
Bridging KAOS and Event B: Intermediate report

Xavier Devroey

December, 11 2009

Contents

1 Expressing KAOS Goal Models with Event-B: A. Matoussi 1
1.1 First phase . 4

1.1.1 Milestone-driven re�nement 4
1.1.2 Or-re�nement . 5

1.2 Second phase . 5
1.2.1 Milestone-driven re�nement 6
1.2.2 Or-re�nement . 7

2 KAOS Object model to Event-B Context and Machine 8
2.1 Object types and Attributes 8
2.2 Associations and Specializations 9

3 Decomposition of the initial model according to Agents 12
3.1 State-Based Decomposition 14

3.1.1 Example . 15

A Decomposition according to Agents: Mine pump example 18

1 Expressing KAOS Goal Models with Event-B: A.

Matoussi

Matoussi describes in [Matoussi, 2009,Gervais et al., 2009,Matoussi et al.,
2008] a process to transform a KAOS goal model into an Event-B speci�-
cation. This process takes on input a KAOS goal model that is not opera-
tionalized and produces an Event-B model corresponding to a speci�cation
that satis�es the requirements described in the input model.

This process is based on re�nement patterns. Each re�nement pattern
used in the KAOS model will correspond to a re�nement step in the Event-
B model. Actually the process works with functional "Achieve" goals which
are the most commonly used goal type. Those goals have to be formally
de�ned with an assertion of the form A⇒ ♦B, which says that from a state

1

Figure 1: Milestone-driven re�nement and Or-re�nement

where A is true, another state where B is true can be reached someday. The
supported patterns are the milestone-driven re�nement pattern, used when
a target condition B can be reached from a current condition A with an
intermediate condition AB and the or-re�nement pattern, used when a goal
can be satis�ed in di�erent ways.

The process in �gure 2 has two phases: the �rst one creates an Event-B
representation of the goal model. The initial model includes the de�nition
of a context with all the types used for data and the de�nition of an initial
machine. This initial machine represents the root goal of the KAOS model
and each re�nement in this model has to follow one of the two patterns
described here above. Each re�nement step in the goal model will correspond
to a re�nement step of the Event-B machine, so we have a chain of re�ned
machines where each machine will correspond to a "stage" of the goal model.

The second phase formally derives an Event-B speci�cation that satis�es
the requirements expressed in the goal model. To do this, it takes on input
the goal model and the Event-B representation of this model created in the
�rst phase. This second phase correspond to the operationalization process
that can be performed in KAOS and guaranty that operations preserve all
the properties of the goal model. As in the �rst phase, the initial Event-B
model will be de�ned for the root goal of the model and each re�nement
in the goal model following one of the two patterns will correspond to a
re�nement in the Event-B model.

2

Figure 2: Expressing KAOS Goal Models with Event-B: process overview

3

1.1 First phase

Formally speaking, a KAOS goal is seen as a property that the system has
to establish:

Achieve[G]
A⇒ ♦B

This property will be represented as an event in the Event-B model where
the premise of the implication is transcribed in the initialization event of the
machine and the consequence of the implication is transcribed in the then
part of the event EvtG associated to the goal. An execution of this event
means that the goal G has been satis�ed. The guard of EvtG is set to true
to express the fact that at this level the goal could always be achieved.

Listing 1: KAOS expressed in Event-B: initial machine

MACHINE EventBGoalModel_level_0
SEES ModelContext
VARIABLES

Manipulated data
INVARIANTS

inv : Data types de�nitions
EVENTS
Initialisation

begin
act : A

end
Event EvtG =̂

where
grd : TRUE

then
act : B

end
END

1.1.1 Milestone-driven re�nement

When we have a milestone-driven re�nement, it means that the parent goal
is satis�ed when all the sub-goals have been satis�ed. The EvtG event of the
parent machine is re�ned into a new event EvtG taking as pre-condition the
conjunction of the functional post-conditions of the children. The re�nement
of goal G following the pattern described in �gure 1 will give a machine:

Listing 2: KAOS expressed in Event-B: milestone re�nement machine

MACHINE EventBGoalModel_level_1
REFINES EventBGoalModel_level_0
SEES ModelContext

4

VARIABLES
Manipulated data

INVARIANTS
inv : Data types de�nitions

EVENTS
Initialisation

begin
act : A ∧AB

end
Event EvtG1 =̂

where
grd : TRUE

then
act : AB

end
Event EvtG2 =̂

where
grd : TRUE

then
act : B

end
Event EvtG =̂
re�nes EvtG

where
grd : AB ∧ B

then
act : B

end
END

1.1.2 Or-re�nement

When we have an or-re�nement, it means that the parent goal is satis�ed
when one or more of the sub-goals have been satis�ed. The EvtG event of the
parent machine is re�ned into a new event EvtG' taking as pre-condition a
formula expressing that one or more of the two sub-goals have been satis�ed.
It does not seem to be a generic approach here and the knowledge and
competence of the analyst will play an important role. For instance in the
case described by Matoussi et al. in [Gervais et al., 2009], the guard of a
re�ned EvtG' event uses the union of two sets, one for each of the sub-goals
and compare it to the set of all the elements:

. . .∧LocalisedElements =
(LocalisedByGPSElements ∪ LocalisedByWIFIElements)∧ . . .

1.2 Second phase

In the second phase, functional and non-functional goals are treated the same
way. The main idea here is to say that an operation can be executed while
the associated goal has not been satis�ed (considering the non-functional
properties too), which is the same as while it's post-condition has not been
veri�ed. However, this is not su�cient to ensure that an "Achieve" goal has
been reached. A new event called "closing" is added with a guard equals

5

to the post-condition (without the non-functional properties) of the goal to
reach. So for the initial machine corresponding to the root goal G we will
have an event EvtOpG that can be executed while G has not been reached and
an event Closing that can be executed when G is satis�ed. This Closing
event will �nalize the system. As in the �rst phase, the machine will be
re�ned fallowing the re�nement pattern used in the goal model and each
level in the goal model will correspond to a machine in the Event-B model.

Note that in their example, Matoussi et al. in [Gervais et al., 2009] are
working with sets and express the negation of the initial goal post-condition
with universal quanti�ers. The initial machine for goal G will be:

Listing 3: Operationalization Event-B: initial machine

MACHINE EventBOperationalSpeci�cation_level_0
SEES ModelContext
VARIABLES

Manipulated data
INVARIANTS

inv : Data types de�nitions
EVENTS
Initialisation

begin
act : A

end
Event EvtOpG =̂

where
grd : ¬B

then
act : Do something that makes things going further

end
Event Closing =̂

where
grd : B without non-functional properties

then
act : Exit := OK

end
END

As in the �rst phase, the initial model will be re�ned according to the
re�nement patterns used in the goal model. The Closing event is taken as it
and the sub-goals will be translated to events like in the machine here over.

1.2.1 Milestone-driven re�nement

When a parent goal G is re�ned into sub-goals G1, ..., Gn according to the
milestone-driven re�nement pattern, it means that the goal G can be de-
composed into n steps and that G is satis�ed if the �nal step Gn is reached.
The sub-machine will thus have EvtOpG1,...,EvtOpGn declared events where
the pre-condition is the negation of the post-condition of the corresponding
EvtGi event in the Event-B model of phase one and the action is something
that makes things going further to the step Gi+1. The realization of the last

6

sub-goal Gn implies the realization of the patent goal G, so the last event
EvtOpG3 will re�ne the EvtOpG event of the parent machine. The re�nement
of goal G following the pattern described in �gure 1 will give a machine:

Listing 4: Operationalization Event-B: initial machine

MACHINE EventBOperationalSpeci�cation_level_1
REFINES EventBOperationalSpeci�cation_level_0
SEES ModelContext
VARIABLES

Manipulated data
INVARIANTS

inv : Data types de�nitions
EVENTS
Initialisation

begin
act : A

end
Event EvtOpG1 =̂

where
grd : ¬AB

then
act : Do something that makes things going further

end
Event EvtOpG2 =̂
re�nes EvtOpG

where
grd : ¬B

then
act : Do something that makes things going further

end
Event Closing =̂
re�nes Closing

where
grd : B without non-functional properties

then
act : Exit := OK

end
END

1.2.2 Or-re�nement

As for phase one, when we have an or-re�nement, it means that the parent
goal is satis�ed when one or more of the sub-goals have been satis�ed. The
EvtOpG event of the parent machine is re�ned into a new event EvtOpG' taking
as pre-condition the negation of the corresponding event in the Event-B
model of phase one, possibly simpli�ed and where possible ambiguities have
been removed.

The two sub-goals are handled as in the general case by having a pre-
condition equals to the negation of the post condition of the corresponding
event in the model coming from phase one.

7

2 KAOS Object model to Event-B Context and

Machine

In KAOS, every concept used in a de�nition in the goal model has to be
de�ned in the object model. It means that when the goal model is com-
plete, all predicates used in the formal de�nition of goals and in particu-
lar requirements have been de�ned in the object model [van Lamsweerde,
2009, Landtsheer, 2007]. It seems thus interesting to translate in a way or
another the object model to Event-B, so concepts manipulated in formulas
have an equivalent in the Event-B model.

As Event-B uses the set theory to de�ne and manipulate data, the KAOS
object model could be quite easily transformed into an ERA model. Tools
like DB-Main [REVER, 901] can automatically transform such model into
a relational model compliant with relational databases. The relational na-
ture of the diagram allows getting an Event-B model from it with a simple
syntactic transformation. Moreover, as relational databases are the most
used database management systems, the relational diagram could be used
to generate SQL data de�nition code. This method implies more than one
transformation. Another negative point is that the generated data de�nition
in the Event-B Context and Machine may be more di�cult to manipulate.

Snook et al. de�ne in [Snook and Butler, 2006, yah Said et al., 2009]
a method to transform a UML Class diagram into a classical B machine.
This method may be adapted to transform the KAOS Object model which
corresponds to a simpli�ed UML Class diagram to an Event-B Machine and
its associated Context.

From now we will take the following conventions: the name of the KAOS
model elements will be those de�ned in the KAOS meta-model [van Lam-
sweerde, 2009]; the �rst letter of those meta-concepts will be in capital.

2.1 Object types and Attributes

A set OBJECT_SET of all possible objects belonging to a certain Object type
is de�ned in the Context for each Object type. The set OBJECTS of all the
existing instances of a certain Object type is de�ned in the Machine that
will see the Context and belongs to the powerset of OBJECT_SET.

The domains of the Attributes have to be de�ned in the Context. In
particular, non standard types or enumerated domains have to be speci�ed in
comprehension or in extension. Attributes are represented in the Machine by
a partial or total function according to the Multiplicity of the Attribute, from
an element of the OBJECT set to an element of the domain of the attribute.
The table 1 gives the transformation rules for the di�erent Multiplicities of
an attribute of Object type T.

8

Table 1: Transformation rules for KAOS Attributes
KAOS at-
tribute

Corresponding function Event-B Invariant

a : type [1..1] Total function to TYPE a ∈ T → TY PE

a : type [0..1] Partial function to TYPE a ∈ T 7→ TY PE

a : type [1..n] Total function to non-empty sub-
set of TYPE

a ∈ T → P1(TY PE)

a : type [0..n] Total function to subsets of TYPE a ∈ T → P(TY PE)

2.2 Associations and Specializations

Associations may be directed or not and will be represented in the Machine
by functions. Table 2 gives the transformation rules for the di�erent kinds of
directed associations. An undirected association corresponds to two opposite
directed associations and can be manage as two directed associations with
an additional invariant saying that if on exists, then the other exists too.
For an association linking A to B with multiplicities [a1..a2] and [b1..b2]

A �a1..a2����������b1..b2�B

The result in Event-B will be :

A set AtoB according to the rules in table 2
A set BtoA according to the rules in table 2

An additional invariant:
∀x, y ·(x ∈ A ∧ y ∈ B)⇔ (AtoB(x) = y ⇔ BtoA(y) = x)

As show in �gure 3, an N-Ary Association will be seen as an Entity with
N directed Associations to the di�erent Objects of the N-Ary Association.

In case of Specialization, usually instances belong to one and only one
sub-Object type and sub-Objects instances are disjoints. As stated by Snook
and Butler [Snook and Butler, 2006], when translating from KAOS to Event-
B, the instances of the sub-Objects will be declared as a subset of super-
Object's current instances. Three Object types, one Parent and two sons
Son1 and Son2 specializing Parent will become in Event-B :

PARENT ∈ P(PARENT_SET)
SON1 ∈ P(PARENT)
SON2 ∈ P(PARENT)
SON1 ∩ SON2 = ∅

The Specialization may be more precise like in ERA, e.g. if all the in-
stances must be one of a sub-Object type then the sub-Objects instances
sets cover the set of super-Object instances :

SON1 ∪ SON2 = PARENT

9

Figure 3: N-Ary Association are seen as an Entity with N directed Associa-
tions

10

Table 2: Transformation rules for KAOS directed Associations
The two Object types are A and B and a1..a2 → b1..b2 in the table
represents the multiplicities for an association :

A �-a1..a2�������b1..b2�-> B
According to our convention, the Objects sets in Event-B will be called
A and B.

The disjoint macro in the table is de�ned as:
(∀a1, a2·(a1 ∈ dom(AtoB) ∧ a2 ∈ dom(AtoB) ∧ a1 6=

a2⇒AtoB(a1) ∩ AtoB(a2) = ∅))

KAOS as-
sociation
multiplic-
ity

Corresponding function Event-B Invariant

0..∗ → 0..1 Partial function to B AtoB ∈ A 7→B

0..∗ → 1..1 Total function to B AtoB ∈ A→B

0..∗ → 0..∗ Total function to subset of B AtoB ∈ A→ P(B)

0..∗ → 1..∗ Total function to non-empty sub-
set of B

AtoB ∈ A→ P1(B)

0..1→ 0..1 Partial injection to B AtoB ∈ A 7�B

0..1→ 1..1 Total injection to B AtoB ∈ A�B

0..1→ 0..∗ Total function to subsets of B

which don't intersect
AtoB ∈ A → P(B) ∧
disjoint

0..1→ 1..∗ Total function to non-empty sub-
sets of B which don't intersect

AtoB ∈ A→ P1(B) ∧
disjoint

1..∗ → 0..1 Partial surjection to B AtoB ∈ A 7�B

1..∗ → 1..1 Total surjection to B AtoB ∈ A�B

1..∗ → 0..∗ Total function to subsets of B

which cover B
AtoB ∈ A → P(B) ∧
union(ran(AtoB)) =
B

1..∗ → 1..∗ Total function to non-empty sub-
sets of B which cover B

AtoB ∈ A→ P1(B) ∧
union(ran(AtoB)) =
B

1..1→ 0..1 Partial bijection to B (partial in-
jection de�ned for all the ele-
ments of B)

AtoB ∈ A 7� B ∧
∀b·(b ∈ B ⇒ (∃a·(a ∈
A ∧ (a 7→ b) ∈ AtoB)))

1..1→ 1..1 Total bijection to B AtoB ∈ A��B

1..1→ 0..∗ Total function to subsets of B

which cover B without intersect-
ing

AtoB ∈ A → P(B) ∧
union(ran(AtoB)) =
B ∧ disjoint

1..1→ 0..∗ Total function to non-empty sub-
sets of B which cover B without
intersecting

AtoB ∈ A→ P1(B) ∧
union(ran(AtoB)) =
B ∧ disjoint

11

3 Decomposition of the initial model according to

Agents

Decomposition makes it possible to manage the complexity of models that
increases through the re�nement process. It may be interesting to have an
early decomposition to break an initial machine into smaller pieces pertinent
with the KAOS agents. This choice is made because the KAOS meta-model
says that an association or an attribute can be controlled by one and only
one agent [van Lamsweerde, 2009,Landtsheer, 2007,Letier, 2001]. The idea is
thus to have separate machines with the attributes monitored and controlled
by the agent. Let us recall that an attribute or association is controlled by an
agent if the agent performs one or more operation that modi�es the attribute
value and that an attribute is monitored by an agent if the attribute is an
input of one or more operation performed by the agent.

Ball presents in [Ball, 2008] a description of the two techniques used to
split a machine into smaller pieces. The �rst one, called Event-Based Decom-
position encapsulates the variables in di�erent machines together with the
events or parts of events that concern those variables. The events that have
been split will need to be synchronized in order to ensure the functionalities
of the original machine. The synchronization will take place by an exchange
of inputs and outputs between the synchronized machines events [Butler,
2009].

The second technique, called State-Based Decomposition splits the vari-
ables in di�erent machines with some shared variables. Events are added to
components to simulate how the shared variables are used in other compo-
nents. Shared variables and events must be kept synchronized between the
di�erent machines during the re�nement. Theoretically the system could be
rebuilt into a single machine at the end of the process, but in practice this
will never be done since the di�erent machines will lead to di�erent software
components.

This State-Based Decomposition, proposed by Abrial in [Abrial, 2009b,
Abrial, 2009a, Métayer et al., 2005] seems to �t more for our problem.
For a general model, variables and events will be distributed to several
sub-machines with some of those variables presents in more than one sub-
machine. It is important to notice here that the sub-machines are not re-
�ning the general machine, but are decomposing it. In the sub-machines, a
distinction is made between the internal variables used only in a particular
sub-machine and the shared variables used in more than one sub-machine.
So, shared variables can be modi�ed by more than one event in more than one
sub-machine. Figure 4 shows an example of decomposition, a sub-machine A
has an event evtA that will modify the value of a shared variable and another
sub-machine B has an event evtB using the variable's value in its guard. To
express the fact that the variable is not a constant in B, an event evtExtA will

12

be added to B corresponding to an abstraction of the event evtA in A. The
added event evtExtA will be called an external event, which is just present
in B to synchronize the update of the shared variable in the general machine.

Figure 4: Decomposition of a general machine into two sub-machines

It is clear now that shared variables coming from the abstract machine
will be replicated in each sub-machine. The problem is that each sub-
machine could normally re�ne its variables and the same replicated variable
could be re�ned in one way in one re�nement and in another way in another
re�nement. If this happens, the two sub-machines can't communicate any
longer as they are not using the same convention on the shared variable.
Such a variable has a special status in the sub-machines where they stay
saying that this variable has to be always present in the state space of any
re�nement of the machine. A shared variable can thus not be data-re�ned
or if it is, the variable has to be re�ned in the same way in each sub-model
using the variable, which can be quite heavy.

13

3.1 State-Based Decomposition

We propose to use the State-Based Decomposition after an initial creation
of the Event-B model from the KAOS object model, as presented in section
2, with one sub-machine per agent. The reason of this choice is simple, the
KAOS meta-model states that an attribute or association cannot be con-
trolled by more than one agent [van Lamsweerde, 2009,Letier, 2001,Landt-
sheer, 2007]. So it means that in Event-B, a shared variable will be updated
in one and only one sub-machine, while an external event will be placed with
each variable coming from the KAOS object model in all other sub-machines.

The question is: do we have to place each variable coming from the
KAOS object model in all sub-machines? On one side, if we place the vari-
ables coming from the controlled and monitored attributes and associations
of the KAOS object model only in the sub-machines representing the con-
cerned agent, the model in its all will be more readable. On the other
side, decomposition link is for now informal and not implemented in exist-
ing tools [RODIN, v 11] and have thus to be done manually. Moreover, the
re-composition of all sub-machines in one big machine proposed in [Métayer
et al., 2005], which could be used at some moment in the development pro-
cess as a veri�cation of the consistency of the model, could not be done in
RODIN since a machine cannot re�ne more than one other machine. It could
thus be interesting to have a more "concrete" decomposition.

For recall, an external event representing the update of a certain shared
variables has to be an abstraction of the concrete event updating the variable
in another sub-machine. Since KAOS meta-model impose to have only one
agent controlling the update of an attribute or an association, the update
of a variable coming from the KAOS object model will not be performed
in more than one sub-machine. The idea is to add to the general machine
coming from the KAOS object model very general update operations for
each variable, and generate from this machine one re�nement per agent.
The variables that are not controller by the agent will be marked as shared
variables and the events updating those variables will be marked as external
events in the sub-machines. Those events and variables cannot be re�ned one
the sub-machine or its re�nements. All the events that update the controlled
variables of the agent will be re�nement of the general update event de�ned
in the general machine. The re-composition of sub-machines will be simply
a new machine, declared as a re�nement of the initial machine generated
from the KAOS object model where each non-external events and internal
variables coming from the di�erent sub-machines will be simply copy-pasted.
By doing so, we guaranty that each external event is indeed an abstraction of
the update of a non-controlled shared variable, because of the re�nement link.
The cost here is to have each shared variables and each abstract update event
of the non-controlled variables repeated in each machine and its re�nement,
whether the corresponding agent is controlling or monitoring the variable

14

or not. This could be simply overcome in the modelling tools by hiding in
a sub-machine the variables and corresponding external update events that
are not controlled or monitored by the corresponding agent.

3.1.1 Example

Here is a small example inspired by the mine pump model presented in [Aziz
et al., 2009]. In this model we have a mine that has to be kept safe from
�ooding and explosion. For this we have a mine pump that start pumping
if the water level is too high and if there is no methane detected.

Figure 5: Mine pump goal model

Figure 6 presents the goal model and the di�erent agents responsible for
the requirements and expectations. Figure 6 shows the agent model with
controlled and monitored objects: the PumpController controls the pump
attribute and monitors the methane and waterLevel attributes, the Alarm-
Controller controls the bell attribute and monitors the methane attribute,
the WaterLevelSensor controls the waterLevelAttribute, the MethaneSensor
controls the methane attribute and the Miner monitors the bell attribute.

15

Figure 6: Mine pump agent model

By applying the procedure described in section 2, we get an initial Con-
text in listing 5 and an initial machine in listing 6 describing the objects of
the KAOS object model. The initial machine includes the attributes and the
update methods for all those attributes, note here that in the listing 6 only
the update method for the pump has been shown. The update methods of
the others attributes follows the same pattern. The complete machines of
this example can be found in annex A.

Listing 5: Mine pump example: Initial context

CONTEXT MineContext
SETS

ONOFF, LEVEL, MINE_SET

CONSTANTS
ON, OFF, LOW, MEDIUM, HIGH, M

AXIOMS
axm1 : partition(ONOFF , {ON }, {OFF})
axm2 : partition(LEVEL, {LOW }, {MEDIUM }, {HIGH })
axm3 : partition(MINE_SET , {M })

END

Listing 6: Mine pump example: Initial machine

MACHINE MinePump
SEES MineContext
VARIABLES

16

MINE, pump, bell, methane, waterLevel
INVARIANTS

inv1 : MINE ∈ P(MINE_SET)
inv2 : pump ∈ MINE →ONOFF
inv3 : bell ∈ MINE → BOOL
inv4 : methane ∈ MINE → BOOL
inv5 : waterLevel ∈ MINE → LEVEL

EVENTS
Initialisation

begin
act1 : MINE , pump, bell ,methane,waterLevel := ∅,∅,∅,∅,∅

end
Event updatePump =̂

any
m
status

where
grd1 : m ∈ MINE
grd2 : status ∈ ONOFF

then
act1 : pump(m) := status

end
END

Starting from this, machines will be created by re�ning the initial ma-
chine for each agent of the KAOS model. The listing 7 shows the machine
de�ned for the PumpController. This machine and all the other machines of
this example can be found in annex A. The re-composed machine can also be
found in listing 14 in annex A where the update methods have been replaced
by their re�nements in the di�erent sub-machines.

Listing 7: Mine pump example: PumpController machine

MACHINE PumpController
REFINES MinePump
SEES MineContext
VARIABLES

MINE, pump, bell, methane, waterLevel
EVENTS
Initialisation

extended
begin

act1 : MINE , pump, bell ,methane,waterLevel := ∅,∅,∅,∅,∅
end

Event high_water_detected =̂
Internal Event

re�nes updatePump
any

m
where

grd2 : m ∈ MINE
grd1 : waterLevel(m) = HIGH
grd3 : methane(m) = FALSE

with
status : status = ON

then
act1 : pump(m) := ON

end

17

Event low_water_detected =̂
Internal Event

re�nes updatePump
any

m
where

grd1 : m ∈ MINE
grd2 : waterLevel(m) = LOW

with
status : status = OFF

then
act1 : pump(m) := OFF

end
Event updateBell =̂

External Event
extends updateBell

any
m
status

where
grd1 : m ∈ MINE
grd2 : status ∈ BOOL

then
act1 : bell(m) := status

end
Event updateMethane =̂

External Event
extends updateMethane

any
m
status

where
grd1 : m ∈ MINE
grd2 : status ∈ BOOL

then
act1 : methane(m) := status

end
Event updateWaterLevel =̂

External Event
extends updateWaterLevel

any
m
level

where
grd1 : m ∈ MINE
grd2 : level ∈ LEVEL

then
act1 : waterLevel(m) := level

end
END

A Decomposition according to Agents: Mine pump

example

This annex present the complete machines of the mine pump example de-
scribed in section 3.

Listing 8: Mine pump example: Initial context

CONTEXT MineContext

18

SETS
ONOFF
LEVEL
MINE_SET

CONSTANTS
ON
OFF
LOW
MEDIUM
HIGH
M

AXIOMS
axm1 : partition(ONOFF , {ON }, {OFF})
axm2 : partition(LEVEL, {LOW }, {MEDIUM }, {HIGH })
axm3 : partition(MINE_SET , {M })

END

Listing 9: Mine pump example: Initial machine

MACHINE MinePump
SEES MineContext
VARIABLES

MINE
pump
bell
methane
waterLevel

INVARIANTS
inv1 : MINE ∈ P(MINE_SET)
inv2 : pump ∈ MINE →ONOFF
inv3 : bell ∈ MINE → BOOL
inv4 : methane ∈ MINE → BOOL
inv5 : waterLevel ∈ MINE → LEVEL
inv6 : dom(pump) = MINE
inv7 : dom(bell) = MINE
inv8 : dom(methane) = MINE
inv9 : dom(waterLevel) = MINE

EVENTS
Initialisation

begin
act1 : MINE := ∅
act2 : pump := ∅
act3 : bell := ∅
act4 : methane := ∅
act5 : waterLevel := ∅

end
Event updatePump =̂

any
m
status

where
grd1 : m ∈ MINE
grd2 : status ∈ ONOFF

then
act1 : pump(m) := status

end
Event updateBell =̂

any

19

m
status

where
grd1 : m ∈ MINE
grd2 : status ∈ BOOL

then
act1 : bell(m) := status

end
Event updateMethane =̂

any
m
status

where
grd1 : m ∈ MINE
grd2 : status ∈ BOOL

then
act1 : methane(m) := status

end
Event updateWaterLevel =̂

any
m
level

where
grd1 : m ∈ MINE
grd2 : level ∈ LEVEL

then
act1 : waterLevel(m) := level

end
Event addMine =̂

when
grd1 : MINE = ∅

then
act1 : MINE := {M }
act2 : pump(M) := OFF
act3 : bell(M) := FALSE
act4 : methane(M) := FALSE
act5 : waterLevel(M) := LOW

end
END

Listing 10: Mine pump example: PumpController machine

MACHINE PumpController
REFINES MinePump
SEES MineContext
VARIABLES

MINE
pump
bell
methane
waterLevel

EVENTS
Initialisation

extended
begin

act1 : MINE := ∅
act2 : pump := ∅
act3 : bell := ∅
act4 : methane := ∅
act5 : waterLevel := ∅

end

20

Event high_water_detected =̂
Internal Event

re�nes updatePump
any

m
where

grd2 : m ∈ MINE
grd1 : waterLevel(m) = HIGH
grd3 : methane(m) = FALSE

with
status : status = ON

then
act1 : pump(m) := ON

end
Event low_water_detected =̂

Internal Event
re�nes updatePump

any
m

where
grd1 : m ∈ MINE
grd2 : waterLevel(m) = LOW

with
status : status = OFF

then
act1 : pump(m) := OFF

end
Event updateBell =̂

External Event
extends updateBell

any
m
status

where
grd1 : m ∈ MINE
grd2 : status ∈ BOOL

then
act1 : bell(m) := status

end
Event updateMethane =̂

External Event
extends updateMethane

any
m
status

where
grd1 : m ∈ MINE
grd2 : status ∈ BOOL

then
act1 : methane(m) := status

end
Event updateWaterLevel =̂

External Event
extends updateWaterLevel

any
m
level

where
grd1 : m ∈ MINE
grd2 : level ∈ LEVEL

then
act1 : waterLevel(m) := level

end
END

Listing 11: Mine pump example: WaterLevelSensor machine

21

MACHINE WaterLevelSensor
REFINES MinePump
SEES MineContext
VARIABLES

MINE
pump
bell
methane
waterLevel

EVENTS
Initialisation

extended
begin

act1 : MINE := ∅
act2 : pump := ∅
act3 : bell := ∅
act4 : methane := ∅
act5 : waterLevel := ∅

end
Event high_to_medium =̂

Internal Event
re�nes updateWaterLevel

any
m

where
grd1 : m ∈ MINE
grd2 : waterLevel(m) = HIGH

with
level : level = MEDIUM

then
act1 : waterLevel(m) := MEDIUM

end
Event medium_to_low =̂

Internal Event
re�nes updateWaterLevel

any
m

where
grd1 : m ∈ MINE
grd2 : waterLevel(m) = MEDIUM

with
level : level = LOW

then
act1 : waterLevel(m) := LOW

end
Event low_to_medium =̂

Internal Event
re�nes updateWaterLevel

any
m

where
grd1 : m ∈ MINE
grd2 : waterLevel(m) = LOW

with
level : level = MEDIUM

then
act1 : waterLevel(m) := MEDIUM

end
Event medium_to_high =̂

Internal Event
re�nes updateWaterLevel

any
m

where
grd1 : m ∈ MINE
grd2 : waterLevel(m) = MEDIUM

with

22

level : level = HIGH
then

act1 : waterLevel(m) := HIGH
end

Event updatePump =̂
External Event

extends updatePump
any

m
status

where
grd1 : m ∈ MINE
grd2 : status ∈ ONOFF

then
act1 : pump(m) := status

end
Event updateBell =̂

External Event
extends updateBell

any
m
status

where
grd1 : m ∈ MINE
grd2 : status ∈ BOOL

then
act1 : bell(m) := status

end
Event updateMethane =̂

External Event
extends updateMethane

any
m
status

where
grd1 : m ∈ MINE
grd2 : status ∈ BOOL

then
act1 : methane(m) := status

end
END

Listing 12: Mine pump example: AlarmController machine

MACHINE AlarmController
REFINES MinePump
SEES MineContext
VARIABLES

MINE
pump
bell
methane
waterLevel

EVENTS
Initialisation

extended
begin

act1 : MINE := ∅
act2 : pump := ∅
act3 : bell := ∅
act4 : methane := ∅
act5 : waterLevel := ∅

end

23

Event methane_detected =̂
Internal Event

re�nes updateBell
any

m
where

grd1 : m ∈ MINE
grd2 : methane(m) = TRUE
grd3 : bell(m) = FALSE

with
status : status = TRUE

then
act1 : bell(m) := TRUE

end
Event updatePump =̂

External Event
extends updatePump

any
m
status

where
grd1 : m ∈ MINE
grd2 : status ∈ ONOFF

then
act1 : pump(m) := status

end
Event updateMethane =̂

External Event
extends updateMethane

any
m
status

where
grd1 : m ∈ MINE
grd2 : status ∈ BOOL

then
act1 : methane(m) := status

end
Event updateWaterLevel =̂

External Event
extends updateWaterLevel

any
m
level

where
grd1 : m ∈ MINE
grd2 : level ∈ LEVEL

then
act1 : waterLevel(m) := level

end
END

Listing 13: Mine pump example: MethaneSensor machine

MACHINE MethaneSensor
REFINES MinePump
SEES MineContext
VARIABLES

MINE
pump
bell
methane
waterLevel

EVENTS

24

Initialisation
extended
begin

act1 : MINE := ∅
act2 : pump := ∅
act3 : bell := ∅
act4 : methane := ∅
act5 : waterLevel := ∅

end
Event methane_leak =̂

Internal Event
re�nes updateMethane

any
m

where
grd1 : m ∈ MINE

with
status : status = TRUE

then
act1 : methane(m) := TRUE

end
Event updatePump =̂

External Event
extends updatePump

any
m
status

where
grd1 : m ∈ MINE
grd2 : status ∈ ONOFF

then
act1 : pump(m) := status

end
Event updateBell =̂

External Event
extends updateBell

any
m
status

where
grd1 : m ∈ MINE
grd2 : status ∈ BOOL

then
act1 : bell(m) := status

end
Event updateWaterLevel =̂

External Event
extends updateWaterLevel

any
m
level

where
grd1 : m ∈ MINE
grd2 : level ∈ LEVEL

then
act1 : waterLevel(m) := level

end
END

Listing 14: Mine pump example: re-composed machine

MACHINE MinePumpReuni�cation
REFINES MinePump
SEES MineContext

25

VARIABLES
MINE
pump
bell
methane
waterLevel

INVARIANTS
inv1 : MINE ∈ P(MINE_SET)
inv2 : pump ∈ MINE →ONOFF
inv3 : bell ∈ MINE → BOOL
inv4 : methane ∈ MINE → BOOL
inv5 : waterLevel ∈ MINE → LEVEL

EVENTS
Initialisation

begin
act1 : MINE := ∅
act2 : pump := ∅
act3 : bell := ∅
act4 : methane := ∅
act5 : waterLevel := ∅

end
Event methane_detected =̂

Internal Event
re�nes updateBell

any
m

where
grd1 : m ∈ MINE
grd2 : methane(m) = TRUE
grd3 : bell(m) = FALSE

with
status : status = TRUE

then
act1 : bell(m) := TRUE

end
Event methane_leak =̂

Internal Event
re�nes updateMethane

any
m

where
grd1 : m ∈ MINE

with
status : status = TRUE

then
act1 : methane(m) := TRUE

end
Event high_water_detected =̂

Internal Event
re�nes updatePump

any
m

where
grd2 : m ∈ MINE
grd1 : waterLevel(m) = HIGH
grd3 : methane(m) = FALSE

with
status : status = ON

then
act1 : pump(m) := ON

end
Event low_water_detected =̂

Internal Event
re�nes updatePump

any

26

m
where

grd1 : m ∈ MINE
grd2 : waterLevel(m) = LOW

with
status : status = OFF

then
act1 : pump(m) := OFF

end
Event high_to_medium =̂

Internal Event
re�nes updateWaterLevel

any
m

where
grd1 : m ∈ MINE
grd2 : waterLevel(m) = HIGH

with
level : level = MEDIUM

then
act1 : waterLevel(m) := MEDIUM

end
Event medium_to_low =̂

Internal Event
re�nes updateWaterLevel

any
m

where
grd1 : m ∈ MINE
grd2 : waterLevel(m) = MEDIUM

with
level : level = LOW

then
act1 : waterLevel(m) := LOW

end
Event low_to_medium =̂

Internal Event
re�nes updateWaterLevel

any
m

where
grd1 : m ∈ MINE
grd2 : waterLevel(m) = LOW

with
level : level = MEDIUM

then
act1 : waterLevel(m) := MEDIUM

end
Event medium_to_high =̂

Internal Event
re�nes updateWaterLevel

any
m

where
grd1 : m ∈ MINE
grd2 : waterLevel(m) = MEDIUM

with
level : level = HIGH

then
act1 : waterLevel(m) := HIGH

end
Event addMine =̂
extends addMine

when
grd1 : MINE = ∅

then
act1 : MINE := {M}

27

act2 : pump(M) := OFF
act3 : bell(M) := FALSE
act4 : methane(M) := FALSE
act5 : waterLevel(M) := LOW

end
END

References

[Abrial, 2009a] Abrial, J.-R. (2009a). Event model decomposition. http:

//deploy-eprints.ecs.soton.ac.uk/109/.

[Abrial, 2009b] Abrial, J.-R. (2009b). Modeling in Event-B: System and

Software Engineering. Cambridge University Press.

[Aziz et al., 2009] Aziz, B., Arenas, A., Bicarregui, J., Ponsard, C., and
Massonet, P. (2009). From goal-oriented requirements to event-b speci�-
cations. In First Nasa Formal Method Symposium, pages 96�105.

[Ball, 2008] Ball, E. (2008). An Incremental Process for the Development of

Multi-agent Systems in Event-B. PhD thesis, University of Southampton.
http://eprints.ecs.soton.ac.uk/16575/.

[Butler, 2009] Butler, M. (2009). Decomposition structures for event-b. In-
tegrated Formal Methods iFM2009, Springer, LNCS, 5423:20�38.

[Gervais et al., 2009] Gervais, F., Gnaho, C., Laleau, R., Matoussi, A.,
and Semmak, F. (2009). Tacos livrable l1.2 : Kaos extension with
non-functional properties. http://tacos.loria.fr/drupal/?q=node/74.
Projet TACOS : Trustworthy Assembling of Components: frOm require-
ments to Speci�cation ANR-06-SETI-017 Janvier 2007 - D�ecembre 2009.

[Landtsheer, 2007] Landtsheer, R. D. (2007). Elaborating Complete and

Consistent Requirements for Security-Critical Systems. PhD thesis,
Université Catholique de Louvain. http://www.info.ucl.ac.be/~rdl/

thesis/.

[Letier, 2001] Letier, E. (2001). Reasoning about Agents in Goal-Oriented

Requirements Engineering. PhD thesis, Université Catholique de Louvain.

[Matoussi, 2009] Matoussi, A. (2009). Expressing kaos goal models with
event-b. LACL, Université Paris-Est.

[Matoussi et al., 2008] Matoussi, A., Gervais, F., and Laleau, R. (2008). A
�rst attempt to express kaos re�nement patterns with event b. In Proc.

of the Int. Conf. on ASM, B and Z (ABZ). Lecture Notes in Computer

Science, Springer-Verlag, pages 12�14. Springer.

28

http://deploy-eprints.ecs.soton.ac.uk/109/
http://deploy-eprints.ecs.soton.ac.uk/109/
http://eprints.ecs.soton.ac.uk/16575/
http://tacos.loria.fr/drupal/?q=node/74
http://www.info.ucl.ac.be/~rdl/thesis/
http://www.info.ucl.ac.be/~rdl/thesis/

[Métayer et al., 2005] Métayer, C., Abrial, J.-R., and Voisin, L. (2005).
Rodin deliverable 3.2: Event-b language. http://rodin.cs.ncl.ac.uk/

deliverables/D7.pdf. http://rodin-b-sharp.sourceforge.net.

[REVER, 901] REVER (v 9.0.1). Db-main. http://www.db-main.be.

[RODIN, v 11] RODIN (v 1.1). Rodin platform. http://www.event-b.

org/.

[Snook and Butler, 2006] Snook, C. and Butler, M. (2006). Uml-b: Formal
modeling and design aided by uml. ACM Trans. Softw. Eng. Methodol.,
15(1):92�122.

[van Lamsweerde, 2009] van Lamsweerde, A. (2009). Requirements Engi-

neering: From System Goals to UML Models to Software Speci�cations.
Wiley.

[yah Said et al., 2009] yah Said, M., Butler, M., and Snook, C. (2009). Lan-
guage and tool support for class and state machine re�nement in uml-b.
In FM2009 - 16th International Symposium on Formal Methods, number
LNCS 5, pages 579�595. Springer.

29

http://rodin.cs.ncl.ac.uk/deliverables/D7.pdf
http://rodin.cs.ncl.ac.uk/deliverables/D7.pdf
http://rodin-b-sharp.sourceforge.net
http://www.db-main.be
http://www.event-b.org/
http://www.event-b.org/

	Expressing KAOS Goal Models with Event-B: A. Matoussi
	First phase
	Milestone-driven refinement
	Or-refinement

	Second phase
	Milestone-driven refinement
	Or-refinement

	KAOS Object model to Event-B Context and Machine
	Object types and Attributes
	Associations and Specializations

	Decomposition of the initial model according to Agents
	State-Based Decomposition
	Example

	Decomposition according to Agents: Mine pump example

