INVIMVANI (toweu £31q9uo+, pPPoNfqO, —> P!

)ruerieau] | QINHAHATANIS : juetieaur

“(S[urp —> £3UFWOIJPIALIIP
‘QUIYDRBIN[RISUSSE * JT9S —> SUIYORU

Gcl
€4
€cl
44!
1¢l1
0cl
611
STT
LTT
9TT
GI1
48!
€11
¢ll
ITT1

OTT
601

801
20T
901
GOT
V0T
€01
c0T

61

APPENDIX D. ATL TRANSFORMATION : KAOS2EVENTB. ATL

‘(£913ue ‘ 9)NQIIYIR)OINQIIIIYOIRIID “O[NPOINSIYY
}(sognqrigge - £313U0 UT o9nqlIjie) I10]

f(100) buipn)ou
f(ruvravaur) buipnjous
f(o1qviava) burpngous
(105)buipnjous

“oovepdn (¢,

TSIU2WIYI
TSIUGUWI]I
TSIU2WIYI
TSIUQUWI]I

“909foud - f1os —> sjuowoaje ~10aloud -
“g00load - [1os —> sjuawaja - 302load -
“909louad - f1os —> sjuawaje ~10aloud -
“g00load - [1os —> sjuawajo - j02load -

S(yurp)8urpnpour-seoer) - joafoad - jres —> soaowr) - goeload-
$(240)3UIPNIOUT " SJUDAD " QUIYIRIN[RIDUSG * J[9S —> S)UOAD " dUIYIRIN[RIOUDSE

f1os8
f1os
f1os8
f1os
J1os
J1os

‘(guerreaur
SUIPNOUT " $)URIIBAUI " OUIYOBN[RIOUDIS " J[0S —> S)URIIBAUI OUIYOBN[RIOUIS " J[08S
tpnyout ! ! TR INT I ! ! TR INT I

‘(e1qerrea
)8UIPN[OUT " SO[QRIIRA " QUIYIRIN[RIOUDS * J[OS —> SO[(RIIRA " QUIYIRN[RIOUIS " J[OS
‘(90s)3uUIpnioul’ $19S * JX0JUWOHRIRP " J[OS —> S§908 1X0JU0)RIRD " J[OS

(furp — y0alqoLynyuguorfpoatiop
‘QUIYDRBIN[RISUSSE * JT0S —> SUIYOIRU

‘9s8[R}] —> [eUJLIUISI
‘{}19g —> sourjou
“{}irog — Lgpouyyeu
‘{}10g — suoriow
‘{}10g —> sasaulim
‘{}19g —> spiend
‘{}10g —> s1ojomrered

() I1veor[doar-sweu- £319us —> uorssardxs

¢
¢

Jop

!
Lyl
9Tl
il
44!
eVl
47!
I71

V1

6ET
8€T
LET
9¢T
Gel
Vel
€E1
43!
1€1
0¢T
6¢Cl1
8¢l
Lcl
9¢l

62

APPENDIX D. ATL TRANSFORMATION : KAOS2EVENTB. ATL

()xeddpnoy-(, . °, . v:Moqu@H Towreu” A}13UQ

+“”n+fﬁfnv:<®ofgog.mq§:.@psm:iimIvgoﬁmm@paxa
‘ureuwIop- oynqliyjed, <— |
+()raddnoy-(, ‘.,)IIveoerdor owru- £414Ud
+. ¢ PPOIN 999[qO SOV ur

HouIRU " 99N qII33e+, 9INQII}}Yy WOI] POALId(, —> IUOUIUIOD

“(, .Y J)llveor[dar-eweu- 9)nqrrjle —> oweu

‘(... J)IIveor[dor-owreu 9gnqrijie —> pI

)yuriieAu] A INIAITIAINIS © juelieAUl

“(
JUI] —> 93nqiil)yuworjpoatiaop
‘(. Y) IIveor[der owreu 9gnqrijye —> uolssordxo
furRWOp 9N qIIYIRE, <—
+. 1PPOIN 129[q(O SOV Ul
fowRu " 9N qII})R+, 9INQII}}Y WO} PIALId(, —> JUWWOD
‘(... J)1Iveoer[dor-owreu- ojnqlIjle —> oUIRU
“(, Y. J)IIveor[der-eweu 9)nqrijje —> pr
) elqelIe A [AINHAHATINIS @ °T1qeliea
0}
P o(£1mug isOovy ¢ A911ue ‘9Inqrilgy SOV : 0InqIIjle)oInqrijjyoresld o[nd
“fgegun oup fo $a3nqQuuly Yy J]v 23va4o o3 opnyfipryuyg fq pajpvo ojnua fizny ——

VLT
€LT
CL1
TL1
0L1
691
891
291
991
G991
P91
€91
91
191
091
6S1
86T
LG1
961
Ga1
2!
€41
45!
191
0ST
6V1

63

APPENDIX D. ATL TRANSFORMATION : KAOS2EVENTB. ATL

“1a0 —> JuoayerepdpoATIoOp
‘ JUBTIRAUI —> JUBRIIRAU]POALISP
‘9lqRIIRA —> O[QqRIIRAPOALIOP

) WOTHRATIDAOINGIINYY | GINAAAATAINTS

C(qurp —> joelqOLInyuguor ypoatiop
‘ouIYORIN[eIUSS " J[os —> oulyorw
‘98[R} —> [RUJIDIUISI
“{}10g —> sourjeu
“{}reg — Lgpourger
‘“{}10g —> suorjoe
‘“{}319g —> sosourim
‘{}19g —> spiend
“{}10g —> siojowered
“oorepdn (¢,) TIVeoeldol owrRu A)1juUs —> UOIssoIdxo
“PPOIN 199[qO SOV Ut
fouwreu 99N qIIjle+, ' FOWRU" A£)13US+, AJT13UF WOIJ] POATI9(, —>}UdWUIOD
¢, 9jepdn
(Y J)11veoridor: (ewreu- 9)nqlIjle4, foweu- £3131U0) —> dWRU
L ALVAdN teweus einqrijjed, o, feweu A41jus+t, [PpoN[qQO, —> PI
) YURAFOUIYIRIN | TINAATATAINIS

JUI] —> 9IinquijywolJpaallap
‘urewop - 9jnqrijre+, <— |
AT

Uty

1A

o

86T
L61
961
G61
V61
€61
¢61
161
061
681
881
L8T
981
G81
V81
€81
¢8I

181
081
6LT
8L1
LLT
9.1
GLT

64

APPENDIX D. ATL TRANSFORMATION : KAOS2EVENTB. ATL

MMNﬁm\SQ.@w\U.@UQ%%v\N@@wUm&NQ N b —

TOULYIDW DLILUL Y UL JUIAI 2IDPAN UD PUD FUDILDAUL
ST UO0LIDIIOSSD PIPIIUID

up ‘9)QDIADA D 0)UL PIIV]SUDLY

N SOV P390 2Yy3 ul pajuswa)duil 10U ULDWOTIINQLLI]Y

2Y] Ul WOITD UD Ppuv 198 D UL PIID]SUDL] UT

(100) buipnyour - squawaga " g0aload [1as —> sjuawa)o
S(ruvtavaur) burpnjous - sjuawaps “goalosd - f1as —> s3UUI)I
‘ 4) burpnyou: ! toud [!

f(o219niuva) burpnjour - sjuawajo “30aloud - [1os —> sjuowa)o

S(yurp)S8urpnpour-seoer) - joalford - jres —> sooery-

“309loud
“900loud
“309loud

109foad

$(240)3UIPNIOUT " SJUDAD " DUIYIRIN[RIDUDEZ * J[OS —> S)UDAD " QUIYIR\[RIOUDS
‘(guerreaur
) 8UIPN[OUT " SIURTIRAUIL " DUIYORIN[RIDUOS * J[0S —> SJURIIBRAUIL 9UIYIR\[RIOUDS " J[OS

“f10s
“f19s
“f10s
" J1os
“J[os

‘(e1qerrea

)8UIpPN[OUT " SO[RIIRA *QUIYIRIN[RIOUDS * JOS —> SO[(RIIRA " QUIYIRN[RIOUIS " J[OS

oureu " A919)UD —> SWRNA}IJUISINQIIIIR
‘owreu- 91NQIIjleR —> QWRNIINCII}je
‘omeU 99N QqIIl)R+, * ,+PI A313U8 —> pIoINqIilje

}oomyguivwogagnquiy)y aqnd
"1T27U00D
utvwop ww\;Qs&ww«\

JprjLul

Jop

¢Ge
1¢¢
0ce
61¢
81¢
L1¢
91¢
gTe
Vic
€1e
¢le
1T¢
0Te
602
80¢
20¢
90¢

G0¢

¥02
€0¢
¢0¢
10¢
002
661

65

APPENDIX D. ATL TRANSFORMATION : KAOS2EVENTB. ATL

¢

[4

(

Pl
) TIveoe[dar euren o syull [qOIsIF+, QL
+(. Y)1rveoerdar-eweur o psyul]” [qQpuodes = Jurryg : yoig
m Aulﬁ ‘ ¢
JIIveor[doea aweu- o syul] [qOpuodes+, QO

+(o ' J)nveosrider-eueu orsyullt [qQisiy = Sulnlg : goyy
C()reddpor-(, (¢,)IIveor[der-eweu-orsyull [qOpuooss = Surilg : g
‘()reddpoa- (, ¢,)I1veoridox-eweu o syul] [qOIsit] = SutIyg : vy

“()asa1y<—()oousnbogse<—
[qOasity <> JnQOPOIdI[I | 1M QPOI9II])100[08<—SYUI[WOIIRIDOSS®
= uITisovy © [qQopuooes
‘() asa1j<—()oouonbogse<—sYUI] UWOT}RIDOSS®
= NUITiSOvM : [qQ3s11]
} 8uisn

¢ = ()ozIs<—syUuI[UOI}RIDOSS®
SU013D1208sD fiuvurq fijuo $sa204J —
) diysuorje[ay] jSOVY @ UOI}BIDOSS® UIOIJ

}oinyuorjeinossypojoalipunAlieulrg o[nd
QULYIDUL JDEIIUL Y] UL U249 210PpdAdN UD PUD SUOLIDIIOSSD PILIILLD —
omy Y3 uaam3aq yur] 2yy 03 burpuodsaiiloo JUDILDAUL U0 PUD —
SUO0LIDLIOSSD PIoastp g 01 buipuodsasiod SIUDILDAUL g PUD —
§21QDIADA F 03Ul PIID]SUDL) SI UO0LIDII0SSD Aupulq pagpoasipun uy —

W SOV]Pn32D 2yj ul pajuduwia)duil Jou UO0LIDIIOSSYPaaasl(] —

9ve
Gye

¥re
EVe
cre
1v¢
0ve
6€¢C
8€C
LEC
9¢€¢
Gee
244
€Le
GET
1€
0€¢
6¢C
8CC
LCG
9¢¢
Gce
(44
€¢CC

66

APPENDIX D. ATL TRANSFORMATION : KAOS2EVENTB. ATL

‘“{}19g —> seosoujrm

‘“{}19g —> spiend

‘{}10g —> siojowered

“oetepdn (¢, [)TIVeoe[dol owRU UOIJRIDOSS® —> UOTISSoIdXo
“PPOIN 199[qO SOV Ut

+oWRU " UOI}RIDOSSB+, UOIIRIDOSS® PIIISITPUN WOI] POAIIS(, —>IUSTIMOD

“oorepdn (¢,)IIveor[del- (ewRU- UOIIBRIDOSSR) —> SWRU

* HIVAdN oW WOT3RTO0SS® |, [0PONIqO, —> PI

) 1ua A UTYDRIN [GINHATATANIS © 140
juaaa a3opdn —

“(
90R'I) —> UOIJRIDOSSYPOIIIIPUWOIJPIATIOP
S0 0o
' = (q) . +tyoygt, <=>q = (®),+goyy
ATN v <= nATMTV“ O— _ vAH n+<+n ‘e .vn —> Qoﬁmmw.ﬂgvmw
“ TPPOIN 399[qO SOV urt |

fowreu" UOI}BIDOSS®+, UWOI}RIDOSS® POYDSIIPUN WOIJ POALId(, —> JUIWUIOD
¢
¢
Aur uorymosse aipun’ +(, ‘. [)[]yeoe[del swru UOI}BIDOSS® —> dWRU
‘. aur uorjrosse axipun (., ,‘, ,)I][voor[doI oweu UOI}RIDOSS® —> DI

)jurLIRAUT [INHAHATINIS juetieaut
SU0LIDLI0SSD Pajgoastp g buryur] —

1.¢
0L¢
69¢
89¢
29¢
99¢
G9¢
¥9¢
€9¢
¢9¢
19¢
09¢
6G¢
8GC
L8¢
9¢c
GGqe
2514

€¢e
(41
16¢
04¢
6VC
8VC
Lve

67

APPENDIX D. ATL TRANSFORMATION : KAOS2EVENTB. ATL

$(140)3UIPN[OUT " SJUSAD " QUIYIRIN[RIOUSS * J[9S —> S)USAD " QUIYIRN[RIOUDS " J[oS
‘(guerreaur
)SUIPN[OUT " SIURTIRAUL * SUIYOIRJN[RISUSS * J[0S —> SIURIIRAUL dQUIYIRJN[RIDUSS - J[OS
‘(uorgyeroosse ‘ 9ovIy‘ osyur] [qOIsit]
fogsyuI]
“[qOpuoooes‘ [qOPU0D9s) PoldaIlPU)WOIJUOIIRIDOSSYPOIDOIT(]OIRIID " A[NPONSIYY
‘(uoryersosse ‘ 90wy ‘ ol syull- [qOpuooss
Lo syulg
“fqOysiiyt [qQ)sa1y) pajooIIpu) WOl JUOIIRIDOSSY PO)III[(IIIRIID " A[NPONSIYY

{}19Gg —> so[qrRIIR A POATIOD

‘A9 —> JUDAPOATLIOP

‘{ruerieAuT }19G§ —> JURIIBRAU[POATIOP

‘owRU UOI)BIDOSS® —> JWRNUOI}RIDOSS®

‘Pl UOTI3BIDOSS® —> PJUOI}RIDOSS®
JUOT)RATISUOIIRIDOSSY Pa10aIlpul) jGINIAHATINIS @ °9o®rI)
yur]p —

‘(009®I} —> D0SSYIIPUNTWOIJPIATIAP
‘QUIYORIN[RIDUSS " J[os —> oulydrw
‘9S8[R}] —> [RUJILIUISI

‘“{}19g —> sourjor

“{}rog — Lgpourges

‘{}19g —> suoryoe

jop

¥6¢

€62
¢6¢

16¢
062

68¢
88¢
L8¢
98¢
G8¢
V8¢
€8¢
¢8¢
18¢
08¢
6.¢
8LC
LLC
9.¢
GLT
jXé
€LC
CLT

68

APPENDIX D. ATL TRANSFORMATION : KAOS2EVENTB. ATL

“(, .. J)Ilvyeor[dol -oweu’ UOI}RUIISOP

+. 0L +(, Y. J)11veoridor-eureu’ 90Inos —> uoIssoIdxo

[4
[4
¢

"TOPOIN 3900qO SOV Ul - toumeNAjIiue t NuUI[+, FUI[°

4oWRBU UOI}BIDOSSB}, UOI}IRIDOSSE® POJOQIIPUN WOIJ PIALId(, —> JUSWUWOD
“orea (., . f,)IIveor[dol-oweu- WOT}RIDOSS®
-+, UOI}ID0SS® ITpun oweNA}IIUS " JUI] —> SWeRU
“Corea (., ¢,)IIVeor[dol-oweu’ WOTJRIDOSS®

4, UOI}ID08s® IIpun | FomWRNAJIJULD * YUI] —> PI
)o1qerre A [HINIATATANIS © o[qeliea
0}

}
(digsuotye(oy jSOVM @ UOIJRIDOSS®
O11RATIS([UOT}IRIDOSS Y POIdaIIpu()
P AINHAHHTIINIS - 99%1)
‘100lqQioeI1ysqy
iSOV : uoljeur}sop
“1000qO10oRIISqV SOV : 90Inos
CNUTT SOV : [UI[) POIOLIIPU[) WOIJUOTIRIDOSSYPAIOQI(dIROID I[N
2nYyuorInidossypagoadrpufiavurg fiq pajyny —

f(100) buipnjour - sjuawaja - g0alouad [jas —> sjuowaja ~g0alosd - flas —
S(quvravaus) burpnjoul - sjuaswalo - p0alouad - flos —> sjuowa)a ~j0alosd - flos —_—
‘(oor1y)Burpnyout-sooer) - 3oalord jros —> soowery goaloxd: jyos

EIRS
Vi€

RS
¢le
1T1€
01€
60€
80€
L0€
90€

G0¢

¥0€

€0€
¢0€
10€
00€
66¢
86¢
L6¢
962
G6¢

69

APPENDIX D. ATL TRANSFORMATION : KAOS2EVENTB. ATL

‘(o7qeiIeA) SUIPN[OUL " SO]QRIIC APOATIOP " 9DRI] —> SO[(RIIR APOATIOD " 90®RI)

f(JUueTIRAUTL) SUIPN[OULI " JURIIRAUIPOALIIOP " 9DRI] —> JURIIRAUIPOATIOD " 90®RIY

Slruvravaus) burtpnjoul - sjuawale “p0alouad - flos —> sjuowa)as ~10alosd - flos

f(o219niava) burpnjour - sjuawaja " 300louad [1os —> sjuowaja ~10alosd [loas
‘(guerreaur

)8UIPN[OUT " SIURTIRAUIL " OUIYDORIN[RIOUOS * J[0S —> SIURIIBRAUIL 9UIYIR\[RIOUDS ' JTOS
‘(e1qerrea

)8UIpN[OUT " SO[RIIRA " QUIYIRI\[RIOUDS * J0S —> SO[(RIIRA " QUIYIRN[RIOUDS " J[OS

}op

JUI] —> 9)nqri})}yuworJpoAllap
“.0d QL. —> uoissaidxao

(buriygs so padfip) —
figeorypdigynw " yur) uo suosiuvndwod buisn fiq panosdwr aq pnoy —

¢
¢
[4

[OPOIN 190qQ SOVM Ul foweNAjrue - yul[+, Yul[¢,

+ouleU " WOI}RIDOSSB+, UOTIRIDOSS® POIdoIlpuUn WOI] POALId(, —> JUOUIUIOD
Coaur (¢,)IIveor[del-sweu UOT)RIDOSS®

-+, UOI}ID0SS® IIPUN ,+oWRNAIIIUS° JUI] —> SWeU
Coaur (¢,)IIveor[del -sweu UOT)RIDOSS®

4, UOI}ID0SS® IIpun ,+oWRNAJIIULD JUI] —> PI
)jurLIRAUT [INHAHATINIS juetieaut
“(

90®I) —> UOI}RIDOSSYPIIDIIPUWOIJPIATIIP

‘ QUIYDRIN[RISUSS “ J[os —> ouUIYdRUI

8€¢
LEE
9¢¢
gee

vE€

€ee
434
T€€
0€€
6¢¢
8¢CE
Y43

9¢E
gce
(445
€ce
(g4
1€
0ce
61¢
8T¢
L1€
91¢

70

APPENDIX D. ATL TRANSFORMATION : KAOS2EVENTB. ATL

(IAS () aeddpoy - (¢,

4

+oWRU " UOTIRIDOSSRH,

)orqerie A (HINIATATINIS © °[qelieAA)rius

“(AYTIUO)RIPOWISIUT —> UOIIRIDOSS Y AIY NWOIJPOATIOP

‘31xojuoNeIRP " J[OS —> 9IXOIU0D

[4

) 1Iveoer[doI oweu UOT}RIDOSS® —> UOISsaIdxo

‘. TIPPOIN 39°fq(O SOV ur

uorjeioosse %paﬂ\z WolI] PoATI9(], —>jU2maIUWOD

JAS () Ieddpnoy- (¢,) 1Iveor[del owRU UOIJRIDOSS® —> dWRU
CIHS tewRu wotjeInosset, PPON[qO. —> PI

)yogaoriie) (INAAAAIINIS : 39S4313ue
figrguo 93vIpowWLIIUL —

z < ()oZIS<—SYUI[UOI}RIDOSS®
SU01IDL20ssD fiuvurq fAjuo $s2904g —
) digsuorje[ay] jSOVY @ UOIIRIDOSS® UWIOIJ

}oInNYuOoIIRID0OSS Y PeldallpUNAIyY N o[nd

CRUIYIDW JDIIIUL Y] UL SIUDILDAUL

U pup §2]qDI4D0 U (J4Dd SUOLIDIDOSSD PaJIALL(]) ‘PUIYIDW [DIJLUL

2yy i

JUDILDAUL UD ‘UIYIDW]DIILUL Y] UL JU2AUI JDpdn UD

COULYODWL JDLILUL Y] UL 2[QDLADA D CTIJUO0D JDLILUL IYF UL 39S D

(140d figrpuo

2IDIPIWLIIUT) OJuUL PIID]fSUDL] S UO0LIDLD0SSD fiayy—N Y

€9¢
¢9¢
19¢
09¢

65€
8¢E
JASS
9¢€
gge
459
€4¢
(44
16¢
0G€
6vE
8¥E
LvE
9vE
Gve
478
EVE
ove
1vE
0ve
6€€

71

APPENDIX D. ATL TRANSFORMATION : KAOS2EVENTB. ATL

“oetepdn (. ¢, () TIVeoe[dol owRU UOIJRIDOSSR® —> UOISsoIdxo
‘U 1PPOIN 199[qQ SOV Ul
+owWeU " UWOT}BIDOSSB}, UOI}RIDOSS® AIY—N WOIJ PIAIId(, —>}UdWIWOD

“oorepdn (¢,)IIVeoe[dol owRU UOIJRIDOSS® —> dUWRU

‘HLVAdN teuwreu” worjeInossed [PPONIqO, —> PI

) YURAGTOUTYORIN | S INHAAMMTIINIS

1A

jua0ea ayppdn —

“C(ATIugelerpowIo)ul —> AJI)UHSIRIPOWISJUTAIY N WOIJPOALIOD
‘QUIYDRI\[RIDUOS * J19S —> SUIYIRUI

Co(etozds
A ()reddnoy- (7, ¢, [)1Ivyeoedel owru uorjeInoosse+, JAMOd : .
+()raddnoy-(, ‘., .)1Iveoe[doI oweu UOI}RIDOSS® —> UOTIsSoIdXo

CPPOIN 399[qO SOVY Ut
+ouleU " UWOTJRIDOSS®+, UOIIRIDOSS® AIY—N WOIJ POATId(, —>)ULUIMOD
CoedAr (. Y. () 11veor[del -eweu UOI}RIDOSS® —> dWRU

‘ . INVIIVANI . {oureu” morjeroosse+, [PPONfqO, —> pT

) yurtieAu] [INHAGAIAINIS © duelieauj£yrjuo

“C(AYTIugelerpowIo)ul —> AJIJUHSIRIPOWILJUTAIY N WOIJPOALIOD

‘QUIYDRI\[RIDUOS * 19§ —> SUIYIRUI

“()areddpnoy-(, ‘.)IIVveoe[der -owruU UOIIRIDOSS® —> UOISsaIdxo
“PPOIN 19900 SOV Ul

+oureU " WOTJBIDOSS®+, UOTIRIDOSS® AIY—N WOIJ POATId(, —>)U2UIMOD

“()raddpnoyr-(, ‘.)1Iveoe[dol dwWeRU UOIJRIDOSS® —> dWRU

C ATAVIMVA ™ touren” mwotjeInossef, ~ [PpoNlqQ, —> PI

88¢
L8€
98¢
Gg8¢
¥8¢€
€8¢
(4315
18¢€
08¢
6L€

8LE
LLE
9L¢
GLE
vLE
€LE
CLE
1L€
0L¢
69¢
89¢
L9¢€
99¢
G9¢
¥9€

72

APPENDIX D. ATL TRANSFORMATION : KAOS2EVENTB. ATL

SUOLIDIIOSS Y PIFIILL([IIDIPIWLIJU] ——

o[qerie A £111Ua —> 9[qRIIR A POAIISP
‘3UeIIRAUTAGTIUS —> JUBRIIBAUJPOATIOP
‘10g9£31)U0 —>)J9GQPOATIAP

) £ ugerRIpoW I UTAIY N | GINIATATINIS © AT UHO)RIPOULIA|UL

4

(
£yrjuggageIpawiojul —> AJ1)UHA)RIPIWII)UL
‘{}19g —> suorRIDOSSyO)RIPOWIDIUI
‘OUIRU " WOT)BIDOSS® —> SMWERNAIYU
‘pr-uorjerdosse —> proossyALiyu

) WOTIRATIOUOTIRIDOSSY ATV N | AINIATATINIS © 90®1)

squt] —

‘(P2®11 —> UOI1RIN0SSYAIY NWOI[PIALIap
‘98[R}] —> [RUJIDIUISI
UIYORIN[eIoUaS " J[os —> oulyorw
‘{}19g —> sourjou

“{}irog — Lgpouyeu

‘{}10g — suoriow

“{}19g —> sosoujim

‘“{}10g —> spiens

‘{}19g —> si1ojomrered

4

jop

VIv
ey
¢y
1T¥
01y
607
807
L0V
90v
S0v
oV
€0y
0¥
10¥
00¥
66€
86€
L6€
96¢
G6€
¥6E
€6€
¢6¢
16€
06€
68€

73

APPENDIX D. ATL TRANSFORMATION : KAOS2EVENTB. ATL

| A INHAHHTIINIS

CUIT SOV

‘(4£y1yuygererpewregur)Surpnoul - seder) - joalfoad - jres —> sooery)-
‘(oor1y)Burpnyoul-seoer) - joolord - jres —> sooeiy:

f(100) buipnjou
f(198fig1pua) burpngous
f(ruvravaughigngus) burpnjous
f(a1qoruv A figrgua) burpnjour

‘(19g4y1gus) durpnjour-

90®I)

TSIUGUWI]I
TSIUQWIY9
TSIUdWI]I
TSIUQUWI]TI

$19S " 1X9jU0)BIRD

JUI]) UOTIRIDOSSY POIDOIN([0)RIPOUIIOIUTAIY NOIROID S[NJ
anyuoryvidossypajoadtpunhiay N fiq pajpy —

“309loud -
“909foud -
“309loud -
“309loud -

$(140)3UIPNIOUT " SJUDAD " DUIYIRIN[RIDUIS * J[OS

f1os —> sjuowoypo
f198 —> sjuawoayo
f1os —> sjuowoyo
f1os —> sjuawoypa

J[9s —> $19S - 31X0lU0)R)Rp "

109foad -
100foxd -

“309loud -
“g009loud -
“309loud -
“309loud -

—> $1UOAD " QUIYIBN[BIDULDS
‘(juerreAaurdgrijus

) 8UIPN[OUT " SIURTIRAUIL " DUIYORIN[RIDUOS * J[0S —> SJURIIBRAUIL 9UIYIR\[RIOUDS " J[OS

‘(erqeriep Ay19Ue

)8UIpPN[OUT " SO[RIIRA *QUIYIRIN[RIOUDS * JOS —> SO[(RIIRA " QUIYIRN[RIOUIS " J[OS

‘(uorjeroosse
‘90®I) " YU[)UOTIRIDOSSYPOIIOII([9)RIPOWIIJIUIAIY NOIBRIID " A[NPONSIYI

Jlos
J[°s

f1os
f1os8
f1os
f1os
J1os

A

}(syurip- - uorjeroosse ul Yuj)Ioj

LEV
9EY
ey
254
eev
434
1€V
0Ev
6¢h
8¢V
Ley
9cv
gy
47
€y
44y
1¢v

0cv
617
81y
LTV

91v
STy

74

APPENDIX D. ATL TRANSFORMATION : KAOS2EVENTB. ATL

)suerIeAu] | GINHAHATINIS : juetieaur 65¥

89¥

“(L5V

D0SSYO3RIPOMIAIUI —> DO0SSYOIRIPOMWISIUTAIY NTOI JPOATIOP oG

‘ouIYORIN[eIUSS " J[os —> oulyorw e

(0t D) Trveoeder emeN AT Ue U] 25

+. 0L +H(. ‘. ()lIveor[dar-eweu- uorjvInosse —> uorssardxs ecy

‘. TPPOIN 120lq(O SOV Ul ,fowWeu’ UOI}RIDOSS® s

+, UuOorjeRIDOSS®

AIy—N JO ,+owWRNAJIIUS " YUI[+, NUI] WOIJ POATId(, —>)UdUIWOD 16¥

JIea” (7 ¢, [)IIveor[del oweu UOI}RIDOSSR} D0sse AIeu 1[57

+ome NA£}19UD * JUI] —> JWeU 6FF

JIea” (. ¢, [)IIveor[dol oweu UOI}RIDOSSR}, D0sse AIRu | FF

+oweNALyyus - UuI[+, PPoNlfqO, —> PI LVV

)o1qetre A [HINIATATANIS © olqeiiea 9v¥

i

“(44

ol[qelies —> 9[qRII® APOALIOD vy

‘JURTIBAUI —> JURIIBAUJPOAIIOP Véiau

“90®I} —> SUOI)RINOSSYAIY NWOIJPIATISP 8%

) UOTIRIDOSS Y POIIOIT([0)RIPOWILIUTAIY N | GINAAIAIJNIS : 20SSYolRIpOWIo)UI 0F¥

0} 6EY

F(drgsuorieoy [SOVY @ UWOIIRIDOSS® 8EY
‘UOT)RATID(UOTIRIDOSSYAIY N

75

APPENDIX D. ATL TRANSFORMATION : KAOS2EVENTB. ATL

Sruvravaur) burtpnjout csjuawa)a " g0aload flos —> sjuowa)a ~goalosd [flos
f(o21qoeava) burpnjour - sjuawaja " 300load [1as —> sjuowaja ~g0alosd [las

‘(guerieaur

)SUIPN[OUT " SIURIIRAUL * SUIYORJN[RISUSS ~ J[9S —> S)URIIRAUL QUIYIRJN[RIDOUSS - J[os

‘(o1qeiIeA

)SUIPN[OUTI " SO[QRIIRA “QUIYIRJN[RIOUSS * J[8S —> SO[(RIIRA " QUIYIRN[RISUAS ~ J[0§

(o Y0 () 1Iveor[del ewRU UOIJRIDOSSRA, D0SSR AIeU

(o Y () 1Iveor[dol oweU UOT)RIDOSSB|, D0SS®R AIRU

[4 . .
{(oossyoe)eIpoWIa)Ul) SUIPN[OUL " SUOIJRIDOSS YO)RIPAWIa)UL " 9D®RI)
—> SUOTIRIDOSSYOIRIPOUWIIDIUT 90RIY

Ume<®@®ﬁU®EH®uQM —_> UOmm<<®u@MUQEHQHQH\Ahaﬂzaopﬁ‘:u@\wTH@U
‘.00 OIL. —> uoissaidxa
(buriigyg sv padhy) —

figeorydeigynw ~yury uo suosiuvdwoo buisn fiq poanoasdws aq pjnoy ——

‘L IPPOIN 199lq(O SOV Ul | fPWRU UOTI}BIDOSS®E
+, TOI}RIDOSS®
AIy—N JOo ,toweNA)Ijue - YUul[+, NUI] WOIJ POANId(, —> JUIWWOD

¢

+oweNA}IJUS - JUI[—> OWRU
¢

4 4 [4

+oweNAJIIUL * YUI[+, [PPONIQO, —> PpI

Jop

087
6.7
8LV

L1y

9Ly
GLy
A4
€LV
Ly
[¥A
0Ly
697
897
L9v
997
97

Yo7

€9v
4ty

19%
097

76

APPENDIX D. ATL TRANSFORMATION : KAOS2EVENTB. ATL

(QUIYORIN[RIITU] soulfor FINIHOVIN . f+oweu jusde —> pr
) VUL WA UIFOYDUTYIRIN | AINHAHATANIS :)T WoUIFa
0}
18V jSOV @ 1uade
wo.ay
}omyaue8y eIni
uryovw (piprul oYy buruifod 2uyoDW D 0JUL PIIDISUDL) St JUIbD Uy —

W SOV Pn3oD 2y3 uil pajudwajduil 10U S1 &E&EQQ\
Jonyfiguadosguivwoq a)n4—

CAUYODUW JDIRIUL Y] UL —

JUDILDAUL UD SIUL0DIDQ Japouws (pob 2ayy ur pousfop figuodosd wivwoq —

Wll

JI SOV 1Pn1o0 oyj ur pajudwadjdwr jou ys| —

pornyysy apni—

qul) s —

ayg fo Di1u23940 Jurolsip 2yy puv (pio3 2y3 03 burpioron —
JuDILDAUL UD PIID]ISUDL] St §91JLIUI @F UIIMIIQ HJUL] FS] —

‘(oossyojrIpowIaul)uIpnoul - seovr) - jooload - jres —> sooer) - goaload:- jyos

909
G09
¥0g
€09
¢0§
104
00¢
667
867
L6V
967
G67
v6v
€67
4ily
16V
067
687
887
18V
987
a8y
254
€87
87
18¥

77

APPENDIX D. ATL TRANSFORMATION : KAOS2EVENTB. ATL

‘owreu- juode4, :

‘owreu juade+, :

owreu -’ juUagfe —> auIeN}Ua3e
‘pr-jue8e —> pljuole
‘QUIYORUI —> OUIYIRAPOATIOP

) WOTYRA LIS ([1U08Y | GINHAHATIINIS

(U] —> JUeSyWOIJPOATIOD
‘{}19g —> uiposodwmooaz
‘“{}18g —> ulpesoduwooap

‘“{}10g —> smora

“{}rog — Lgpouyeu

‘{ruowourjer}iog —> SouUIJoI

“{}19g —> syuoas

‘“{}19g —> sjueriea

‘{}19g —> sjuerieaurl

‘“{}10g —> seqeriea

a8y SOV 21U} WOIJ 93BII)), —> JUSTIUIOD

‘ouwreu - juafe —> owWIRU

CANIHOVIN | Fewreu ™ jua8e —> Pl
) PuryORN | AINHAAATAINIS

OUIYDRMW —> QUIIRNSUIUTIIOT
‘QUIYORIN[RIQUSS " J[9S —> QUIYIRINPOUIJOI
18y SOV oY) WOoIj 9jedl)), —> JUITWUIOD

¢ QUIYDBINRIJIU] SOUIJoI ,FoWRU’ jUd3e —> SWelU

AUT]

ouIyoew

“(

(43¢
1€4
0€s
6¢S
8¢S
LeS
9¢S
gcs
(4]
€cq
(448
1es
0¢s
616
814
L16
914
G1¢
v14
€1g
¢lq
114
0TS¢
609
806G
209

78

APPENDIX D. ATL TRANSFORMATION : KAOS2EVENTB. ATL

‘(quoumeuljer)durpnioul - AgPoUIJol dUIYIR\[RIOUDSE * J[0S

—> A PouUIJol QUIYORIN[RIOUBS "

{(ouryoew) Surpnyour ‘- souryorNSuUIsodmwooap - uoT3r1sodwW oo (T[RIJTUL * J[OS

—> souryaeySursodwooep - uoryrsodwooad (J[RIJIUL
ey Sursod p ryrsod dlerirur
‘(quoweuljer)urpnioul - sjuewale - 909loxd - jros —> sjuowoalo - 100loxd -
{(ouryoeuwr) urpnioul - sjusmale - 300loxd - jreos —> sjuewole - gooload:
S(yurp)8urpnpour-seoer) - yooelfoxd - yjres —> soadwry - goaload-

J[os

J[os
J[os
J[°s
JIos

}op

(45
1S
0¥<
6€9
8€9
LEG
9¢€9
Geq
288
€€y

Bibliography

[Abrial, 2009a] Abrial, J.-R. (2009a). Event model decomposition. http:
//deploy-eprints.ecs.soton.ac.uk/109/.

[Abrial, 2009b| Abrial, J.-R. (2009b). Modeling in Event-B: System and
Software Engineering. Cambridge University Press.

[Aziz et al., 2009] Aziz, B., Arenas, A., Bicarregui, J., Ponsard, C., and
Massonet, P. (2009). From goal-oriented requirements to event-b specifi-
cations. In First Nasa Formal Method Symposium, pages 96-105.

[Ball, 2008| Ball, E. (2008). An Incremental Process for the Development of
Multi-agent Systems in Event-B. PhD thesis, University of Southampton.
http://eprints.ecs.soton.ac.uk/16575/.

[Butler, 2009] Butler, M. (2009). Decomposition structures for event-b. In-
tegrated Formal Methods iF'M2009, Springer, LNCS, 5423:20-38.

[Gervais et al., 2009] Gervais, F., Gnaho, C., Laleau, R., Matoussi, A.,
and Semmak, F. (2009). Tacos livrable 11.2 : Kaos extension with
non-functional properties. http://tacos.loria.fr/drupal/?g=node/74.
Projet TACOS : Trustworthy Assembling of Components: frOm require-
ments to Specification ANR-06-SETI-017 Janvier 2007 - D “ecembre 2009.

|[Landtsheer, 2007a] Landtsheer, R. D. (2007a). Deriving event-based secu-
rity policy from declarative security requirements.

[Landtsheer, 2007b] Landtsheer, R. D. (2007b). Elaborating Complete and
Consistent Requirements for Security-Critical Systems. PhD thesis,
Université Catholique de Louvain. http://www.info.ucl.ac.be/ rdl/
thesis/.

[Letier, 2001| Letier, E. (2001). Reasoning about Agents in Goal-Oriented
Requirements Engineering. PhD thesis, Université Catholique de Louvain.

|Matoussi, 2009] Matoussi, A. (2009). Expressing kaos goal models with
event-b. LACL, Université Paris-Est.

79

http://deploy-eprints.ecs.soton.ac.uk/109/
http://deploy-eprints.ecs.soton.ac.uk/109/
http://eprints.ecs.soton.ac.uk/16575/
http://tacos.loria.fr/drupal/?q=node/74
http://www.info.ucl.ac.be/~rdl/thesis/
http://www.info.ucl.ac.be/~rdl/thesis/

BIBLIOGRAPHY 80

[Matoussi et al., 2008] Matoussi, A., Gervais, F., and Laleau, R. (2008). A
first attempt to express kaos refinement patterns with event b. In Proc.
of the Int. Conf. on ASM, B and Z (ABZ). Lecture Notes in Computer
Science, Springer-Verlag, pages 12-14. Springer.

[Matoussi et al., 2009] Matoussi, A., Laleau, R., and Petit, D. (2009). Bridg-
ing the gap between kaos requirements models and b specifications. Tech-
nical Report TR-LACL-2009-5, LACL (Laboratory of Algorithms, Com-
plexity and Logic), University of Paris-Est (Paris 12).

[Métayer et al., 2005] Métayer, C., Abrial, J.-R., and Voisin, L. (2005).
Rodin deliverable 3.2: Event-b language. http://rodin.cs.ncl.ac.uk/
deliverables/D7.pdf. http://rodin-b-sharp.sourceforge.net.

[Pascal and Silva, 2009] Pascal, C. and Silva, R. (2009). Event-b model de-
composition: A-style vs. b-style.

[Respect-IT, 300] Respect-IT (v 3.0.0). Objectiver. http://wuw.
objectiver.com/.

[REVER, 901] REVER (v 9.0.1). Db-main. http://www.db-main.be.

[RODIN, v 11] RODIN (v 1.1). Rodin platform. http://www.event-b.
org/.

[Snook and Butler, 2006] Snook, C. and Butler, M. (2006). Uml-b: Formal
modeling and design aided by uml. ACM Trans. Softw. Eng. Methodol.,
15(1):92-122.

[van Lamsweerde, 2009] van Lamsweerde, A. (2009). Requirements Engi-
neering: From System Goals to UML Models to Software Specifications.
Wiley.

[yah Said et al., 2009] yah Said, M., Butler, M., and Snook, C. (2009). Lan-
guage and tool support for class and state machine refinement in uml-b.
In FM2009 - 16th International Symposium on Formal Methods, number
LNCS 5, pages 579-595. Springer.

http://rodin.cs.ncl.ac.uk/deliverables/D7.pdf
http://rodin.cs.ncl.ac.uk/deliverables/D7.pdf
http://rodin-b-sharp.sourceforge.net
http://www.objectiver.com/
http://www.objectiver.com/
http://www.db-main.be
http://www.event-b.org/
http://www.event-b.org/

	Contents
	Bridging KAOS and Event B: existing approaches
	Expressing KAOS Goal Models with Event-B: A. Matoussi
	First phase
	Second phase

	From Goal-Oriented Requirements to Event-B Specification: B. Aziz et al.
	Notion of triggered event
	Operationalisation patterns

	Deriving Event-based Security Policy from Declarative Security Requirements: R. De Landtsheer

	Bridging KAOS and Event B: proposed approach
	Overview of the approach
	KAOS Object model to Event-B Context and Machine
	Object types and Attributes
	Associations and Specializations

	Decomposition of the initial model according to Agents
	State-Based Decomposition

	Traceability between KAOS and Event-B
	Definitions
	Initial model
	Other machines in the Event-B model

	What happens if …
	…an element is added in the KAOS object model
	…an element is removed from the KAOS object model
	…an agent is added in the KAOS model
	…an agent is removed from the KAOS model
	…a control link is added in the KAOS model
	…a control link is removed from the KAOS model
	…a monitor link is added in the KAOS model
	…a monitor link is removed from the KAOS model
	…a responsibility links is moved from an agent to another

	Linear Temporal Logic notations
	Time operators

	Decomposition according to Agents: Mine pump example
	Event-B metamodel : simpleeventb.ecore
	Metamodel elements hierarchy
	Event-B machine and context
	Traceability links

	ATL transformation : KAOS2EventB.atl
	Bibliography

