
Bridging KAOS and Event B

Xavier Devroey

Facultés Universitaires Notre-Dame de la Paix

2009 - 2010

Contents

Contents ii

1 Bridging KAOS and Event B: existing approaches 1
1.1 Expressing KAOS Goal Models with Event-B: A. Matoussi . . 1

1.1.1 First phase . 3
1.1.2 Second phase . 5

1.2 From Goal-Oriented Requirements to Event-B Speci�cation:
B. Aziz et al. 7
1.2.1 Notion of triggered event 7
1.2.2 Operationalisation patterns 7

1.3 Deriving Event-based Security Policy from Declarative Secu-
rity Requirements: R. De Landtsheer 8

2 Bridging KAOS and Event B: proposed approach 9
2.1 Overview of the approach . 9
2.2 KAOS Object model to Event-B Context and Machine 12

2.2.1 Object types and Attributes 12
2.2.2 Associations and Specializations 13

2.3 Decomposition of the initial model according to Agents 16
2.3.1 State-Based Decomposition 18

2.4 Traceability between KAOS and Event-B 25
2.4.1 De�nitions . 25
2.4.2 Initial model . 26
2.4.3 Other machines in the Event-B model 27

2.5 What happens if . 28
2.5.1 . . . an element is added in the KAOS object model . . 28
2.5.2 . . . an element is removed from the KAOS object model 28
2.5.3 . . . an agent is added in the KAOS model 28
2.5.4 . . . an agent is removed from the KAOS model 28
2.5.5 . . . a control link is added in the KAOS model 29
2.5.6 . . . a control link is removed from the KAOS model . . 29
2.5.7 . . . a monitor link is added in the KAOS model 29
2.5.8 . . . a monitor link is removed from the KAOS model . 30

i

CONTENTS ii

2.5.9 . . . a responsibility links is moved from an agent to an-
other . 30

A Linear Temporal Logic notations 32
A.1 Time operators . 32

B Decomposition according to Agents: Mine pump example 34

C Event-B metamodel : simpleeventb.ecore 44
C.1 Metamodel elements hierarchy 44
C.2 Event-B machine and context 47
C.3 Traceability links . 49

D ATL transformation : KAOS2EventB.atl 55

Bibliography 80

Chapter 1

Bridging KAOS and Event B:

existing approaches

This chapter presents three existing methods to derive Event-B model from
a KAOS model. The �rst one, proposed by Matoussi works on a KAOS
goal diagram, build with "Immediate Achieve" goals, built with milestone-
driven and or-re�nement patterns. The second approach, proposed by Aziz
et al. add the notion of trigger conditions for events to derive an Event-B
model from a KAOS model. The last approach, proposed by De Landtsheer
takes linear temporal logic formula expressed exclusively with past operator
on input and produce a event-based security policy expressed in Polpa. A
syntactic change can translate this policy to Event-B.

1.1 Expressing KAOS Goal Models with Event-B:

A. Matoussi

Matoussi describes in [Matoussi, 2009,Gervais et al., 2009,Matoussi et al.,
2008] a process to transform a KAOS goal model into an Event-B speci�-
cation. This process takes on input a KAOS goal model that is not opera-
tionalized and produces an Event-B model corresponding to a speci�cation
that satis�es the requirements described in the input model.

Figure 1.1: Milestone-driven re�nement and Or-re�nement

1

CHAPTER 1. BRIDGINGKAOS AND EVENT B: EXISTING APPROACHES2

This process is based on re�nement patterns. Each re�nement pattern
used in the KAOS model will correspond to a re�nement step in the Event-
B model. Actually the process works with functional "Immediate Achieve"
goals which are the most commonly used goal type. Those goals have to be
formally de�ned with an assertion of the form A⇒ ♦B, which says that from
a state whereA is true, another state whereB is true can be reached someday.
The supported patterns are the milestone-driven re�nement pattern, used
when a target condition B can be reached from a current condition A with
an intermediate condition AB and the or-re�nement pattern, used when a
goal can be satis�ed in di�erent ways.

Figure 1.2: Expressing KAOS Goal Models with Event-B: process overview

The process in �gure 1.2 has two phases: the �rst one creates an Event-

CHAPTER 1. BRIDGINGKAOS AND EVENT B: EXISTING APPROACHES3

B representation of the goal model. The initial Event-B model includes the
de�nition of a context with all the types used for data and the de�nition
of an initial machine. This initial machine represents the root goal of the
KAOS model and each re�nement in this model has to follow one of the two
patterns described here above. Each re�nement step in the goal model will
correspond to a re�nement step of the Event-B machine, so we have a chain
of re�ned machines where each machine will correspond to a "stage" in the
goal model.

The second phase formally derives an Event-B speci�cation that satis�es
the requirements expressed in the goal model. To do this, it takes on input
the goal model and the Event-B representation of this model created in the
�rst phase. This second phase correspond to the operationalization process
that can be performed in KAOS and guaranty that operations preserve all
the properties of the goal model. As in the �rst phase, the initial Event-B
model will be de�ned for the root goal of the model and each re�nement
in the goal model following one of the two patterns will correspond to a
re�nement in the Event-B model.

1.1.1 First phase

Formally speaking, a KAOS goal is seen as a property that the system has
to establish:

Achieve[G]
A⇒ ♦B

This property will be represented as an event in the Event-B model where
the premise of the implication is transcribed in the initialization event of the
machine and the consequence of the implication is transcribed in the then
part of the event EvtG associated to the goal. An execution of this event
means that the goal G has been satis�ed. The guard of EvtG is set to true
to express the fact that at this level the goal can always be achieved.

Listing 1.1: KAOS expressed in Event-B: initial machine

MACHINE EventBGoalModel_level_0
SEES ModelContext
VARIABLES

Manipulated data
INVARIANTS

inv : Data types de�nitions
EVENTS
Initialisation

begin
act : A

end
Event EvtG =̂

CHAPTER 1. BRIDGINGKAOS AND EVENT B: EXISTING APPROACHES4

where
grd : TRUE

then
act : B

end
END

Milestone-driven re�nement

When we have a milestone-driven re�nement, it means that the parent goal
is satis�ed when all the sub-goals have been satis�ed. The EvtG event of the
parent machine is re�ned into a new event EvtG taking as pre-condition the
conjunction of the functional post-conditions of the children. The re�nement
of goal G following the pattern described in �gure 1.1 will give a machine:

Listing 1.2: KAOS expressed in Event-B: milestone re�nement machine

MACHINE EventBGoalModel_level_1
REFINES EventBGoalModel_level_0
SEES ModelContext
VARIABLES

Manipulated data
INVARIANTS

inv : Data types de�nitions
EVENTS
Initialisation

begin
act : A ∧AB

end
Event EvtG1 =̂

where
grd : TRUE

then
act : AB

end
Event EvtG2 =̂

where
grd : TRUE

then
act : B

end
Event EvtG =̂
re�nes EvtG

where
grd : AB ∧ B

then
act : B

end
END

CHAPTER 1. BRIDGINGKAOS AND EVENT B: EXISTING APPROACHES5

Or-re�nement

When we have an or-re�nement, it means that the parent goal is satis�ed
when one or more of the sub-goals have been satis�ed. The EvtG event of the
parent machine is re�ned into a new event EvtG' taking as pre-condition a
formula expressing that one or more of the two sub-goals have been satis�ed.
It does not seem to be a generic approach here and the knowledge and
competence of the analyst will play an important role. For instance in the
case described by Matoussi et al. in [Gervais et al., 2009], the guard of a
re�ned EvtG' event uses the union of two sets, one for each of the sub-goals
and compare it to the set of all the elements:

. . .∧LocalisedElements =
(LocalisedByGPSElements ∪ LocalisedByWIFIElements)∧ . . .

1.1.2 Second phase

In the second phase, functional and non-functional goals are treated the same
way. The main idea here is to say that an operation can be executed while
the associated goal has not been satis�ed (considering the non-functional
properties too), which is the same as while it's post-condition has not been
veri�ed. However, this is not su�cient to ensure that an "Achieve" goal has
been reached. A new event called "closing" is added with a guard equals
to the post-condition (without the non-functional properties) of the goal to
reach. So for the initial machine corresponding to the root goal G we will
have an event EvtOpG that can be executed while G has not been reached and
an event Closing that can be executed when G is satis�ed. This Closing
event will �nalize the system. As in the �rst phase, the machine will be
re�ned following the re�nement pattern used in the goal model and each
level in the goal model will correspond to a machine in the Event-B model.

Note that in their example, Matoussi et al. in [Gervais et al., 2009] are
working with sets and express the negation of the initial goal post-condition
with universal quanti�ers. The initial machine for goal G will be:

Listing 1.3: Operationalization Event-B: initial machine

MACHINE EventBOperationalSpeci�cation_level_0
SEES ModelContext
VARIABLES

Manipulated data
INVARIANTS

inv : Data types de�nitions
EVENTS
Initialisation

begin
act : A

end

CHAPTER 1. BRIDGINGKAOS AND EVENT B: EXISTING APPROACHES6

Event EvtOpG =̂
where

grd : ¬B
then

act : Do something that makes things going further
end

Event Closing =̂
where

grd : B without non-functional properties
then

act : Exit := OK
end

END

As in the �rst phase, the initial model will be re�ned according to the
re�nement patterns used in the goal model. The Closing event is taken as it
and the sub-goals will be translated to events like in the machine here over.

Milestone-driven re�nement

When a parent goal G is re�ned into sub-goals G1, ..., Gn according to the
milestone-driven re�nement pattern, it means that the goal G can be de-
composed into n steps and that G is satis�ed if the �nal step Gn is reached.
The sub-machine will thus have EvtOpG1,...,EvtOpGn declared events where
the pre-condition is the negation of the post-condition of the corresponding
EvtGi event in the Event-B model of phase one and the action is something
that makes things going further to the step Gi+1. The realization of the last
sub-goal Gn implies the realization of the patent goal G, so the last event
EvtOpGn will re�ne the EvtOpG event of the parent machine. The re�nement
of goal G following the pattern described in �gure 1.1 will give a machine:

Listing 1.4: Operationalization Event-B: initial machine

MACHINE EventBOperationalSpeci�cation_level_1
REFINES EventBOperationalSpeci�cation_level_0
SEES ModelContext
VARIABLES

Manipulated data
INVARIANTS

inv : Data types de�nitions
EVENTS
Initialisation

begin
act : A

end
Event EvtOpG1 =̂

where
grd : ¬AB

then
act : Do something that makes things going further

end
Event EvtOpG2 =̂
re�nes EvtOpG

CHAPTER 1. BRIDGINGKAOS AND EVENT B: EXISTING APPROACHES7

where
grd : ¬B

then
act : Do something that makes things going further

end
Event Closing =̂
re�nes Closing

where
grd : B without non-functional properties

then
act : Exit := OK

end
END

Or-re�nement

As for phase one, when we have an or-re�nement, it means that the parent
goal is satis�ed when one or more of the sub-goals have been satis�ed. The
EvtOpG event of the parent machine is re�ned into a new event EvtOpG' taking
as pre-condition the negation of the corresponding event in the Event-B
model of phase one, possibly simpli�ed and where possible ambiguities have
been removed.

The two sub-goals are handled as in the general case by having a pre-
condition equals to the negation of the post condition of the corresponding
event in the model coming from phase one.

1.2 From Goal-Oriented Requirements to Event-B

Speci�cation: B. Aziz et al.

1.2.1 Notion of triggered event

1.2.2 Operationalisation patterns

Table 1.1 presents the operationalisation patterns for the three most used
goals types. A and B in the KAOS requirement's formal de�nition repre-
sents �rst-order logical formulae de�ned over objects of the KAOS model.
Those objects are translated into variables in the Event-B model and thus
A′ represent the equivalent to A formula de�ned over those variables and B′

represent the generalised substitution derived from predicate B, which will
be seen as the post-condition of the substitution.

CHAPTER 1. BRIDGINGKAOS AND EVENT B: EXISTING APPROACHES8

Table 1.1: Patterns for Operationalising Requirements into Event-B [Aziz
et al., 2009]
Requirements Formal

De�nition
Event-B Operationalisation

Immediate
Achieve

A⇒ ◦B EVENT e WHEN A′ NEXT B′ END

Bounded
Achieve

A⇒ ♦6dB EVENT e WHEN A′ WITHIN d NEXT B′

END

Unbounded
Achieve

A⇒ ♦B EVENT e WHEN A′ EVENTUALLY B′

END

1.3 Deriving Event-based Security Policy from Declar-

ative Security Requirements: R. De Landtsheer

Chapter 2

Bridging KAOS and Event B:

proposed approach

2.1 Overview of the approach

Chapter 1 presents existing techniques to translate a goal requirement model
to an Event-B model. Some of them, like those proposed by Matoussi or Aziz
et al. can be directly used with KAOS. Others like the procedure described
by De Landtsheer can be used to derive Event-B model from �rst order
temporal logic formula.

The problem with all those methods is that they are limited to a subset of
KAOS elements. Matoussi's approach [Matoussi et al., 2008,Matoussi et al.,
2009,Matoussi, 2009, Gervais et al., 2009] is limited to one goal type, the
unbounded Achieve goals which correspond to the formal de�nition pattern
A ⇒ ♦B and to two re�nement patterns, the milestone re�nement and the
or-re�nement. The method proposed by Aziz et al. [Aziz et al., 2009] uses the
notion of trigger, which is not standard in Event-B, to translate the three
more used goal patterns, the immediate Achieve, the unbounded Achieve
and the bounded Achieve into triggered events. Although more patterns
can be discovered, the notion of trigger hide quite a complex mechanism
of event scheduling that can quickly introduce misinterpretation errors. De
Landtsheer's procedure [Landtsheer, 2007a] was created to work with Polpa
policy language, a language to express acceptable sequences of events. As
underlined by De Landtsheer the notions of events, conditions and actions
present in Polpa are similar to those present in Event-B with a syntactic
translation. The limitation is that the procedure works exclusively with the
since A S B , the always been �A and the once �A past operators.

Another di�culty with all those methods is that they are monolithic in
the sense that they are executed once from the requirement to the Event-B
model and a change in the �rst need the replay of the method to regenerate
the second. It is also not possible to go on the other way, modify the Event-B

9

CHAPTER 2. BRIDGINGKAOS AND EVENT B: PROPOSED APPROACH10

model and have the modi�cations re�ected in the KAOS model.
To answer these two problems, we propose here a semi-formal method to

build a bridge between the KAOS model and the Event-B model. Starting
from the requirements expressed in a KAOS model, we will build step by step
an Event-B model where each element will be justi�ed by a requirement. This
justi�cation will be implemented through traceability links between the two
models and a set of rules that have to be respected to keep the links between
the models consistent. The KAOS model may be incomplete and enriched
later, even if the elaboration of the Event-B model has started. Contrary
to the methods here over, the construction process may be iterative and the
analyst can travel between the two models as long as the traceability rules
are respected.

Figure 2.1 presents an overview of the process. Starting from the KAOS
object model, an initial machine and context are created to represents the
data and very general update events to represent the fact that those data
evolve in time. Those elements are then reused to dispatch the update events
between the di�erent machines, where each machine correspond to an agent,
according to the control links de�ned in the agent model. The requirements
and expectations under the responsibility of the agents express the e�ective
update of the controlled data. The responsibility model is thus used for
the re�nement of update events. As an element of the object model can be
controlled by one and only one agent, the update event corresponding to this
element will be re�ned in one and only one machine. In one agent's machine,
the update of the elements that are not controlled by the agent will be
represented by the very general update events de�ned in the initial machine.
The elaboration of concrete machines for each agent can be parallelized and
may be recomposed after to get a general model.

The �rst step is presented in section 2.2. The second step is described
in section 2.3. Section 2.4 presents the traceability links between the KAOS
model and the Event-B model with a list of criteria to keep the links between
the two models consistent. In section 2.5, some examples describe what
happen if one model is modi�ed.

CHAPTER 2. BRIDGINGKAOS AND EVENT B: PROPOSED APPROACH11

Figure 2.1: Proposed method overview

CHAPTER 2. BRIDGINGKAOS AND EVENT B: PROPOSED APPROACH12

2.2 KAOS Object model to Event-B Context and

Machine

In KAOS, every concept used in a de�nition in the goal model has to be
de�ned in the object model. It means that when the goal model is complete,
all predicates used in the formal de�nition of goals and in particular require-
ments have been de�ned in the object model [van Lamsweerde, 2009,Landt-
sheer, 2007b]. It seems thus interesting to translate in a way or another
the object model to Event-B, so concepts manipulated in formulas have an
equivalent in the Event-B model.

As Event-B uses the set theory to de�ne and manipulate data, the KAOS
object model could be quite easily transformed into an ERA model. Tools
like DB-Main [REVER, 901] can automatically transform such model into
a relational model compliant with relational databases. The relational na-
ture of the diagram allows getting an Event-B model from it with a simple
syntactic transformation. Moreover, as relational databases are the most
used database management systems, the relational diagram could be used
to generate SQL data de�nition code. This method implies more than one
transformation. Another negative point is that the generated data de�nition
in the Event-B Context and Machine may be more di�cult to manipulate.

Snook et al. de�ne in [Snook and Butler, 2006, yah Said et al., 2009]
a method to transform a UML Class diagram into a classical B machine.
This method may be adapted to transform the KAOS Object model which
corresponds to a simpli�ed UML Class diagram to an Event-B Machine and
its associated Context.

From now we will take the following conventions: the name of the KAOS
model elements will be those de�ned in the KAOS meta-model [van Lam-
sweerde, 2009]; the �rst letter of those meta-concepts will be in capital.

2.2.1 Object types and Attributes

A set OBJECT_SET of all possible objects belonging to a certain Object type
is de�ned in the Context for each Object type. The set OBJECTS of all the
existing instances of a certain Object type is de�ned in the Machine that
will see the Context and belongs to the powerset of OBJECT_SET.

The domains of the Attributes have to be de�ned in the Context. In
particular, non standard types or enumerated domains have to be speci�ed in
comprehension or in extension. Attributes are represented in the Machine by
a partial or total function according to the Multiplicity of the Attribute, from
an element of the OBJECT set to an element of the domain of the attribute.
The table 2.1 gives the transformation rules for the di�erent Multiplicities
of an attribute of Object type T.

CHAPTER 2. BRIDGINGKAOS AND EVENT B: PROPOSED APPROACH13

Table 2.1: Transformation rules for KAOS Attributes
KAOS at-
tribute

Corresponding function Event-B Invariant

a : type [1..1] Total function to TYPE a ∈ T → TY PE

a : type [0..1] Partial function to TYPE a ∈ T 7→ TY PE

a : type [1..n] Total function to non-empty sub-
set of TYPE

a ∈ T → P1(TY PE)

a : type [0..n] Total function to subsets of TYPE a ∈ T → P(TY PE)

2.2.2 Associations and Specializations

Associations may be directed or not and will be represented in the Machine
by functions. Table 2.2 gives the transformation rules for the di�erent kinds
of directed associations. An undirected association corresponds to two op-
posite directed associations and can be manage as two directed associations
with an additional invariant saying that if on exists, then the other exists
too. For an association linking A to B with multiplicities [a1..a2] and [b1..b2]

A �a1..a2����������b1..b2�B

The result in Event-B will be :

A set AtoB according to the rules in table 2.2
A set BtoA according to the rules in table 2.2

An additional invariant:
∀x, y ·(x ∈ A ∧ y ∈ B)⇔ (AtoB(x) = y ⇔ BtoA(y) = x)

Figure 2.2: N-Ary Association are seen as an Entity with N directed Asso-
ciations

As show in �gure 2.2, an N-Ary Association will be seen as an Entity with
N directed Associations to the di�erent Objects of the N-Ary Association.

CHAPTER 2. BRIDGINGKAOS AND EVENT B: PROPOSED APPROACH14

In case of Specialization, usually instances belong to one and only one
sub-Object type and sub-Objects instances are disjoints. As stated by Snook
and Butler [Snook and Butler, 2006], when translating from KAOS to Event-
B, the instances of the sub-Objects will be declared as a subset of super-
Object's current instances. Three Object types, one Parent and two sons
Son1 and Son2 specializing Parent will become in Event-B :

PARENT ∈ P(PARENT_SET)
SON1 ∈ P(PARENT)
SON2 ∈ P(PARENT)
SON1 ∩ SON2 = ∅

The Specialization may be more precise like in ERA, e.g. if all the in-
stances must be one of a sub-Object type then the sub-Objects instances
sets cover the set of super-Object instances :

SON1 ∪ SON2 = PARENT

CHAPTER 2. BRIDGINGKAOS AND EVENT B: PROPOSED APPROACH15

Table 2.2: Transformation rules for KAOS directed Associations
The two Object types are A and B and a1..a2 → b1..b2 in the table
represents the multiplicities for an association :

A �a1..a2�������b1..b2�> B
According to our convention, the Objects sets in Event-B will be called
A and B.

The disjoint macro in the table is de�ned as:
(∀a1, a2·(a1 ∈ dom(AtoB) ∧ a2 ∈ dom(AtoB) ∧ a1 6=

a2⇒AtoB(a1) ∩ AtoB(a2) = ∅))

KAOS as-
sociation
multiplic-
ity

Corresponding function Event-B Invariant

0..∗ → 0..1 Partial function to B AtoB ∈ A 7→B

0..∗ → 1..1 Total function to B AtoB ∈ A→B

0..∗ → 0..∗ Total function to subset of B AtoB ∈ A→ P(B)

0..∗ → 1..∗ Total function to non-empty sub-
set of B

AtoB ∈ A→ P1(B)

0..1→ 0..1 Partial injection to B AtoB ∈ A 7�B

0..1→ 1..1 Total injection to B AtoB ∈ A�B

0..1→ 0..∗ Total function to subsets of B

which don't intersect
AtoB ∈ A → P(B) ∧
disjoint

0..1→ 1..∗ Total function to non-empty sub-
sets of B which don't intersect

AtoB ∈ A→ P1(B) ∧
disjoint

1..∗ → 0..1 Partial surjection to B AtoB ∈ A 7�B

1..∗ → 1..1 Total surjection to B AtoB ∈ A�B

1..∗ → 0..∗ Total function to subsets of B

which cover B
AtoB ∈ A → P(B) ∧
union(ran(AtoB)) =
B

1..∗ → 1..∗ Total function to non-empty sub-
sets of B which cover B

AtoB ∈ A→ P1(B) ∧
union(ran(AtoB)) =
B

1..1→ 0..1 Partial bijection to B (partial in-
jection de�ned for all the ele-
ments of B)

AtoB ∈ A 7� B ∧
∀b·(b ∈ B ⇒ (∃a·(a ∈
A ∧ (a 7→ b) ∈ AtoB)))

1..1→ 1..1 Total bijection to B AtoB ∈ A��B

1..1→ 0..∗ Total function to subsets of B

which cover B without intersect-
ing

AtoB ∈ A → P(B) ∧
union(ran(AtoB)) =
B ∧ disjoint

1..1→ 0..∗ Total function to non-empty sub-
sets of B which cover B without
intersecting

AtoB ∈ A→ P1(B) ∧
union(ran(AtoB)) =
B ∧ disjoint

CHAPTER 2. BRIDGINGKAOS AND EVENT B: PROPOSED APPROACH16

2.3 Decomposition of the initial model according to

Agents

Decomposition makes it possible to manage the complexity of models that
increases through the re�nement process. It may be interesting to have an
early decomposition to break an initial machine into smaller pieces pertinent
with the KAOS agents. This choice is made because the KAOS meta-model
says that an association or an attribute can be controlled by one and only one
agent [van Lamsweerde, 2009, Landtsheer, 2007b,Letier, 2001]. The idea is
thus to have separate machines with the attributes monitored and controlled
by the agent. Let us recall that an attribute or association is controlled by an
agent if the agent performs one or more operation that modi�es the attribute
value and that an attribute is monitored by an agent if the attribute is an
input of one or more operation performed by the agent.

Ball presents in [Ball, 2008] a description of the two techniques used to
split a machine into smaller pieces. The �rst one, called Event-Based De-
composition or B-style decomposition [Pascal and Silva, 2009] encapsulates
the variables in di�erent machines together with the events or parts of events
that concern those variables. The events that have been split will need to be
synchronized in order to ensure the functionalities of the original machine.
The synchronization will take place by an exchange of inputs and outputs
between the synchronized machines events [Butler, 2009].

The second technique, called State-Based Decomposition or A-style de-
composition [Pascal and Silva, 2009] splits the variables in di�erent machines
with some shared variables. Events are added to components to simulate
how the shared variables are used in other components. Shared variables
and events must be kept synchronized between the di�erent machines dur-
ing the re�nement. Theoretically the system could be rebuilt into a single
machine at the end of the process, but in practice this will never be done
since the di�erent machines will lead to di�erent software components.

This State-Based Decomposition, proposed by Abrial in [Abrial, 2009b,
Abrial, 2009a,Métayer et al., 2005] seems to �t more our problem. For a gen-
eral model, variables and events will be distributed to several sub-machines
with some of those variables presents in more than one sub-machine. It is
important to notice here that the sub-machines are not re�ning the general
machine, but are decomposing it. In the sub-machines, a distinction is made
between the internal variables used only in a particular sub-machine and the
shared variables used in more than one sub-machine. So, shared variables
can be modi�ed by more than one event in more than one sub-machine. Fig-
ure 2.3 shows an example of decomposition, a sub-machine A has an event
evtA that will modify the value of a shared variable and another sub-machine
B has an event evtB using the variable's value in its guard. To express the
fact that the variable is not a constant in B, an event evtExtA will be added

CHAPTER 2. BRIDGINGKAOS AND EVENT B: PROPOSED APPROACH17

to B corresponding to an abstraction of the event evtA in A. The added
event evtExtA will be called an external event, which is just present in B to
synchronize the update of the shared variable in the general machine.

Figure 2.3: Decomposition of a general machine into two sub-machines

It is clear now that shared variables coming from the abstract machine
will be replicated in each sub-machine. The problem is that each sub-
machine could normally re�ne its variables and the same replicated variable
could be re�ned in one way in one re�nement and in another way in another
re�nement. If this happens, the two sub-machines can't communicate any
longer as they are not using the same convention on the shared variable.
Such a variable has a special status in the sub-machines where they stay
saying that this variable has to be always present in the state space of any
re�nement of the machine. A shared variable can thus not be data-re�ned
or if it is, the variable has to be re�ned in the same way in each sub-model
using the variable, which can be quite heavy.

CHAPTER 2. BRIDGINGKAOS AND EVENT B: PROPOSED APPROACH18

2.3.1 State-Based Decomposition

We propose to use the State-Based Decomposition after an initial creation
of the Event-B model from the KAOS object model, as presented in section
2.2, with one sub-machine per agent. The reason of this choice is simple, the
KAOS meta-model states that an attribute or association cannot be con-
trolled by more than one agent [van Lamsweerde, 2009,Letier, 2001,Landt-
sheer, 2007b]. So it means that in Event-B, a shared variable will be updated
in one and only one sub-machine, while an external event will be placed with
each variable coming from the KAOS object model in all other sub-machines.

The question is: do we have to place each variable coming from the
KAOS object model in all sub-machines? On one side, if we place the vari-
ables coming from the controlled and monitored attributes and associations
of the KAOS object model only in the sub-machines representing the con-
cerned agent, the model in its all will be more readable. On the other
side, decomposition link is for now informal and not implemented in exist-
ing tools [RODIN, v 11] and have thus to be done manually. Moreover, the
re-composition of all sub-machines in one big machine proposed in [Métayer
et al., 2005], which could be used at some moment in the development pro-
cess as a veri�cation of the consistency of the model, could not be done in
RODIN since a machine cannot re�ne more than one other machine. It could
thus be interesting to have a more "concrete" decomposition.

For recall, an external event representing the update of a certain shared
variables has to be an abstraction of the concrete event updating the variable
in another sub-machine. Since KAOS meta-model impose to have only one
agent controlling the update of an attribute or an association, the update
of a variable coming from the KAOS object model will not be performed
in more than one sub-machine. The idea is to add to the general machine
coming from the KAOS object model very general update operations for
each variable, and generate from this machine one re�nement per agent.
The variables that are not controller by the agent will be marked as shared
variables and the events updating those variables will be marked as external
events in the sub-machines. Those events and variables cannot be re�ned one
the sub-machine or its re�nements. All the events that update the controlled
variables of the agent will be re�nements of the general update event de�ned
in the general machine. The re-composition of sub-machines will simply be
a new machine, declared as a re�nement of the initial machine generated
from the KAOS object model where each non-external events and internal
variables coming from the di�erent sub-machines will be copy-pasted. By
doing so, we guaranty that each external event is indeed an abstraction of the
update of a non-controlled shared variable, because of the re�nement link.
The cost here is to have each shared variables and each abstract update event
of the non-controlled variables repeated in each machine and its re�nement,
whether the corresponding agent is controlling or monitoring the variable

CHAPTER 2. BRIDGINGKAOS AND EVENT B: PROPOSED APPROACH19

or not. This may be overcome in the modelling tools by hiding in a sub-
machine the variables and corresponding external update events that are not
controlled or monitored by the corresponding agent.

Example

Here is a small example inspired by the mine pump model presented in [Aziz
et al., 2009]. In this model we have a mine that has to be kept safe from
�ooding and explosion. For this we have a mine pump that start pumping
if the water level is too high and if there is no methane detected.

Figure 2.4: Mine pump goal model

Figure 2.5 presents the goal model and the di�erent agents responsible for
the requirements and expectations. Figure 2.5 shows the agent model with
controlled and monitored objects: the PumpController controls the pump
attribute and monitors the methane and waterLevel attributes, the Alarm-
Controller controls the bell attribute and monitors the methane attribute,
the WaterLevelSensor controls the waterLevelAttribute, the MethaneSensor
controls the methane attribute and the Miner monitors the bell attribute.

CHAPTER 2. BRIDGINGKAOS AND EVENT B: PROPOSED APPROACH20

Figure 2.5: Mine pump agent model

By applying the procedure described in section 2.2, we get an initial Con-
text in listing 2.1 and an initial machine in listing 2.2 describing the objects
of the KAOS object model. The initial machine includes the attributes and
the update methods for all those attributes, note here that in the listing 2.2
only the update method for the pump has been shown. The update methods
of the others attributes follows the same pattern. The complete machines of
this example can be found in annex B.

Listing 2.1: Mine pump example: Initial context

CONTEXT MineContext
SETS

ONOFF, LEVEL, MINE_SET

CONSTANTS
ON, OFF, LOW, MEDIUM, HIGH, M

AXIOMS
axm1 : partition(ONOFF , {ON }, {OFF})
axm2 : partition(LEVEL, {LOW }, {MEDIUM }, {HIGH })
axm3 : partition(MINE_SET , {M })

END

Listing 2.2: Mine pump example: Initial machine

MACHINE MinePump
SEES MineContext
VARIABLES

MINE, pump, bell, methane, waterLevel
INVARIANTS

inv1 : MINE ∈ P(MINE_SET)

CHAPTER 2. BRIDGINGKAOS AND EVENT B: PROPOSED APPROACH21

inv2 : pump ∈ MINE →ONOFF
inv3 : bell ∈ MINE → BOOL
inv4 : methane ∈ MINE → BOOL
inv5 : waterLevel ∈ MINE → LEVEL

EVENTS
Initialisation

begin
act1 : MINE , pump, bell ,methane,waterLevel := ∅,∅,∅,∅,∅

end
Event updatePump =̂

any
m
status

where
grd1 : m ∈ MINE
grd2 : status ∈ ONOFF

then
act1 : pump(m) := status

end
END

Starting from this, machines will be created by re�ning the initial ma-
chine for each agent of the KAOS model. The listing 2.3 shows the machine
de�ned for the PumpController. This machine and all the other machines of
this example can be found in annex B. The re-composed machine can also
be found in listing B.7 in annex B where the update methods have been
replaced by their re�nements in the di�erent sub-machines. Figures 2.6 and
2.7 shows a summary of the created machines.

Listing 2.3: Mine pump example: PumpController machine

MACHINE PumpController
REFINES MinePump
SEES MineContext
VARIABLES

MINE, pump, bell, methane, waterLevel
EVENTS
Initialisation

extended
begin

act1 : MINE , pump, bell ,methane,waterLevel := ∅,∅,∅,∅,∅
end

Event high_water_detected =̂
Internal Event

re�nes updatePump
any

m
where

grd2 : m ∈ MINE
grd1 : waterLevel(m) = HIGH
grd3 : methane(m) = FALSE

with
status : status = ON

then
act1 : pump(m) := ON

end
Event low_water_detected =̂

Internal Event

CHAPTER 2. BRIDGINGKAOS AND EVENT B: PROPOSED APPROACH22

re�nes updatePump
any

m
where

grd1 : m ∈ MINE
grd2 : waterLevel(m) = LOW

with
status : status = OFF

then
act1 : pump(m) := OFF

end
Event updateBell =̂

External Event
extends updateBell

any
m
status

where
grd1 : m ∈ MINE
grd2 : status ∈ BOOL

then
act1 : bell(m) := status

end
Event updateMethane =̂

External Event
extends updateMethane

any
m
status

where
grd1 : m ∈ MINE
grd2 : status ∈ BOOL

then
act1 : methane(m) := status

end
Event updateWaterLevel =̂

External Event
extends updateWaterLevel

any
m
level

where
grd1 : m ∈ MINE
grd2 : level ∈ LEVEL

then
act1 : waterLevel(m) := level

end
END

CHAPTER 2. BRIDGINGKAOS AND EVENT B: PROPOSED APPROACH23

Figure 2.6: Decomposition of the initial machine

CHAPTER 2. BRIDGINGKAOS AND EVENT B: PROPOSED APPROACH24

Figure 2.7: Recomposition of the initial machine

CHAPTER 2. BRIDGINGKAOS AND EVENT B: PROPOSED APPROACH25

2.4 Traceability between KAOS and Event-B

The idea here is to have rules to justify every element in the Event-B model
by an element coming from the requirement. The goal is to avoid over-
speci�cation and guaranty that if requirements are discovered or corrected
during the elaboration of the Event-B model, the requirements documents
will be adapted too.

2.4.1 De�nitions

Before going further, let us introduce some de�nitions used to express rules
hereafter :

• An abstract object in KAOS is an entity, an agent or an event. Both
agents and events may, like in UML, have a "data part" with attributes.

• An attribute domain in KAOS is a domain of values de�ning the type
of an attributes. This domain may be built-in or user de�ned.

• An N-Ary association in KAOS is an association with a multiplicity
strictly greater than two.

• An undirected association is a bidirectional association.

• An IsA link in KAOS is a specialization link taking place between two
abstract objects.

• A domain property in KAOS is a property guaranteed by the environ-
ment. This property is assumed to be always true.

We also de�ne here what are the initial context and machine :

De�nition 2.4.1. The initial context is the context derived from the KAOS
object model.

De�nition 2.4.2. The initial machine is the machine derived from the
KAOS object model with all its variables, invariants and events justi�ed by
elements of the KAOS object model.

Now we are clear with the vocabulary, let us de�ne criteria for the Event-
B model derived from the KAOS model. The links that we are talking about
are Derivation links as de�ned by van Lamsweerde in his hierarchy [van
Lamsweerde, 2009]. A dependency links between two model A and B express
the fact that changing Amay require changing B. This kind of link is vertical
in the sense that they take place for a single version, opposed to horizontal
links, such as a variant or revision link that take place between di�erent
versions.

CHAPTER 2. BRIDGINGKAOS AND EVENT B: PROPOSED APPROACH26

2.4.2 Initial model

First, we will de�ne criteria for the initial machine and context. Those two
elements are build by the transformations described in section 2.2. Those cri-
teria are expressed must be respected to keep the Event-B model consistent
with the KAOS model.

Initial context

Here are the criteria for the sets, axioms and constants that can be found in
the initial context.

Criterion 2.4.1. Each carrier set in the initial context must be linked to
one abstract object, or one attribute domain or one N-Ary association.

Criterion 2.4.2. Each constant in the initial context must be linked to an
attribute domain.

Criterion 2.4.3. Each axiom in the initial context must be linked to an
attribute domain.

Initial machine

Here are the criteria de�ned for the invariants, variables and events de�ned
for the update of those variables.

Criterion 2.4.4. Each variable in the initial machine must be linked to one
abstract object or one attribute or one directed association or one undirected
association or one N-Ary association.

Criterion 2.4.5. Each invariant in the initial machine must be linked to
one abstract object or one directed association or one undirected association
or an IsA link or an N-Ary association or a domain property.

We will call an update event an event corresponding to the update of
one KAOS element which can be an abstract object, an attribute, an N-Ary
association, a directed association or an undirected association.

Criterion 2.4.6. Each event in the initial machine must be an update event
and is thus linked to one abstract object or one attribute or one directed
association or one undirected association or one N-Ary association.

Note that one element in KAOS may be translated in more than one
variable in Event-B, e.g. the undirected association that is transformed into
two sets and an additional invariant.

Criterion 2.4.7. Each variable in the initial machine must appear in one
and only one update event.

Criterion 2.4.8. Each KAOS element which can be an abstract object, an
attribute, an N-Ary association, a directed association or an undirected as-
sociation that is controlled by an agent must appear in the initial machine.

CHAPTER 2. BRIDGINGKAOS AND EVENT B: PROPOSED APPROACH27

2.4.3 Other machines in the Event-B model

Starting from the initial machine and context, other machines will be de�ned
for agents according to our proposed approach. Those machines will then be
re�nes independently to describe the behavior of each agent of the system
under study. Here are criteria for those machines.

Machines

A machine is said as directly linked to an agent of the KAOS model if it is
re�ning the initial machine and if a link is de�ned between the machine and
one agent of the system. A machine directly linked to an agent is a part of
the decomposition of the initial machine.

A machine is said as indirectly linked to an agent if it is re�ning a machine
directly linked to an agent or a machine indirectly linked to an agent.

A machine will be said as linked to an agent if it is directly linked to an
agent or indirectly linked to an agent.

Criterion 2.4.9. Each machine in the Event-B model that is not the initial
machine must be linked to one agent or must be a re-composition, as de�ned
in section 2.3, of several machines.

Events

An event is said as linked to a requirement or an expectation if it is directly
linked to a requirement or an expectation or if it is re�ning an event linked
to a requirement or an expectation.

Criterion 2.4.10. Each event in the machines that are not the initial ma-
chine must be linked to a requirement or expectation under the responsibility
of the agent linked to the machine.

Note that a recomposed machine is implicitly linked to all the agents
corresponding to the machines that are participating in the re-composition.

We will say that an event re�nes another event if it re�nes it directly or
if it re�nes a third event that re�nes the other event.

Criterion 2.4.11. If an event in a machine that is not the initial machine
updates the value of variables corresponding to a KAOS element, which can be
an abstract object, an attribute, an N-Ary association, a directed association
or an undirected association then the event must re�ne the update event
corresponding to this KAOS element.

Criterion 2.4.12. If an event in a machine that is not the initial machine
re�nes an update event, the agent linked to the machine must control the
KAOS element, which can be an abstract object, an attribute, an N-Ary as-
sociation, a directed association or an undirected association in the KAOS
model.

CHAPTER 2. BRIDGINGKAOS AND EVENT B: PROPOSED APPROACH28

Criterion 2.4.13. Each update event in the initial machine may be re�ned
by events in machines corresponding to at most one and only one agent.

2.5 What happens if . . .

2.5.1 . . . an element is added in the KAOS object model

Adding an element to the KAOS object model will result in a modi�cation
of the initials machine and context. This element is added according to the
rules described in section 2.2 to the initial machine and context and will be
propagate to all machines and context re�ning them.

2.5.2 . . . an element is removed from the KAOS object model

When an element is removed from the KAOS object model, the invariants,
variables, update event, sets and axioms issued from its translation, accord-
ing to the rules described in section 2.2, in Event-B are removed from the
initial machine and context and all the machines and contexts that are re-
�ning them. Note that before deleting a piece of element, all the control and
monitor links will be removed too. For recall a KAOS meta-constraint im-
pose that all the elements used to de�ne goals, requirements and expectations
must be de�ned in the object model. An element will thus not be removed
while at least requirements and expectations are using it and thus events
linked to requirements and expectations will stay correct, even elements are
deleted from the Event-B model.

2.5.3 . . . an agent is added in the KAOS model

Adding an agent to the KAOS model means that a new active entity has
been identi�ed. The Event-B model will thus be enriched by a new machine,
decomposing the initial machine. For recall, the decomposition link is for
now informal in RODIN [RODIN, v 11] and we propose to use a re�ning link
between the new machine and the initial machine (see section 2.3).

2.5.4 . . . an agent is removed from the KAOS model

Removing an agent from the KAOS model means that an active part of the
system is removed. All the responsibility links between the agent and the
requirements/expectations will probably be moved to other agents before re-
moving it. As an agent may be responsible for a requirement/expectation if
and only if he can control all the data that are modi�ed by the requirement/-
expectation and monitor all the data read by the requirement/expectation,
all the monitor and control links will also probably be moved before the
deletion of an agent.

CHAPTER 2. BRIDGINGKAOS AND EVENT B: PROPOSED APPROACH29

If an agent is removed from the KAOS model, the corresponding machine
and all its sub-machines will be removed from the Event-B model. If one of
those machines has been used in a re-composition, all the events coming from
the machine will be removed of the decomposition. Pay attention that if the
agent was still controlling a piece of data when it is removed and that one
of the deleted event in the re-composition was re�ning the update event of
this piece of data, the general update event coming from the initial machine
has to be added in the re-composed machine.

2.5.5 . . . a control link is added in the KAOS model

If a control link is added in the KAOS model, the update event of the con-
trolled piece of data will become an internal event that may be re�ned in
the machine corresponding to the agent. Of course, we suppose here that
the KAOS meta-constraint saying that a piece of data can be controlled by
one and only one agent is respected.

2.5.6 . . . a control link is removed from the KAOS model

In the Event-B model, when an agent is controlling a piece of data, it means
that the update event of this piece of data is an internal event in the machine
linked to the Agent. Removing a control link will thus means that the agent
can no longer modify a certain piece of data. All the events in the machine
linked to the agent and its re�nements that are re�ning the update event of
the piece of data have to be removed. They will be replaced by the update
event coming from the initial machine and will be marked as external.

Deleting a control link may only occur in KAOS when the agent is no
longer responsible for requirements/expectations that update the previously
controlled element. A more frequent situation will be to move requirements/-
expectations responsibilities to another agent and in the same time, move
control and monitor links needed to be responsible for those requirements/-
expectations to this other agent too.

2.5.7 . . . a monitor link is added in the KAOS model

When a monitor link is added to the KAOS model, it means that an agent
will be noti�ed when a certain piece of data is updated. In Event-B, it means
that the update event linked to this piece of data is executed in the machine
linked to the agent and all its re�nements as an external event.

As we are using re�nement links in place of decomposition links, all the
events of the initial machine have to be re�ned by one or more event in the
agent's machine. [Métayer et al., 2005] When the agent is monitoring a piece
of data linked to the update event, this update event in the agent's machine
will correspond to a copy paste of the abstract event. Note that it is the

CHAPTER 2. BRIDGINGKAOS AND EVENT B: PROPOSED APPROACH30

default RODIN [RODIN, v 11] behavior when a re�nement of a machine is
created.

2.5.8 . . . a monitor link is removed from the KAOS model

The update event, variables and invariants linked to the previously monitored
piece of data may be hidden to the analyst in a tool, but in the e�ective
Event-B model nothing happens because of the re�ning link between the
agent's machine and the initial machine. As explained in section 2.3, this
is the small cost to pay for using re�nement links in place of decomposition
links.

2.5.9 . . . a responsibility links is moved from an agent to an-

other

A responsibility link in KAOS is translated into an event or an invariant
in the agent's machine of the Event-B model. If it is an event, it re�nes
all the update events corresponding to the data that are modi�ed by the
requirement/expectation. The agent has thus the ability to control those
data in the KAOS model. Moving a responsibility from an agent to another
will thus mean that the implied control links will be moved in the same time.

Figure 2.8: Moving responsibility link in Event-B

At the agents' machines level it means that the events linked to the
requirement/expectation is moved from a machine to another. The update
events of the data concerned by the moved control links will be replaced
by the update event coming from the initial machine and will be marked as
external. If the event linked to the requirement/expectation has already been
re�ned in sub-machines, the re�nements may be moved from the previous
agent's "re�nement tree" to the new one by completing the actual machines
and creating new ones if the new tree is shorter than the previous one. Figure

CHAPTER 2. BRIDGINGKAOS AND EVENT B: PROPOSED APPROACH31

2.8 shows an example of a re�ned requirement moved from the agent A to the
agent B, where the agent B's machine has not yet been re�ned. A re�nement
is created, in blue dotted on the �gure, to have the same re�nement level as
agent A's machine.

Appendix A

Linear Temporal Logic

notations

This section presents the temporal operators used in KAOS [van Lamsweerde,
2009].

A history H is a function : H : N → State(X) where X is the set
of system variables and State(X) is the set of all possible states for the
corresponding variable in X.

If temporal assertion P satis�ed by a history H at time position i, we
say that :

(H, i) |= P

If i is the initial position 0, then the assertion P is said to be satis�ed by
the entire history H :

(H, 0) |= P

A.1 Time operators

The tables A.1 and A.2 summarize the time operators used with KAOS and
they associated semantics.

32

APPENDIX A. LINEAR TEMPORAL LOGIC NOTATIONS 33

Table A.1: Future time operators
Notation Informal Explanation Semantic
♦P Sooner or later P (H, i) |= ♦P i� ∃j, j > i :

(H, j) |= P

�P Always P (H, i) |= �P i� ∀j, j > i :
(H, j) |= P

P U Q Always P until Q (H, i) |= P U Q i� (∃j, j > i :
(H, j) |= Q) ∧ (∀k, i 6 k < j :
(H, k) |= P)

P W Q Always P unless Q (H, i) |= P W Q i� ((H, i) |= P
U Q) ∨ ((H, i) |= �P)

◦P Next P (H, i) |= ◦P i� (H, i+ 1) |= P

P ⇒ Q P entails Q Equivalent to �(P → Q)

P ⇔ Q P is congruent to Q Equivalent to �(P ↔ Q)

Table A.2: Past time operators
Notation Informal Explanation Semantic
�P Some time in the past P (H, i) |= �P i� ∃j, j 6 i :

(H, j) |= P

�P P has always been (H, i) |= �P i� ∀j, j 6 i :
(H, j) |= P

P S Q Always P in the past since Q (H, i) |= P S Q i�
(∃j, j 6 i : (H, j) |= Q) ∧
(∀k, j < k 6 i : (H, k) |=
P)

P B Q Always P in the past back to Q (H, i) |= P B Q i� ((H, i)
|= P s Q)∨((H, i) |= �P)

•P Previous P (H, i) |= •P i� (H, i −
1) |= P with i > 0

@P To P Equivalent to (•¬P) ∧ P

Appendix B

Decomposition according to

Agents: Mine pump example

This annex present the complete machines of the mine pump example de-
scribed in section 2.3.

Listing B.1: Mine pump example: Initial context

CONTEXT MineContext
SETS

ONOFF
LEVEL
MINE_SET

CONSTANTS
ON
OFF
LOW
MEDIUM
HIGH
M

AXIOMS
axm1 : partition(ONOFF , {ON }, {OFF})
axm2 : partition(LEVEL, {LOW }, {MEDIUM }, {HIGH })
axm3 : partition(MINE_SET , {M })

END

Listing B.2: Mine pump example: Initial machine

MACHINE MinePump
SEES MineContext
VARIABLES

MINE
pump
bell
methane
waterLevel

INVARIANTS

34

APPENDIX B. DECOMPOSITION ACCORDING TOAGENTS: MINE PUMP EXAMPLE35

inv1 : MINE ∈ P(MINE_SET)
inv2 : pump ∈ MINE →ONOFF
inv3 : bell ∈ MINE → BOOL
inv4 : methane ∈ MINE → BOOL
inv5 : waterLevel ∈ MINE → LEVEL
inv6 : dom(pump) = MINE
inv7 : dom(bell) = MINE
inv8 : dom(methane) = MINE
inv9 : dom(waterLevel) = MINE

EVENTS
Initialisation

begin
act1 : MINE := ∅
act2 : pump := ∅
act3 : bell := ∅
act4 : methane := ∅
act5 : waterLevel := ∅

end
Event updatePump =̂

any
m
status

where
grd1 : m ∈ MINE
grd2 : status ∈ ONOFF

then
act1 : pump(m) := status

end
Event updateBell =̂

any
m
status

where
grd1 : m ∈ MINE
grd2 : status ∈ BOOL

then
act1 : bell(m) := status

end
Event updateMethane =̂

any
m
status

where
grd1 : m ∈ MINE
grd2 : status ∈ BOOL

then
act1 : methane(m) := status

end
Event updateWaterLevel =̂

any
m
level

where
grd1 : m ∈ MINE
grd2 : level ∈ LEVEL

then
act1 : waterLevel(m) := level

end
Event addMine =̂

when
grd1 : MINE = ∅

then
act1 : MINE := {M }
act2 : pump(M) := OFF

APPENDIX B. DECOMPOSITION ACCORDING TOAGENTS: MINE PUMP EXAMPLE36

act3 : bell(M) := FALSE
act4 : methane(M) := FALSE
act5 : waterLevel(M) := LOW

end
END

Listing B.3: Mine pump example: PumpController machine

MACHINE PumpController
REFINES MinePump
SEES MineContext
VARIABLES

MINE
pump
bell
methane
waterLevel

EVENTS
Initialisation

extended
begin

act1 : MINE := ∅
act2 : pump := ∅
act3 : bell := ∅
act4 : methane := ∅
act5 : waterLevel := ∅

end
Event high_water_detected =̂

Internal Event
re�nes updatePump

any
m

where
grd2 : m ∈ MINE
grd1 : waterLevel(m) = HIGH
grd3 : methane(m) = FALSE

with
status : status = ON

then
act1 : pump(m) := ON

end
Event low_water_detected =̂

Internal Event
re�nes updatePump

any
m

where
grd1 : m ∈ MINE
grd2 : waterLevel(m) = LOW

with
status : status = OFF

then
act1 : pump(m) := OFF

end
Event updateBell =̂

External Event
extends updateBell

any
m
status

where
grd1 : m ∈ MINE
grd2 : status ∈ BOOL

APPENDIX B. DECOMPOSITION ACCORDING TOAGENTS: MINE PUMP EXAMPLE37

then
act1 : bell(m) := status

end
Event updateMethane =̂

External Event
extends updateMethane

any
m
status

where
grd1 : m ∈ MINE
grd2 : status ∈ BOOL

then
act1 : methane(m) := status

end
Event updateWaterLevel =̂

External Event
extends updateWaterLevel

any
m
level

where
grd1 : m ∈ MINE
grd2 : level ∈ LEVEL

then
act1 : waterLevel(m) := level

end
END

Listing B.4: Mine pump example: WaterLevelSensor machine

MACHINE WaterLevelSensor
REFINES MinePump
SEES MineContext
VARIABLES

MINE
pump
bell
methane
waterLevel

EVENTS
Initialisation

extended
begin

act1 : MINE := ∅
act2 : pump := ∅
act3 : bell := ∅
act4 : methane := ∅
act5 : waterLevel := ∅

end
Event high_to_medium =̂

Internal Event
re�nes updateWaterLevel

any
m

where
grd1 : m ∈ MINE
grd2 : waterLevel(m) = HIGH

with
level : level = MEDIUM

then
act1 : waterLevel(m) := MEDIUM

end

APPENDIX B. DECOMPOSITION ACCORDING TOAGENTS: MINE PUMP EXAMPLE38

Event medium_to_low =̂
Internal Event

re�nes updateWaterLevel
any

m
where

grd1 : m ∈ MINE
grd2 : waterLevel(m) = MEDIUM

with
level : level = LOW

then
act1 : waterLevel(m) := LOW

end
Event low_to_medium =̂

Internal Event
re�nes updateWaterLevel

any
m

where
grd1 : m ∈ MINE
grd2 : waterLevel(m) = LOW

with
level : level = MEDIUM

then
act1 : waterLevel(m) := MEDIUM

end
Event medium_to_high =̂

Internal Event
re�nes updateWaterLevel

any
m

where
grd1 : m ∈ MINE
grd2 : waterLevel(m) = MEDIUM

with
level : level = HIGH

then
act1 : waterLevel(m) := HIGH

end
Event updatePump =̂

External Event
extends updatePump

any
m
status

where
grd1 : m ∈ MINE
grd2 : status ∈ ONOFF

then
act1 : pump(m) := status

end
Event updateBell =̂

External Event
extends updateBell

any
m
status

where
grd1 : m ∈ MINE
grd2 : status ∈ BOOL

then
act1 : bell(m) := status

end
Event updateMethane =̂

External Event
extends updateMethane

any
m

APPENDIX B. DECOMPOSITION ACCORDING TOAGENTS: MINE PUMP EXAMPLE39

status
where

grd1 : m ∈ MINE
grd2 : status ∈ BOOL

then
act1 : methane(m) := status

end
END

Listing B.5: Mine pump example: AlarmController machine

MACHINE AlarmController
REFINES MinePump
SEES MineContext
VARIABLES

MINE
pump
bell
methane
waterLevel

EVENTS
Initialisation

extended
begin

act1 : MINE := ∅
act2 : pump := ∅
act3 : bell := ∅
act4 : methane := ∅
act5 : waterLevel := ∅

end
Event methane_detected =̂

Internal Event
re�nes updateBell

any
m

where
grd1 : m ∈ MINE
grd2 : methane(m) = TRUE
grd3 : bell(m) = FALSE

with
status : status = TRUE

then
act1 : bell(m) := TRUE

end
Event updatePump =̂

External Event
extends updatePump

any
m
status

where
grd1 : m ∈ MINE
grd2 : status ∈ ONOFF

then
act1 : pump(m) := status

end
Event updateMethane =̂

External Event
extends updateMethane

any
m
status

where
grd1 : m ∈ MINE

APPENDIX B. DECOMPOSITION ACCORDING TOAGENTS: MINE PUMP EXAMPLE40

grd2 : status ∈ BOOL
then

act1 : methane(m) := status
end

Event updateWaterLevel =̂
External Event

extends updateWaterLevel
any

m
level

where
grd1 : m ∈ MINE
grd2 : level ∈ LEVEL

then
act1 : waterLevel(m) := level

end
END

Listing B.6: Mine pump example: MethaneSensor machine

MACHINE MethaneSensor
REFINES MinePump
SEES MineContext
VARIABLES

MINE
pump
bell
methane
waterLevel

EVENTS
Initialisation

extended
begin

act1 : MINE := ∅
act2 : pump := ∅
act3 : bell := ∅
act4 : methane := ∅
act5 : waterLevel := ∅

end
Event methane_leak =̂

Internal Event
re�nes updateMethane

any
m

where
grd1 : m ∈ MINE

with
status : status = TRUE

then
act1 : methane(m) := TRUE

end
Event updatePump =̂

External Event
extends updatePump

any
m
status

where
grd1 : m ∈ MINE
grd2 : status ∈ ONOFF

then
act1 : pump(m) := status

end

APPENDIX B. DECOMPOSITION ACCORDING TOAGENTS: MINE PUMP EXAMPLE41

Event updateBell =̂
External Event

extends updateBell
any

m
status

where
grd1 : m ∈ MINE
grd2 : status ∈ BOOL

then
act1 : bell(m) := status

end
Event updateWaterLevel =̂

External Event
extends updateWaterLevel

any
m
level

where
grd1 : m ∈ MINE
grd2 : level ∈ LEVEL

then
act1 : waterLevel(m) := level

end
END

Listing B.7: Mine pump example: re-composed machine

MACHINE MinePumpReuni�cation
REFINES MinePump
SEES MineContext
VARIABLES

MINE
pump
bell
methane
waterLevel

INVARIANTS
inv1 : MINE ∈ P(MINE_SET)
inv2 : pump ∈ MINE →ONOFF
inv3 : bell ∈ MINE → BOOL
inv4 : methane ∈ MINE → BOOL
inv5 : waterLevel ∈ MINE → LEVEL

EVENTS
Initialisation

begin
act1 : MINE := ∅
act2 : pump := ∅
act3 : bell := ∅
act4 : methane := ∅
act5 : waterLevel := ∅

end
Event methane_detected =̂

Internal Event
re�nes updateBell

any
m

where
grd1 : m ∈ MINE
grd2 : methane(m) = TRUE
grd3 : bell(m) = FALSE

APPENDIX B. DECOMPOSITION ACCORDING TOAGENTS: MINE PUMP EXAMPLE42

with
status : status = TRUE

then
act1 : bell(m) := TRUE

end
Event methane_leak =̂

Internal Event
re�nes updateMethane

any
m

where
grd1 : m ∈ MINE

with
status : status = TRUE

then
act1 : methane(m) := TRUE

end
Event high_water_detected =̂

Internal Event
re�nes updatePump

any
m

where
grd2 : m ∈ MINE
grd1 : waterLevel(m) = HIGH
grd3 : methane(m) = FALSE

with
status : status = ON

then
act1 : pump(m) := ON

end
Event low_water_detected =̂

Internal Event
re�nes updatePump

any
m

where
grd1 : m ∈ MINE
grd2 : waterLevel(m) = LOW

with
status : status = OFF

then
act1 : pump(m) := OFF

end
Event high_to_medium =̂

Internal Event
re�nes updateWaterLevel

any
m

where
grd1 : m ∈ MINE
grd2 : waterLevel(m) = HIGH

with
level : level = MEDIUM

then
act1 : waterLevel(m) := MEDIUM

end
Event medium_to_low =̂

Internal Event
re�nes updateWaterLevel

any
m

where
grd1 : m ∈ MINE
grd2 : waterLevel(m) = MEDIUM

with
level : level = LOW

then

APPENDIX B. DECOMPOSITION ACCORDING TOAGENTS: MINE PUMP EXAMPLE43

act1 : waterLevel(m) := LOW
end

Event low_to_medium =̂
Internal Event

re�nes updateWaterLevel
any

m
where

grd1 : m ∈ MINE
grd2 : waterLevel(m) = LOW

with
level : level = MEDIUM

then
act1 : waterLevel(m) := MEDIUM

end
Event medium_to_high =̂

Internal Event
re�nes updateWaterLevel

any
m

where
grd1 : m ∈ MINE
grd2 : waterLevel(m) = MEDIUM

with
level : level = HIGH

then
act1 : waterLevel(m) := HIGH

end
Event addMine =̂
extends addMine

when
grd1 : MINE = ∅

then
act1 : MINE := {M}
act2 : pump(M) := OFF
act3 : bell(M) := FALSE
act4 : methane(M) := FALSE
act5 : waterLevel(M) := LOW

end
END

Appendix C

Event-B metamodel :

simpleeventb.ecore

This annex presents the complete metamodel used to represent an Event-B
machine and its traceability links with a KAOS model. The �rst section
describe the Event-B elements hierarchy and the traceability links hierarchy
belonging to a project. The second section presents the Event-B machine
and context anatomy and the third section describe the traceability links
associated with those elements.

C.1 Metamodel elements hierarchy

44

APPENDIX C. EVENT-B METAMODEL : SIMPLEEVENTB.ECORE 45

Figure C.1: Event-B concepts hierarchy

APPENDIX C. EVENT-B METAMODEL : SIMPLEEVENTB.ECORE 46

Figure C.2: Traceability links hierarchy

APPENDIX C. EVENT-B METAMODEL : SIMPLEEVENTB.ECORE 47

C.2 Event-B machine and context

Figure C.3: Event-B context anatomy

APPENDIX C. EVENT-B METAMODEL : SIMPLEEVENTB.ECORE 48

Figure C.4: Event-B machine anatomy

APPENDIX C. EVENT-B METAMODEL : SIMPLEEVENTB.ECORE 49

C.3 Traceability links

APPENDIX C. EVENT-B METAMODEL : SIMPLEEVENTB.ECORE 50

Figure C.5: Traceability between KAOS abstract objects and Event-B

APPENDIX C. EVENT-B METAMODEL : SIMPLEEVENTB.ECORE 51

Figure C.6: Traceability between KAOS associations and Event-B

APPENDIX C. EVENT-B METAMODEL : SIMPLEEVENTB.ECORE 52

Figure C.7: Traceability between KAOS N-Ary associations and Event-B

APPENDIX C. EVENT-B METAMODEL : SIMPLEEVENTB.ECORE 53

Figure C.8: Traceability between KAOS attributes and Event-B

APPENDIX C. EVENT-B METAMODEL : SIMPLEEVENTB.ECORE 54

Figure C.9: Traceability between KAOS requirements, expectations and do-
main properties and Event-B

Figure C.10: Traceability between KAOS agents and Event-B

Appendix D

ATL transformation :

KAOS2EventB.atl

This annex presents the ATL transformation used to process the initial trans-
formation of the KAOS object model to the initial Event-B machine and
context. It also create a machine per agent re�ning and decomposing the
initial machine. See chapter 2 to have more details about the method.

The input model is a KAOS model serialized in a XMI 1 �le with Objec-
tiver [Respect-IT, 300]. Tools to connect to Objectiver and get a XMI version
of the model are part of the FAUST project (http://faust.cetic.be/) and
can be found at http://sourceforge.net/projects/faust/.

The output format of this transformation is a simpli�ed Event-B model,
also serialized in a XMI �le, that has to be completed by the analyst and the
traceability links with the KAOS model where it came from. The metamodel
of the output model is described in annex C.

1XML Metadata Interchange (speci�cation available at http://www.omg.org/

technology/documents/formal/xmi.htm)

55

http://faust.cetic.be/
http://sourceforge.net/projects/faust/
http://www.omg.org/technology/documents/formal/xmi.htm
http://www.omg.org/technology/documents/formal/xmi.htm

APPENDIX D. ATL TRANSFORMATION : KAOS2EVENTB.ATL 56

L
is
ti
n
g
D
.1
:
A
T
L
tr
an
sf
or
m
at
io
n
co
d
e
fr
om

op
er
at
io
n
s
to

u
se

ca
se
s

1
−−

@
a
tl
c
o
m
p
il
e
r

a
tl
2
0
0
6

2
−−

@
p
a
th

SI
M
P
L
E
E
V
E
N
T
B
=
/
b
e
.
c
e
ti
c
.
k
a
o
s
2
e
v
e
n
tb
/
m
e
ta
m
o
d
e
l/
e
v
e
n
tb
/
s
im

p
le
e
v
e
n
tb

.
e
c
o
r
e

3
−−

@
p
a
th

K
A
O
S=

/
b
e
.
c
e
ti
c
.
o
b
je
c
ti
v
e
r
.
m
o
d
e
l/
s
r
c
/
o
p
e
n
/
k
a
o
s
.
e
c
o
r
e

4 5
m
o
d
u
le

K
A
O
S
2E

v
en
tB

;
6

c
r
e
a
t
e
O
U
T

:
SI
M
P
L
E
E
V
E
N
T
B
fr
o
m

IN
:
K
A
O
S
;

7 8
h
e
lp
e
r
d
e
f
:

p
r
o
je
c
t

:
SI
M
P
L
E
E
V
E
N
T
B
!
P
r
o
je
c
t
=

O
c
lU

n
d
e
fi
n
e
d
;

9
h
e
lp
e
r
d
e
f
:

g
e
n
e
ra
lM

a
c
h
in
e

:
SI
M
P
L
E
E
V
E
N
T
B
!M

a
c
h
in
e
=

O
c
lU

n
d
e
fi
n
e
d
;

10
h
e
lp
e
r
d
e
f
:

d
a
ta
C
o
n
te
x
t

:
SI
M
P
L
E
E
V
E
N
T
B
!
C
o
n
te
x
t
=

O
c
lU

n
d
e
fi
n
e
d
;

11
h
e
lp
e
r
d
e
f
:

in
it
ia
lD

e
c
o
m
p
o
s
it
io
n

:
SI
M
P
L
E
E
V
E
N
T
B
!
D
e
c
o
m
p
o
si
ti
o
n
L
in
k

=
O
c
lU

n
d
e
fi
n
e
d
;

12 13
h
e
lp
e
r
c
o
n
te
x
t
K
A
O
S
!
L
in
k
d
e
f

:
e
n
ti
ty
N
a
m
e

:
S
t
r
in
g

=
14

if
s
e
lf

.
r
o
le

.
o
c
lI
s
U
n
d
e
fi
n
e
d
(
)
th
e
n

15
s
e
lf

.
li
n
k
s
T
o
.n
a
m
e
.
to
L
o
w
e
r
(
)
.
r
e
p
la
c
e
A
ll
(
'

'
,
'_

')
16

e
ls
e

17
s
e
lf

.
r
o
le

.
r
e
p
la
c
e
A
ll
(
'

'
,
'_

')
18

e
n
d
if
;

19 20
−−

R
u
le

c
a
ll
e
d

a
t

th
e

in
it
ia

li
s
a
t
io

n
p
h
a
s
e

to
c
r
e
a
te

a
p
r
o
je
c
t

a
n
d

it
's

21
−−

g
e
n
e
r
a
l
m
a
c
h
in
e
,

g
e
n
e
r
a
l

c
o
n
te
x
t

a
n
d

t
r
a
c
e
a
b
il
it
y

li
n
k
s

c
o
ll
e
c
t
io

n
.

22
e
n
t
r
y
p
o
in
t
r
u
le

P
r
o
je
c
t
(
)

{
23

to
24

m
a
c
h
in
e

:
SI
M
P
L
E
E
V
E
N
T
B
!M

a
c
h
in
e

(
25

id
<
−

'
In

it
ia
lM

a
c
h
in

e
'
,

APPENDIX D. ATL TRANSFORMATION : KAOS2EVENTB.ATL 57

26
n
a
m
e
<
−

'
In

it
ia
lM

a
c
h
in

e
'
,

27
co
m
m
en
t
<
−

'T
h
e

m
o
st

g
e
n
e
r
a
l
m
a
c
h
in
e

o
f

th
e

m
o
d
e
l
\
n
'+

28
'
c
r
e
a
t
e
d

fr
o
m

a
K
A
O
S

m
o
d
e
l
'
,

29
v
a
r
ia
b
le
s
<
−

S
e
t
{
}
,

30
in

v
a
r
ia
n
t
s
<
−

S
e
t
{
}
,

31
v
a
r
ia
n
t
s
<
−

S
e
t
{
}
,

32
e
v
e
n
t
s
<
−

S
e
t
{
}
,

33
r
e
fi
n
e
s
<
−

S
e
t
{
}
,

34
r
e
fi
n
e
d
B
y
<
−

S
e
t
{
}
,

35
v
ie
w
s
<
−

S
e
t
{
c
tx
V
ie
w
}
,

36
d
e
c
o
m
p
o
se
d
In

<
−

S
e
t
{
}
,

37
re
c
o
m
p
o
se
d
In

<
−

S
e
t
{
}
)
,

38 39
c
tx

:
SI
M
P
L
E
E
V
E
N
T
B
!
C
o
n
te
x
t
(

40
id

<
−

'
I
n
it
ia
lC

o
n
t
e
x
t
'
,

41
n
a
m
e
<
−

'D
a
ta
C
o
n
te
x
t
'
,

42
co
m
m
en
t
<
−

'D
a
ta

c
o
n
t
e
x
t

fo
r

m
o
d
e
l
d
a
ta

m
a
n
ip
u
la
ti
o
n

\
n
'+

43
'
c
r
e
a
t
e
d

fr
o
m

a
K
A
O
S

o
b
je
c
t

m
o
d
e
l
'
,

44
is
V
ie
w
e
d

<
−

S
e
t
{
c
tx
V
ie
w
}
,

45
s
e
t
s
<
−

S
e
t
{
}
,

46
c
o
n
s
t
a
n
t
s
<
−

S
e
t
{
}
,

47
a
x
io
m
s
<
−

S
e
t
{
}
,

48
e
x
te
n
d
s
<
−

S
e
t
{
}
,

49
e
x
te
n
d
e
d

<
−

S
e
t
{
}
)
,

50 51
c
tx
V
ie
w

:
SI
M
P
L
E
E
V
E
N
T
B
!
C
o
n
te
x
tV

ie
w
(

APPENDIX D. ATL TRANSFORMATION : KAOS2EVENTB.ATL 58

52
se
e
n
C
o
n
te
x
t
<
−

c
tx

,
53

se
e
in
g
M
a
c
h
in
e
<
−

m
a
c
h
in
e
)
,

54 55
p
r
j

:
SI
M
P
L
E
E
V
E
N
T
B
!
P
r
o
je
c
t

(
56

id
<
−

'E
v
e
n
tB

P
rj
'
,

57
n
a
m
e
<
−

'G
e
n
e
ra
te
d

E
v
en

t−
B

p
r
o
je
c
t
'
,

58
e
le
m
e
n
ts

<
−

S
e
t
{
m
a
c
h
in
e
,
c
tx

,d
ec
o
m
p
o
,
c
tx
V
ie
w
}
,

59
t
r
a
c
e
s
<
−

S
e
t
{
}

60
)
,

61 62
d
ec
o
m
p
o

:
SI
M
P
L
E
E
V
E
N
T
B
!
D
e
c
o
m
p
o
si
ti
o
n
L
in
k

(
63

id
<
−

'
In

it
ia
lD

e
c
o
m
p
o
s
it
io
n
'

,
64

n
a
m
e
<
−

'
In

it
ia
lD

e
c
o
m
p
o
s
it
io
n
'

,
65

co
m
m
en
t
<
−

'D
e
c
o
m
p
o
si
ti
o
n

o
f

th
e

in
it
ia

l
m
a
c
h
in
e
'
,

66
d
e
c
o
m
p
o
se
d
M
a
c
h
in
e
<
−

m
a
c
h
in
e
,

67
d
e
c
o
m
p
o
si
n
g
M
a
c
h
in
e
s
<
−

S
e
t
{
}

68
)

69
d
o

{
70

th
is
M
o
d
u
le
.
p
r
o
je
c
t
<
−

p
r
j
;

71
th

is
M
o
d
u
le
.
g
e
n
e
ra
lM

a
c
h
in
e
<
−

m
a
c
h
in
e
;

72
th

is
M
o
d
u
le
.
d
a
ta
C
o
n
te
x
t
<
−

c
tx

;
73

th
is
M
o
d
u
le
.
in

it
ia
lD

e
c
o
m
p
o
s
it
io
n

<
−

d
ec
o
m
p
o
;

74
}

75
}

76 77
−−

R
u
le
s

c
o
n
c
e
r
n
in
g

th
e
K
A
O
S

O
b
je
c
t

M
o
d
e
l
:

APPENDIX D. ATL TRANSFORMATION : KAOS2EVENTB.ATL 59

78
−−
−−
−−
−−
−−
−−
−−
−−
−−
−−
−−
−−
−−
−−
−−
−−
−−
−−
−−
−−
−−

79 80
−−

E
n
ti
ty

is
tr
a
n
s
la
te

d
to

a
s
e
t

in
th
e

i
n
i
t
i
a
l

c
o
n
te
x
t
,

a
v
a
r
ia

b
le

81
−−

in
th
e

i
n
i
t
i
a
l

m
a
c
h
in
e
,
a
n

u
p
d
a
t

e
n
v
e
n
t

in
th
e

i
n
i
t
i
a
l

m
a
c
h
in
e

a
n
d

82
−−

a
n

in
v
a
r
ia

n
t

in
th
e

i
n
i
t
i
a
l

m
a
c
h
in
e
.

83
−−

T
h
e

a
t
t
r
ib

u
t
e
s

o
f

th
e

e
n
ti
ty

a
r
e

p
r
o
c
e
s
s
e
d

b
y

th
is

r
u
le

to
o

b
y

c
a
ll
in

g
84
−−

th
e

c
r
e
a
te
A
tt
r
ib
u
te
R
u
le

la
z
y

r
u
le

.
85

r
u
le

E
n
ti
ty

R
u
le

{
86

fr
o
m

87
e
n
t
it
y

:
K
A
O
S
!
E
n
ti
ty

88
to

89
s
e
t

:
SI
M
P
L
E
E
V
E
N
T
B
!
C
a
r
r
ie
r
S
e
t
(

90
id

<
−

'O
b
jM

o
d
el
_
'+

e
n
t
it
y
.n
a
m
e+

'_
SE
T
'
,

91
n
a
m
e
<
−

e
n
t
it
y
.n
a
m
e
.
r
e
p
la
c
e
A
ll
(
'

'
,
'_

')
.
to
U
p
p
e
r
(
)+

'_
SE
T
'
,

92
co
m
m
en
t<
−

'D
e
ri
v
e
d

fr
o
m

E
n
ti
ty

'+
e
n
t
it
y
.n
a
m
e+

'
in

K
A
O
S

O
b
je
c
t

M
o
d
el

.
'
,

93
e
x
p
r
e
s
s
io
n

<
−

e
n
t
it
y
.n
a
m
e
.
r
e
p
la
c
e
A
ll
(
'

'
,
'_

')
.
to
U
p
p
e
r
(
)+

'_
SE
T
'
,

94
c
o
n
te
x
t
<
−

s
e
lf

.
d
a
ta
C
o
n
te
x
t
,

95
d
e
ri
v
e
d
F
ro
m
E
n
ti
ty

<
−

li
n
k
)
,

96 97
v
a
r
ia
b
le

:
SI
M
P
L
E
E
V
E
N
T
B
!
V
a
r
ia
b
le
(

98
id

<
−

'O
b
jM

o
d
el
_
'+

e
n
t
it
y
.n
a
m
e+

'_
V
A
R
IA
B
L
E
'
,

99
n
a
m
e
<
−

e
n
t
it
y
.n
a
m
e
.
r
e
p
la
c
e
A
ll
(
'

'
,
'_

')
.
to
U
p
p
e
r
(
)
,

10
0

co
m
m
en
t<
−

'D
e
ri
v
e
d

fr
o
m

E
n
ti
ty

'+
e
n
t
it
y
.n
a
m
e+

'
in

K
A
O
S

O
b
je
c
t

M
o
d
el

.
'
,

10
1

e
x
p
r
e
s
s
io
n

<
−

e
n
t
it
y
.n
a
m
e
.
r
e
p
la
c
e
A
ll
(
'

'
,
'_

')
.
to
U
p
p
e
r
(
)
,

APPENDIX D. ATL TRANSFORMATION : KAOS2EVENTB.ATL 60

10
2

m
a
c
h
in
e
<
−

s
e
lf

.
g
e
n
e
ra
lM

a
c
h
in
e
,

10
3

d
e
ri
v
e
d
F
ro
m
E
n
ti
ty

<
−

li
n
k
)
,

10
4

10
5

in
v
a
r
ia
n
t

:
SI
M
P
L
E
E
V
E
N
T
B
!
In

v
a
r
ia
n
t
(

10
6

id
<
−

'O
b
jM

o
d
el
_
'+

e
n
t
it
y
.n
a
m
e+

'_
IN
V
A
R
IA
N
T
'
,

10
7

n
a
m
e
<
−

e
n
t
it
y
.n
a
m
e
.
r
e
p
la
c
e
A
ll
(
'

'
,
'_

')
+
'_

T
y
p
e
'
,

10
8

co
m
m
en
t<
−

'D
e
ri
v
e
d

fr
o
m

E
n
ti
ty

'+
e
n
t
it
y
.n
a
m
e+

'
in

K
A
O
S

O
b
je
c
t

M
o
d
el

.
'
,

10
9

e
x
p
r
e
s
s
io
n

<
−

e
n
t
it
y
.n
a
m
e
.
r
e
p
la
c
e
A
ll
(
'

'
,
'_

')
.
to
U
p
p
e
r
(
)+

11
0

'
:
P
O
W
(
'+

e
n
t
it
y
.n
a
m
e
.
r
e
p
la
c
e
A
ll
(
'

'
,
'_

')
.
to
U
p
p
e
r
(
)+

'_
SE
T
'+

')
'
,

11
1

m
a
c
h
in
e
<
−

s
e
lf

.
g
e
n
e
ra
lM

a
c
h
in
e
,

11
2

d
e
ri
v
e
d
F
ro
m
E
n
ti
ty

<
−

li
n
k
)
,

11
3

11
4

li
n
k

:
SI
M
P
L
E
E
V
E
N
T
B
!
E
n
t
it
y
O
b
je
c
t
D
e
r
iv
a
t
io
n

(
11
5

e
n
t
it
y
I
d

<
−

e
n
t
it
y
.
id

,
11
6

e
n
ti
ty
N
a
m
e
<
−

e
n
t
it
y
.n
a
m
e
,

11
7

d
e
r
iv
e
d
V
a
r
ia
b
le

<
−

v
a
r
ia
b
le

,
11
8

d
e
r
iv
e
d
In

v
a
r
ia
n
t
<
−

in
v
a
r
ia
n
t
,

11
9

d
e
ri
v
e
d
E
v
e
n
t
<
−

e
v
t
,

12
0

d
e
r
iv
e
d
S
e
t
<
−

s
e
t
)
,

12
1

12
2

e
v
t

:
SI
M
P
L
E
E
V
E
N
T
B
!
M
a
c
h
in
e
E
v
e
n
t
(

12
3

id
<
−

'O
b
jM

o
d
el
_
'+

e
n
t
it
y
.n
a
m
e+

'_
U
P
D
A
T
E
'
,

12
4

n
a
m
e
<
−

e
n
t
it
y
.n
a
m
e
.
r
e
p
la
c
e
A
ll
(
'

'
,
'_

')
+
'_

u
p
d
a
te

'
,

12
5

co
m
m
en
t<
−

'D
e
ri
v
e
d

fr
o
m

E
n
ti
ty

'+
e
n
t
it
y
.n
a
m
e+

'
in

K
A
O
S

O
b
je
c
t

M
o
d
el

APPENDIX D. ATL TRANSFORMATION : KAOS2EVENTB.ATL 61

.
'
,

12
6

e
x
p
r
e
s
s
io
n

<
−

e
n
t
it
y
.n
a
m
e
.
r
e
p
la
c
e
A
ll
(
'

'
,
'_

')
+
'_

u
p
d
a
te

'
,

12
7

p
a
ra
m
e
te
rs

<
−

S
e
t
{
}
,

12
8

g
u
a
rd

s
<
−

S
e
t
{
}
,

12
9

w
it
n
e
s
e
s
<
−

S
e
t
{
}
,

13
0

a
c
t
io
n
s
<
−

S
e
t
{
}
,

13
1

r
e
fi
n
e
d
B
y
<
−

S
e
t
{
}
,

13
2

r
e
fi
n
e
s
<
−

S
e
t
{
}
,

13
3

is
I
n
t
e
r
n
a
l
<
−

fa
ls
e
,

13
4

m
a
c
h
in
e
<
−

s
e
lf

.
g
e
n
e
ra
lM

a
c
h
in
e
,

13
5

d
e
ri
v
e
d
F
ro
m
E
n
ti
ty

O
b
je
c
t
<
−

li
n
k
)

13
6

13
7

d
o
{

13
8

s
e
lf

.
d
a
ta
C
o
n
te
x
t
.
s
e
t
s
<
−

s
e
lf

.
d
a
ta
C
o
n
te
x
t
.
s
e
t
s
.
in

c
lu

d
in

g
(
s
e
t
)
;

13
9

s
e
lf

.
g
e
n
e
ra
lM

a
c
h
in
e
.
v
a
r
ia
b
le
s
<
−

s
e
lf

.
g
e
n
e
ra
lM

a
c
h
in
e
.
v
a
r
ia
b
le
s
.
in

c
lu

d
in

g
(

v
a
r
ia
b
le

)
;

14
0

s
e
lf

.
g
e
n
e
ra
lM

a
c
h
in
e
.
in

v
a
r
ia
n
t
s
<
−

s
e
lf

.
g
e
n
e
ra
lM

a
c
h
in
e
.
in

v
a
r
ia
n
t
s
.
in

c
lu

d
in

g
(

in
v
a
r
ia
n
t
)
;

14
1

s
e
lf

.
g
e
n
e
ra
lM

a
c
h
in
e
.
e
v
e
n
t
s
<
−

s
e
lf

.
g
e
n
e
ra
lM

a
c
h
in
e
.
e
v
e
n
t
s
.
in

c
lu

d
in

g
(
e
v
t
)
;

14
2

s
e
lf

.
p
r
o
je
c
t
.
t
r
a
c
e
s
<
−

s
e
lf

.
p
r
o
je
c
t
.
t
r
a
c
e
s
.
in

c
lu

d
in

g
(
li
n
k
)
;

14
3
−−

s
e
lf
.
p
r
o
je
c
t
.
e
le
m
e
n
ts

<
−

s
e
lf
.
p
r
o
je
c
t
.
e
le
m
e
n
ts

.
in

c
lu
d
in

g
(
s
e
t
)
;

14
4
−−

s
e
lf
.
p
r
o
je
c
t
.
e
le
m
e
n
ts

<
−

s
e
lf
.
p
r
o
je
c
t
.
e
le
m
e
n
ts

.
in

c
lu
d
in

g
(
v
a
r
ia

b
le

)
;

14
5
−−

s
e
lf
.
p
r
o
je
c
t
.
e
le
m
e
n
ts

<
−

s
e
lf
.
p
r
o
je
c
t
.
e
le
m
e
n
ts

.
in

c
lu
d
in

g
(
in

v
a
r
ia

n
t
)
;

14
6
−−

s
e
lf
.
p
r
o
je
c
t
.
e
le
m
e
n
ts

<
−

s
e
lf
.
p
r
o
je
c
t
.
e
le
m
e
n
ts

.
in

c
lu
d
in

g
(
e
v
t
)
;

14
7

fo
r
(
a
t
t
r
ib

u
t
e

in
e
n
t
it
y
.
a
t
t
r
ib

u
t
e
s
)
{

14
8

th
is
M
o
d
u
le
.
c
r
e
a
t
e
A
t
t
r
ib

u
t
e
(
a
t
t
r
ib
u
t
e
,
e
n
t
it
y
)
;

APPENDIX D. ATL TRANSFORMATION : KAOS2EVENTB.ATL 62

14
9

}
15
0

}
15
1

}
15
2

15
3
−−

L
a
zy

r
u
le

c
a
ll
e
d

b
y

E
n
ti
ty
R
u
le

to
c
r
e
a
te

a
ll

th
e

A
tt
r
ib
u
te
s

o
f
a
n

E
n
ti
ty

.
15
4

r
u
le

c
r
e
a
t
e
A
t
t
r
ib

u
t
e
(
a
t
t
r
ib

u
t
e

:
K
A
O
S
!
A
t
t
r
ib
u
t
e
,

e
n
t
it
y

:
K
A
O
S
!
E
n
ti
ty

)
{

15
5

to
15
6

v
a
r
ia
b
le

:
SI
M
P
L
E
E
V
E
N
T
B
!
V
a
r
ia
b
le

(
15
7

id
<
−

a
t
t
r
ib

u
t
e
.n
a
m
e
.
r
e
p
la
c
e
A
ll
(
'

'
,
'_

')
,

15
8

n
a
m
e
<
−

a
t
t
r
ib

u
t
e
.n
a
m
e
.
r
e
p
la
c
e
A
ll
(
'

'
,
'_

')
,

15
9

co
m
m
en
t
<
−

'D
e
ri
v
e
d

fr
o
m

A
t
t
r
ib
u
t
e

'+
a
t
t
r
ib

u
t
e
.n
a
m
e+

16
0

'
in

K
A
O
S

O
b
je
c
t

M
o
d
el
.
'+

16
1

'
−>

'+
a
t
t
r
ib

u
t
e
.d
o
m
a
in

,
16
2

e
x
p
r
e
s
s
io
n

<
−

a
t
t
r
ib

u
t
e
.n
a
m
e
.
r
e
p
la
c
e
A
ll
(
'

'
,
'_

')
,

16
3

d
e
ri
v
e
d
F
ro
m
A
tt
ri
b
u
te

<
−

li
n
k

16
4

)
,

16
5

16
6

in
v
a
r
ia
n
t

:
SI
M
P
L
E
E
V
E
N
T
B
!
In

v
a
r
ia
n
t
(

16
7

id
<
−

a
t
t
r
ib

u
t
e
.n
a
m
e
.
r
e
p
la
c
e
A
ll
(
'

'
,
'_

')
,

16
8

n
a
m
e
<
−

a
t
t
r
ib

u
t
e
.n
a
m
e
.
r
e
p
la
c
e
A
ll
(
'

'
,
'_

')
,

16
9

co
m
m
en
t
<
−

'D
e
ri
v
e
d

fr
o
m

A
t
t
r
ib
u
t
e

'+
a
t
t
r
ib

u
t
e
.n
a
m
e+

17
0

'
in

K
A
O
S

O
b
je
c
t

M
o
d
el

:
'+

17
1

e
n
t
it
y
.n
a
m
e
.
r
e
p
la
c
e
A
ll
(
'

'
,
'_

')
.
to
U
p
p
e
r
(
)+

17
2

'
−>

'+
a
t
t
r
ib

u
t
e
.d
o
m
a
in

,
17
3

e
x
p
r
e
s
s
io
n

<
−

a
t
t
r
ib

u
t
e
.n
a
m
e
.
r
e
p
la
c
e
A
ll
(
'

'
,
'_

')
+
'

:
'+

17
4

e
n
t
it
y
.n
a
m
e
.
r
e
p
la
c
e
A
ll
(
'

'
,
'_

')
.
to
U
p
p
e
r
(
)

APPENDIX D. ATL TRANSFORMATION : KAOS2EVENTB.ATL 63

+
17
5

'
−−

>
'+

a
t
t
r
ib

u
t
e
.d
o
m
a
in

,
17
6

d
e
ri
v
e
d
F
ro
m
A
tt
ri
b
u
te

<
−

li
n
k

17
7

)
,

17
8

17
9

e
v
t

:
SI
M
P
L
E
E
V
E
N
T
B
!
M
a
c
h
in
e
E
v
e
n
t
(

18
0

id
<
−

'O
b
jM

o
d
el
_
'+

e
n
t
it
y
.n
a
m
e+

'
.
'+

a
t
t
r
ib

u
t
e
.n
a
m
e+

'_
U
P
D
A
T
E
'
,

18
1

n
a
m
e
<
−

(
e
n
t
it
y
.n
a
m
e+

'
.
'+

a
t
t
r
ib

u
t
e
.n
a
m
e
)
.
r
e
p
la
c
e
A
ll
(
'

'
,
'_

')
+
'

_
u
p
d
a
te

'
,

18
2

co
m
m
en
t<
−

'D
e
ri
v
e
d

fr
o
m

E
n
ti
ty

'+
e
n
t
it
y
.n
a
m
e+

'
.
'+

a
t
t
r
ib

u
t
e
.n
a
m
e+

18
3

'
in

K
A
O
S

O
b
je
c
t

M
o
d
el
.
'
,

18
4

e
x
p
r
e
s
s
io
n

<
−

e
n
t
it
y
.n
a
m
e
.
r
e
p
la
c
e
A
ll
(
'

'
,
'_

')
+
'_

u
p
d
a
te

'
,

18
5

p
a
ra
m
e
te
rs

<
−

S
e
t
{
}
,

18
6

g
u
a
rd

s
<
−

S
e
t
{
}
,

18
7

w
it
n
e
s
e
s
<
−

S
e
t
{
}
,

18
8

a
c
t
io
n
s
<
−

S
e
t
{
}
,

18
9

r
e
fi
n
e
d
B
y
<
−

S
e
t
{
}
,

19
0

r
e
fi
n
e
s
<
−

S
e
t
{
}
,

19
1

is
I
n
t
e
r
n
a
l
<
−

fa
ls
e
,

19
2

m
a
c
h
in
e
<
−

s
e
lf

.
g
e
n
e
ra
lM

a
c
h
in
e
,

19
3

d
e
ri
v
e
d
F
ro
m
E
n
ti
ty

O
b
je
c
t
<
−

li
n
k
)
,

19
4

19
5

li
n
k

:
SI
M
P
L
E
E
V
E
N
T
B
!
A
t
t
r
ib
u
t
e
D
e
r
iv
a
t
io
n
(

19
6

d
e
r
iv
e
d
V
a
r
ia
b
le

<
−

v
a
r
ia
b
le

,
19
7

d
e
r
iv
e
d
In

v
a
r
ia
n
t
<
−

in
v
a
r
ia
n
t
,

19
8

d
e
ri
v
e
d
U
p
d
a
te
E
v
e
n
t
<
−

e
v
t
,

APPENDIX D. ATL TRANSFORMATION : KAOS2EVENTB.ATL 64

19
9

a
t
t
r
ib

u
t
e
I
d

<
−

e
n
t
it
y
.
id
+
'
.
'+

a
t
t
r
ib

u
t
e
.n
a
m
e
,

20
0

a
tt
ri
b
u
te
N
a
m
e
<
−

a
t
t
r
ib

u
t
e
.n
a
m
e
,

20
1

a
tt
ri
b
u
te
E
n
ti
ty

N
a
m
e
<
−

e
n
t
it
y
.n
a
m
e

20
2

)
20
3

d
o
{

20
4

s
e
lf

.
g
e
n
e
ra
lM

a
c
h
in
e
.
v
a
r
ia
b
le
s
<
−

s
e
lf

.
g
e
n
e
ra
lM

a
c
h
in
e
.
v
a
r
ia
b
le
s
.
in

c
lu

d
in

g
(

v
a
r
ia
b
le

)
;

20
5

s
e
lf

.
g
e
n
e
ra
lM

a
c
h
in
e
.
in

v
a
r
ia
n
t
s
<
−

s
e
lf

.
g
e
n
e
ra
lM

a
c
h
in
e
.
in

v
a
r
ia
n
t
s
.
in

c
lu

d
in

g
(

in
v
a
r
ia
n
t
)
;

20
6

s
e
lf

.
g
e
n
e
ra
lM

a
c
h
in
e
.
e
v
e
n
t
s
<
−

s
e
lf

.
g
e
n
e
ra
lM

a
c
h
in
e
.
e
v
e
n
t
s
.
in

c
lu

d
in

g
(
e
v
t
)
;

20
7

s
e
lf

.
p
r
o
je
c
t
.
t
r
a
c
e
s
<
−

s
e
lf

.
p
r
o
je
c
t
.
t
r
a
c
e
s
.
in

c
lu

d
in

g
(
li
n
k
)
;

20
8
−−

s
e
lf
.
p
r
o
je
c
t
.
e
le
m
e
n
ts

<
−

s
e
lf
.
p
r
o
je
c
t
.
e
le
m
e
n
ts

.
in

c
lu
d
in

g
(
v
a
r
ia

b
le

)
;

20
9
−−

s
e
lf
.
p
r
o
je
c
t
.
e
le
m
e
n
ts

<
−

s
e
lf
.
p
r
o
je
c
t
.
e
le
m
e
n
ts

.
in

c
lu
d
in

g
(
in

v
a
r
ia

n
t
)
;

21
0
−−

s
e
lf
.
p
r
o
je
c
t
.
e
le
m
e
n
ts

<
−

s
e
lf
.
p
r
o
je
c
t
.
e
le
m
e
n
ts

.
in

c
lu
d
in

g
(
e
v
t
)
;

21
1

}
21
2

}
21
3

21
4
−−

A
tt
r
ib
u
te

d
o
m
a
in

in
tr
a
n
s
la
te

d
in

a
s
e
t

a
n
d

a
n

a
x
io
m

in
th
e

21
5
−−

i
n
i
t
i
a
l

c
o
n
te
x
t
.

21
6
−−

r
u
le

A
tt
r
ib
u
te
D
o
m
a
in
R
u
le

{
21
7
−−

A
tt
r
ib
u
te
D
o
m
a
in

n
o
t

im
p
le
m
e
n
te
d

in
th
e

a
c
tu

a
l
K
A
O
S
M
M

21
8
−−

}
21
9

22
0
−−

A
d
ir
e
c
te
d

a
s
s
o
c
ia

ti
o
n

is
tr
a
n
s
la
te

d
in

to
a

v
a
r
ia

b
le

,
a
n

22
1
−−

in
v
a
r
ia

n
t

a
n
d

a
n

u
p
d
a
te

e
v
e
n
t

in
th
e

i
n
i
t
i
a
l

m
a
c
h
in
e
.

22
2
−−

r
u
le

D
ir
e
c
te
d
A
s
s
o
c
ia
ti
o
n
R
u
le
{

APPENDIX D. ATL TRANSFORMATION : KAOS2EVENTB.ATL 65

22
3
−−

D
ir
e
c
te
d
A
s
s
o
c
ia
ti
o
n

n
o
t

im
p
le
m
e
n
te
d

in
th
e

a
c
tu

a
l
K
A
O
S
M
M

22
4
−−

}
22
5

22
6
−−

A
n

u
n
d
ir
e
c
te
d

b
in

a
r
y

a
s
s
o
c
ia

ti
o
n

is
tr
a
n
s
la
te

d
in

to
2

v
a
r
ia

b
le
s

22
7
−−

a
n
d

2
in

v
a
r
ia

n
ts

c
o
r
r
e
s
p
o
n
d
in

g
to

2
d
ir
e
c
te
d

a
s
s
o
c
ia

ti
o
n
s

22
8
−−

a
n
d

o
n
e

in
v
a
r
ia

n
t

c
o
r
r
e
s
p
o
n
d
in

g
to

th
e

li
n
k

b
e
tw

e
e
n

th
e

tw
o

22
9
−−

d
ir
e
c
te
d

a
s
s
o
c
ia

ti
o
n
s

a
n
d

a
n

u
p
d
a
te

e
v
e
n
t

in
th
e

i
n
i
t
i
a
l

m
a
c
h
in
e
.

23
0

r
u
le

B
in
a
r
y
U
n
d
ir
e
c
t
e
d
A
s
s
o
c
ia
t
io
n
R
u
le
{

23
1

fr
o
m

a
s
s
o
c
ia
t
io
n

:
K
A
O
S
!
R
e
la
t
io
n
s
h
ip

(
23
2

−−
P
r
o
c
e
s
s

o
n
ly

b
in

a
r
y

a
s
s
o
c
ia

ti
o
n
s

23
3

a
s
s
o
c
ia
t
io
n
.
li
n
k
s
−>

s
iz
e
(
)
=

2
23
4

)
23
5

u
s
in
g

{
23
6

fi
r
s
t
O
b
j

:
K
A
O
S
!
L
in
k

=
23
7

a
s
s
o
c
ia
t
io
n
.
li
n
k
s
−>

a
sS

e
q
u
e
n
c
e
(
)−
>
f
ir
s
t
(
)
;

23
8

se
c
o
n
d
O
b
j

:
K
A
O
S
!
L
in
k

=
23
9

a
s
s
o
c
ia
t
io
n
.
li
n
k
s
−>

s
e
le
c
t
(

fi
lt
e
r
e
d
O
u
t

|
fi
lt
e
r
e
d
O
u
t
<
>

fi
r
s
t
O
b
j

)
24
0

−>
a
sS

e
q
u
e
n
c
e
(
)−
>
f
ir
s
t
(
)
;

24
1

A
:

S
t
r
in
g

=
fi
r
s
t
O
b
j
.
li
n
k
s
T
o
.n
a
m
e
.
r
e
p
la
c
e
A
ll
(
'

'
,
'_

')
.
to
U
p
p
e
r
(
)
;

24
2

B
:

S
t
r
in
g

=
se
c
o
n
d
O
b
j
.
li
n
k
s
T
o
.n
a
m
e
.
r
e
p
la
c
e
A
ll
(
'

'
,
'_

')
.
to
U
p
p
e
r
(
)
;

24
3

A
to
B

:
S
t
r
in
g

=
fi
r
s
t
O
b
j
.
li
n
k
s
T
o
.n
a
m
e
.
r
e
p
la
c
e
A
ll
(
'

'
,
'_

')
+

24
4

'_
T
O
_
'+
se
c
o
n
d
O
b
j
.
li
n
k
s
T
o
.n
a
m
e
.
r
e
p
la
c
e
A
ll
(
'

'
,
'_

')
;

24
5

B
to
A

:
S
t
r
in
g

=
se
c
o
n
d
O
b
j
.
li
n
k
s
T
o
.n
a
m
e
.
r
e
p
la
c
e
A
ll
(
'

'
,
'_

')
+

24
6

'_
T
O
_
'+

fi
r
s
t
O
b
j
.
li
n
k
s
T
o
.n
a
m
e
.
r
e
p
la
c
e
A
ll
(
'

'
,
'_

')
;

APPENDIX D. ATL TRANSFORMATION : KAOS2EVENTB.ATL 66

24
7

24
8

}
24
9

to
25
0

−−
li
n
k
in

g
2

d
ir
e
c
te
d

a
s
s
o
c
ia

ti
o
n
s

25
1

in
v
a
r
ia
n
t

:
SI
M
P
L
E
E
V
E
N
T
B
!
In

v
a
r
ia
n
t
(

25
2

id
<
−

a
s
s
o
c
ia
t
io
n
.n
a
m
e
.
r
e
p
la
c
e
A
ll
(
'

'
,
'_

')
+
'_

u
n
d
ir
_
a
ss
o
c
it
io
n
_
in
v
'
,

25
3

n
a
m
e
<
−

a
s
s
o
c
ia
t
io
n
.n
a
m
e
.
r
e
p
la
c
e
A
ll
(
'

'
,
'_

')
+
'_

u
n
d
ir
_
a
ss
o
c
it
io
n
_
in
v

'
,

25
4

co
m
m
en
t
<
−

'D
e
ri
v
e
d

fr
o
m

u
n
d
ir
e
c
t
e
d

a
s
s
o
c
ia
t
io
n

'+
a
s
s
o
c
ia
t
io
n
.n
a
m
e+

25
5

'
in

K
A
O
S

O
b
je
c
t

M
o
d
el
.
'
,

25
6

e
x
p
r
e
s
s
io
n

<
−

'
(
!
a
.
'+
A
+
'
=
>
(

!
b
.
'+
B
+
'
=
>

(
'+

25
7

A
to
B
+
'(
a
)
=

b
<
=
>

'+
B
to
A
+
'(
b
)
=

a
'

25
8

+
'
)

)
)
'
,

25
9

d
e
r
iv
e
d
F
r
o
m
U
n
d
ir
e
c
t
e
d
A
s
s
o
c
ia
t
io
n

<
−

t
r
a
c
e

26
0

)
,

26
1

26
2

−−
u
p
d
a
te

e
v
e
n
t

26
3

e
v
t

:
SI
M
P
L
E
E
V
E
N
T
B
!
M
a
c
h
in
e
E
v
e
n
t
(

26
4

id
<
−

'O
b
jM

o
d
el
_
'+

a
s
s
o
c
ia
t
io
n
.n
a
m
e+

'_
U
P
D
A
T
E
'
,

26
5

n
a
m
e
<
−

(
a
s
s
o
c
ia
t
io
n
.n
a
m
e
)
.
r
e
p
la
c
e
A
ll
(
'

'
,
'_

')
+
'_

u
p
d
a
te

'
,

26
6

co
m
m
en
t<
−

'D
e
ri
v
e
d

fr
o
m

u
n
d
ir
e
c
t
e
d

a
s
s
o
c
ia
t
io
n

'+
a
s
s
o
c
ia
t
io
n
.n
a
m
e+

26
7

'
in

K
A
O
S

O
b
je
c
t

M
o
d
el
.
'
,

26
8

e
x
p
r
e
s
s
io
n

<
−

a
s
s
o
c
ia
t
io
n
.n
a
m
e
.
r
e
p
la
c
e
A
ll
(
'

'
,
'_

')
+
'_

u
p
d
a
te

'
,

26
9

p
a
ra
m
e
te
rs

<
−

S
e
t
{
}
,

27
0

g
u
a
rd

s
<
−

S
e
t
{
}
,

27
1

w
it
n
e
s
e
s
<
−

S
e
t
{
}
,

APPENDIX D. ATL TRANSFORMATION : KAOS2EVENTB.ATL 67

27
2

a
c
t
io
n
s
<
−

S
e
t
{
}
,

27
3

r
e
fi
n
e
d
B
y
<
−

S
e
t
{
}
,

27
4

r
e
fi
n
e
s
<
−

S
e
t
{
}
,

27
5

is
I
n
t
e
r
n
a
l
<
−

fa
ls
e
,

27
6

m
a
c
h
in
e
<
−

s
e
lf

.
g
e
n
e
ra
lM

a
c
h
in
e
,

27
7

d
e
ri
v
e
d
F
ro
m
U
n
d
ir
A
ss
o
c
<
−

t
r
a
c
e
)
,

27
8

27
9

−−
li
n
k

28
0

t
r
a
c
e

:
SI
M
P
L
E
E
V
E
N
T
B
!
U
n
d
ir
e
c
t
e
d
A
s
s
o
c
ia
t
io
n
D
e
r
iv
a
t
io
n
(

28
1

a
s
s
o
c
ia
t
io
n
I
d

<
−

a
s
s
o
c
ia
t
io
n
.
id

,
28
2

a
ss
o
c
ia
ti
o
n
N
a
m
e
<
−

a
s
s
o
c
ia
t
io
n
.n
a
m
e
,

28
3

d
e
r
iv
e
d
In

v
a
r
ia
n
t
<
−

S
e
t
{
in

v
a
r
ia
n
t
}
,

28
4

d
e
ri
v
e
d
E
v
e
n
t
<
−

e
v
t
,

28
5

d
e
r
iv
e
d
V
a
r
ia
b
le
s
<
−

S
e
t
{
}

28
6

)
28
7

28
8

d
o
{

28
9

th
is
M
o
d
u
le
.
c
r
e
a
t
e
D
ir
e
c
t
e
d
A
s
s
o
c
ia
t
io
n
F
r
o
m
U
n
d
ir
e
c
t
e
d
(
fi
r
s
t
O
b
j
,
fi
r
s
t
O
b
j
.

li
n
k
sT

o
,

29
0

se
c
o
n
d
O
b
j
.
li
n
k
sT

o
,
t
r
a
c
e
,
a
s
s
o
c
ia
t
io
n
)
;

29
1

th
is
M
o
d
u
le
.
c
r
e
a
t
e
D
ir
e
c
t
e
d
A
s
s
o
c
ia
t
io
n
F
r
o
m
U
n
d
ir
e
c
t
e
d
(
se
c
o
n
d
O
b
j
,
se
c
o
n
d
O
b
j
.

li
n
k
sT

o
,

29
2

fi
r
s
t
O
b
j
.
li
n
k
sT

o
,
t
r
a
c
e
,
a
s
s
o
c
ia
t
io
n
)
;

29
3

s
e
lf

.
g
e
n
e
ra
lM

a
c
h
in
e
.
in

v
a
r
ia
n
t
s
<
−

s
e
lf

.
g
e
n
e
ra
lM

a
c
h
in
e
.
in

v
a
r
ia
n
t
s
.
in

c
lu

d
in

g
(

in
v
a
r
ia
n
t
)
;

29
4

s
e
lf

.
g
e
n
e
ra
lM

a
c
h
in
e
.
e
v
e
n
t
s
<
−

s
e
lf

.
g
e
n
e
ra
lM

a
c
h
in
e
.
e
v
e
n
t
s
.
in

c
lu

d
in

g
(
e
v
t
)
;

APPENDIX D. ATL TRANSFORMATION : KAOS2EVENTB.ATL 68

29
5

s
e
lf

.
p
r
o
je
c
t
.
t
r
a
c
e
s
<
−

s
e
lf

.
p
r
o
je
c
t
.
t
r
a
c
e
s
.
in

c
lu

d
in

g
(
t
r
a
c
e
)
;

29
6
−−

s
e
lf
.
p
r
o
je
c
t
.
e
le
m
e
n
ts

<
−

s
e
lf
.
p
r
o
je
c
t
.
e
le
m
e
n
ts

.
in

c
lu
d
in

g
(
in

v
a
r
ia

n
t
)
;

29
7
−−

s
e
lf
.
p
r
o
je
c
t
.
e
le
m
e
n
ts

<
−

s
e
lf
.
p
r
o
je
c
t
.
e
le
m
e
n
ts

.
in

c
lu
d
in

g
(
e
v
t
)
;

29
8

}
29
9

}
30
0
−−

C
a
ll
e
d

b
y

B
in

a
r
y
U
n
d
ir
e
c
te
d
A
s
s
o
c
ia
ti
o
n
R
u
le

30
1

r
u
le

c
r
e
a
t
e
D
ir
e
c
t
e
d
A
s
s
o
c
ia
t
io
n
F
r
o
m
U
n
d
ir
e
c
t
e
d
(
li
n
k

:
K
A
O
S
!
L
in
k
,

30
2

s
o
u
r
c
e

:
K
A
O
S
!
A
b
st
ra
c
tO

b
je
c
t
,

30
3

d
e
s
t
in

a
t
io
n

:
K
A
O
S
!

A
b
st
ra
c
tO

b
je
c
t
,

30
4

t
r
a
c
e

:
SI
M
P
L
E
E
V
E
N
T
B
!

U
n
d
ir
e
c
t
e
d
A
s
s
o
c
ia
t
io
n
D
e
r
iv
a
t
io
n

,
30
5

a
s
s
o
c
ia
t
io
n

:
K
A
O
S
!
R
e
la
t
io
n
s
h
ip

)
{

30
6

to
30
7

v
a
r
ia
b
le

:
SI
M
P
L
E
E
V
E
N
T
B
!
V
a
r
ia
b
le
(

30
8

id
<
−

li
n
k
.
e
n
ti
ty
N
a
m
e+

'_
u
n
d
ir
_
a
ss
o
c
it
io
n
_
'+

30
9

a
s
s
o
c
ia
t
io
n
.n
a
m
e
.
r
e
p
la
c
e
A
ll
(
'

'
,
'_

')
+
'_

v
a
r
'
,

31
0

n
a
m
e
<
−

li
n
k
.
e
n
ti
ty
N
a
m
e+

'_
u
n
d
ir
_
a
ss
o
c
it
io
n
_
'+

31
1

a
s
s
o
c
ia
t
io
n
.n
a
m
e
.
r
e
p
la
c
e
A
ll
(
'

'
,
'_

')
+
'_

v
a
r
'
,

31
2

co
m
m
en
t
<
−

'D
e
ri
v
e
d

fr
o
m

u
n
d
ir
e
c
t
e
d

a
s
s
o
c
ia
t
io
n

'+
a
s
s
o
c
ia
t
io
n
.n
a
m
e+

31
3

'
,

li
n
k

'+
li
n
k
.
e
n
ti
ty
N
a
m
e+

'
in

K
A
O
S

O
b
je
c
t

M
o
d
el
.

'
,

31
4

e
x
p
r
e
s
s
io
n

<
−

s
o
u
r
c
e
.n
a
m
e
.
r
e
p
la
c
e
A
ll
(
'

'
,
'_

')
+
'_
T
O
_
'+

31
5

d
e
s
t
in

a
t
io
n
.n
a
m
e
.
r
e
p
la
c
e
A
ll
(
'

'
,
'_

')
,

APPENDIX D. ATL TRANSFORMATION : KAOS2EVENTB.ATL 69

31
6

m
a
c
h
in
e
<
−

s
e
lf

.
g
e
n
e
ra
lM

a
c
h
in
e
,

31
7

d
e
r
iv
e
d
F
r
o
m
U
n
d
ir
e
c
t
e
d
A
s
s
o
c
ia
t
io
n

<
−

t
r
a
c
e

31
8

)
,

31
9

32
0

in
v
a
r
ia
n
t

:
SI
M
P
L
E
E
V
E
N
T
B
!
In

v
a
r
ia
n
t
(

32
1

id
<
−

li
n
k
.
e
n
ti
ty
N
a
m
e+

'_
u
n
d
ir
_
a
ss
o
c
it
io
n
_
'+

32
2

a
s
s
o
c
ia
t
io
n
.n
a
m
e
.
r
e
p
la
c
e
A
ll
(
'

'
,
'_

')
+
'_

in
v
'
,

32
3

n
a
m
e
<
−

li
n
k
.
e
n
ti
ty
N
a
m
e+

'_
u
n
d
ir
_
a
ss
o
c
it
io
n
_
'+

32
4

a
s
s
o
c
ia
t
io
n
.n
a
m
e
.
r
e
p
la
c
e
A
ll
(
'

'
,
'_

')
+
'_

in
v
'
,

32
5

co
m
m
en
t
<
−

'D
e
ri
v
e
d

fr
o
m

u
n
d
ir
e
c
t
e
d

a
s
s
o
c
ia
t
io
n

'+
a
s
s
o
c
ia
t
io
n
.n
a
m
e+

32
6

'
,

li
n
k

'+
li
n
k
.
e
n
ti
ty
N
a
m
e+

'
in

K
A
O
S

O
b
je
c
t

M
o
d
el
.

'
,

32
7

−−
C
o
u
ld

b
e

im
p
r
o
v
e
d

b
y

u
s
in

g
c
o
m
p
a
r
is
o
n
s

o
n

li
n
k
.
m
u
lt
ip

li
c
it
y

32
8

−−
(
ty
p
e
d

a
s

E
S
tr
in
g
)

32
9

e
x
p
r
e
s
s
io
n

<
−

'T
O

D
O
'
,

33
0

d
e
ri
v
e
d
F
ro
m
A
tt
ri
b
u
te

<
−

li
n
k

33
1

)
33
2

d
o
{

33
3

s
e
lf

.
g
e
n
e
ra
lM

a
c
h
in
e
.
v
a
r
ia
b
le
s
<
−

s
e
lf

.
g
e
n
e
ra
lM

a
c
h
in
e
.
v
a
r
ia
b
le
s
.
in

c
lu

d
in

g
(

v
a
r
ia
b
le

)
;

33
4

s
e
lf

.
g
e
n
e
ra
lM

a
c
h
in
e
.
in

v
a
r
ia
n
t
s
<
−

s
e
lf

.
g
e
n
e
ra
lM

a
c
h
in
e
.
in

v
a
r
ia
n
t
s
.
in

c
lu

d
in

g
(

in
v
a
r
ia
n
t
)
;

33
5
−−

s
e
lf
.
p
r
o
je
c
t
.
e
le
m
e
n
ts

<
−

s
e
lf
.
p
r
o
je
c
t
.
e
le
m
e
n
ts

.
in

c
lu
d
in

g
(
v
a
r
ia

b
le

)
;

33
6
−−

s
e
lf
.
p
r
o
je
c
t
.
e
le
m
e
n
ts

<
−

s
e
lf
.
p
r
o
je
c
t
.
e
le
m
e
n
ts

.
in

c
lu
d
in

g
(
in

v
a
r
ia

n
t
)
;

33
7

t
r
a
c
e
.
d
e
r
iv
e
d
In

v
a
r
ia
n
t
<
−

t
r
a
c
e
.
d
e
r
iv
e
d
In

v
a
r
ia
n
t
.
in

c
lu

d
in

g
(
in

v
a
r
ia
n
t
)
;

33
8

t
r
a
c
e
.
d
e
r
iv
e
d
V
a
r
ia
b
le
s
<
−

t
r
a
c
e
.
d
e
r
iv
e
d
V
a
r
ia
b
le
s
.
in

c
lu

d
in

g
(
v
a
r
ia
b
le

)
;

APPENDIX D. ATL TRANSFORMATION : KAOS2EVENTB.ATL 70

33
9

}
34
0

}
34
1

34
2
−−

A
N
−
A
ry

a
s
s
o
c
ia

ti
o
n

is
tr
a
n
s
fl
a
te

d
in

to
(
I
n
te
r
m
e
d
ia
te

e
n
ti
ty

p
a
r
t
)

34
3
−−

a
s
e
t

in
th
e

i
n
i
t
i
a
l

c
o
n
te
x
t
,

a
v
a
r
ia

b
le

in
th
e

i
n
i
t
i
a
l

m
a
c
h
in
e
,

34
4
−−

a
n

u
p
d
a
t

e
n
v
e
n
t

in
th
e

i
n
i
t
i
a
l

m
a
c
h
in
e
,
a
n

in
v
a
r
ia

n
t

in
th
e

34
5
−−

i
n
i
t
i
a
l

m
a
c
h
in
e
,

(
D
ir
e
c
te
d

a
s
s
o
c
ia

ti
o
n
s

p
a
r
t
)

n
v
a
r
ia

b
le
s

a
n
d

n
34
6
−−

in
v
a
r
ia

n
ts

in
th
e

i
n
i
t
i
a
l

m
a
c
h
in
e
.

34
7

r
u
le

N
A
ry

U
n
d
ir
e
c
te
d
A
ss
o
c
ia
ti
o
n
R
u
le
{

34
8

fr
o
m

a
s
s
o
c
ia
t
io
n

:
K
A
O
S
!
R
e
la
t
io
n
s
h
ip

(
34
9

−−
P
r
o
c
e
s
s

o
n
ly

b
in

a
r
y

a
s
s
o
c
ia

ti
o
n
s

35
0

a
s
s
o
c
ia
t
io
n
.
li
n
k
s
−>

s
iz
e
(
)
>

2
35
1

)
35
2

to
35
3

−−
in

te
r
m
e
d
ia
te

e
n
ti
ty

35
4

e
n
t
it
y
S
e
t

:
SI
M
P
L
E
E
V
E
N
T
B
!
C
a
r
r
ie
r
S
e
t
(

35
5

id
<
−

'O
b
jM

o
d
el
_
'+

a
s
s
o
c
ia
t
io
n
.n
a
m
e+

'_
SE
T
'
,

35
6

n
a
m
e
<
−

a
s
s
o
c
ia
t
io
n
.n
a
m
e
.
r
e
p
la
c
e
A
ll
(
'

'
,
'_

')
.
to
U
p
p
e
r
(
)+

'_
SE
T
'
,

35
7

co
m
m
en
t<
−

'D
e
ri
v
e
d

fr
o
m

N
−
A
ry

a
s
s
o
c
ia
t
io
n

'+
a
s
s
o
c
ia
t
io
n
.n
a
m
e+

35
8

'
in

K
A
O
S

O
b
je
c
t

M
o
d
el
.
'
,

35
9

e
x
p
r
e
s
s
io
n

<
−

a
s
s
o
c
ia
t
io
n
.n
a
m
e
.
r
e
p
la
c
e
A
ll
(
'

'
,
'_

')
.
to
U
p
p
e
r
(
)+

'_
SE
T
'

,
36
0

c
o
n
te
x
t
<
−

s
e
lf

.
d
a
ta
C
o
n
te
x
t
,

36
1

d
e
ri
v
e
d
F
ro
m
N
A
ry

A
ss
o
c
ia
ti
o
n

<
−

in
t
e
r
m
e
d
ia
t
e
E
n
t
it
y
)
,

36
2

36
3

e
n
t
it
y
V
a
r
ia
b
le

:
SI
M
P
L
E
E
V
E
N
T
B
!
V
a
r
ia
b
le
(

APPENDIX D. ATL TRANSFORMATION : KAOS2EVENTB.ATL 71

36
4

id
<
−

'O
b
jM

o
d
el
_
'+

a
s
s
o
c
ia
t
io
n
.n
a
m
e+

'_
V
A
R
IA
B
L
E
'
,

36
5

n
a
m
e
<
−

a
s
s
o
c
ia
t
io
n
.n
a
m
e
.
r
e
p
la
c
e
A
ll
(
'

'
,
'_

')
.
to
U
p
p
e
r
(
)
,

36
6

co
m
m
en
t<
−

'D
e
ri
v
e
d

fr
o
m

N
−
A
ry

a
s
s
o
c
ia
t
io
n

'+
a
s
s
o
c
ia
t
io
n
.n
a
m
e+

36
7

'
in

K
A
O
S

O
b
je
c
t

M
o
d
el
.
'
,

36
8

e
x
p
r
e
s
s
io
n

<
−

a
s
s
o
c
ia
t
io
n
.n
a
m
e
.
r
e
p
la
c
e
A
ll
(
'

'
,
'_

')
.
to
U
p
p
e
r
(
)
,

36
9

m
a
c
h
in
e
<
−

s
e
lf

.
g
e
n
e
ra
lM

a
c
h
in
e
,

37
0

d
e
ri
v
e
d
F
ro
m
N
A
ry

In
te
rm

e
d
ia
te
E
n
ti
ty

<
−

in
t
e
r
m
e
d
ia
t
e
E
n
t
it
y
)
,

37
1

37
2

e
n
t
it
y
I
n
v
a
r
ia
n
t

:
SI
M
P
L
E
E
V
E
N
T
B
!
In

v
a
r
ia
n
t
(

37
3

id
<
−

'O
b
jM

o
d
el
_
'+

a
s
s
o
c
ia
t
io
n
.n
a
m
e+

'_
IN
V
A
R
IA
N
T
'
,

37
4

n
a
m
e
<
−

a
s
s
o
c
ia
t
io
n
.n
a
m
e
.
r
e
p
la
c
e
A
ll
(
'

'
,
'_

')
+
'_

T
y
p
e
'
,

37
5

co
m
m
en
t<
−

'D
e
ri
v
e
d

fr
o
m

N
−
A
ry

a
s
s
o
c
ia
t
io
n

'+
a
s
s
o
c
ia
t
io
n
.n
a
m
e+

37
6

'
in

K
A
O
S

O
b
je
c
t

M
o
d
el
.
'
,

37
7

e
x
p
r
e
s
s
io
n

<
−

a
s
s
o
c
ia
t
io
n
.n
a
m
e
.
r
e
p
la
c
e
A
ll
(
'

'
,
'_

')
.
to
U
p
p
e
r
(
)+

37
8

'
:
P
O
W
(
'+

a
s
s
o
c
ia
t
io
n
.n
a
m
e
.
r
e
p
la
c
e
A
ll
(
'

'
,
'_

')
.
to
U
p
p
e
r
(
)+

'
_
SE
T
'+

')
'
,

37
9

m
a
c
h
in
e
<
−

s
e
lf

.
g
e
n
e
ra
lM

a
c
h
in
e
,

38
0

d
e
ri
v
e
d
F
ro
m
N
A
ry

In
te
rm

e
d
ia
te
E
n
ti
ty

<
−

in
t
e
r
m
e
d
ia
t
e
E
n
t
it
y
)
,

38
1

38
2

−−
u
p
d
a
te

e
v
e
n
t

38
3

e
v
t

:
SI
M
P
L
E
E
V
E
N
T
B
!
M
a
c
h
in
e
E
v
e
n
t
(

38
4

id
<
−

'O
b
jM

o
d
el
_
'+

a
s
s
o
c
ia
t
io
n
.n
a
m
e+

'_
U
P
D
A
T
E
'
,

38
5

n
a
m
e
<
−

a
s
s
o
c
ia
t
io
n
.n
a
m
e
.
r
e
p
la
c
e
A
ll
(
'

'
,
'_

')
+
'_

u
p
d
a
te

'
,

38
6

co
m
m
en
t<
−

'D
e
ri
v
e
d

fr
o
m

N
−
A
ry

a
s
s
o
c
ia
t
io
n

'+
a
s
s
o
c
ia
t
io
n
.n
a
m
e+

38
7

'
in

K
A
O
S

O
b
je
c
t

M
o
d
el
.
'
,

38
8

e
x
p
r
e
s
s
io
n

<
−

a
s
s
o
c
ia
t
io
n
.n
a
m
e
.
r
e
p
la
c
e
A
ll
(
'

'
,
'_

')
+
'_

u
p
d
a
te

'
,

APPENDIX D. ATL TRANSFORMATION : KAOS2EVENTB.ATL 72

38
9

p
a
ra
m
e
te
rs

<
−

S
e
t
{
}
,

39
0

g
u
a
rd

s
<
−

S
e
t
{
}
,

39
1

w
it
n
e
s
e
s
<
−

S
e
t
{
}
,

39
2

a
c
t
io
n
s
<
−

S
e
t
{
}
,

39
3

r
e
fi
n
e
d
B
y
<
−

S
e
t
{
}
,

39
4

r
e
fi
n
e
s
<
−

S
e
t
{
}
,

39
5

m
a
c
h
in
e
<
−

s
e
lf

.
g
e
n
e
ra
lM

a
c
h
in
e
,

39
6

is
I
n
t
e
r
n
a
l
<
−

fa
ls
e
,

39
7

d
e
ri
v
e
d
F
ro
m
N
A
ry

A
ss
o
c
ia
ti
o
n

<
−

t
r
a
c
e
)
,

39
8

39
9

−−
li
n
k
s

40
0

t
r
a
c
e

:
SI
M
P
L
E
E
V
E
N
T
B
!
N
A
r
y
A
s
s
o
c
ia
t
io
n
D
e
r
iv
a
t
io
n
(

40
1

n
A
ry
A
ss
o
c
Id

<
−

a
s
s
o
c
ia
t
io
n
.
id

,
40
2

n
A
ry
N
a
m
e
<
−

a
s
s
o
c
ia
t
io
n
.n
a
m
e
,

40
3

in
t
e
r
m
e
d
ia
t
e
A
s
s
o
c
ia
t
io
n
s
<
−

S
e
t
{
}
,

40
4

in
t
e
r
m
e
d
ia
t
e
E
n
t
it
y

<
−

in
t
e
r
m
e
d
ia
t
e
E
n
t
it
y

40
5

)
,

40
6

40
7

in
t
e
r
m
e
d
ia
t
e
E
n
t
it
y

:
SI
M
P
L
E
E
V
E
N
T
B
!
N
A
ry

In
te
rm

e
d
ia
te
E
n
ti
ty

(
40
8

d
e
r
iv
e
d
S
e
t
<
−

e
n
t
it
y
S
e
t
,

40
9

d
e
r
iv
e
d
In

v
a
r
ia
n
t
<
−

e
n
t
it
y
In

v
a
r
ia
n
t
,

41
0

d
e
r
iv
e
d
V
a
r
ia
b
le

<
−

e
n
t
it
y
V
a
r
ia
b
le

41
1

)
41
2

41
3

d
o
{

41
4

−−
I
n
te
r
m
e
d
ia
te
D
ir
e
c
te
d
A
s
s
o
c
ia
ti
o
n
s

APPENDIX D. ATL TRANSFORMATION : KAOS2EVENTB.ATL 73

41
5

fo
r
(
ln
k

in
a
s
s
o
c
ia
t
io
n
.
li
n
k
s
)
{

41
6

th
is
M
o
d
u
le
.
c
r
e
a
t
e
N
A
r
y
In

t
e
r
m
e
d
ia
t
e
D
ir
e
c
t
e
d
A
s
s
o
c
ia
t
io
n
(
ln
k
,
t
r
a
c
e
,

a
s
s
o
c
ia
t
io
n
)
;

41
7

}
41
8

41
9

s
e
lf

.
g
e
n
e
ra
lM

a
c
h
in
e
.
v
a
r
ia
b
le
s
<
−

s
e
lf

.
g
e
n
e
ra
lM

a
c
h
in
e
.
v
a
r
ia
b
le
s
.
in

c
lu

d
in

g
(

e
n
t
it
y
V
a
r
ia
b
le

)
;

42
0

s
e
lf

.
g
e
n
e
ra
lM

a
c
h
in
e
.
in

v
a
r
ia
n
t
s
<
−

s
e
lf

.
g
e
n
e
ra
lM

a
c
h
in
e
.
in

v
a
r
ia
n
t
s
.
in

c
lu

d
in

g
(

e
n
t
it
y
I
n
v
a
r
ia
n
t
)
;

42
1

s
e
lf

.
g
e
n
e
ra
lM

a
c
h
in
e
.
e
v
e
n
t
s
<
−

s
e
lf

.
g
e
n
e
ra
lM

a
c
h
in
e
.
e
v
e
n
t
s
.
in

c
lu

d
in

g
(
e
v
t
)
;

42
2

42
3

s
e
lf

.
d
a
ta
C
o
n
te
x
t
.
s
e
t
s
<
−

s
e
lf

.
d
a
ta
C
o
n
te
x
t
.
s
e
t
s
.
in

c
lu

d
in

g
(
e
n
t
it
y
S
e
t
)
;

42
4

42
5
−−

s
e
lf
.
p
r
o
je
c
t
.
e
le
m
e
n
ts

<
−

s
e
lf
.
p
r
o
je
c
t
.
e
le
m
e
n
ts

.
in

c
lu
d
in

g
(
e
n
ti
ty

V
a
r
ia

b
le

)
;

42
6
−−

s
e
lf
.
p
r
o
je
c
t
.
e
le
m
e
n
ts

<
−

s
e
lf
.
p
r
o
je
c
t
.
e
le
m
e
n
ts

.
in

c
lu
d
in

g
(
e
n
ti
ty

I
n
v
a
r
ia

n
t
)
;

42
7
−−

s
e
lf
.
p
r
o
je
c
t
.
e
le
m
e
n
ts

<
−

s
e
lf
.
p
r
o
je
c
t
.
e
le
m
e
n
ts

.
in

c
lu
d
in

g
(
e
n
ti
ty

S
e
t
)
;

42
8
−−

s
e
lf
.
p
r
o
je
c
t
.
e
le
m
e
n
ts

<
−

s
e
lf
.
p
r
o
je
c
t
.
e
le
m
e
n
ts

.
in

c
lu
d
in

g
(
e
v
t
)
;

42
9

43
0

s
e
lf

.
p
r
o
je
c
t
.
t
r
a
c
e
s
<
−

s
e
lf

.
p
r
o
je
c
t
.
t
r
a
c
e
s
.
in

c
lu

d
in

g
(
t
r
a
c
e
)
;

43
1

s
e
lf

.
p
r
o
je
c
t
.
t
r
a
c
e
s
<
−

s
e
lf

.
p
r
o
je
c
t
.
t
r
a
c
e
s
.
in

c
lu

d
in

g
(
in
t
e
r
m
e
d
ia
t
e
E
n
t
it
y
)
;

43
2

}
43
3

}
43
4

43
5
−−

C
a
ll
e
d

b
y

N
A
r
y
U
n
d
ir
e
c
te
d
A
s
s
o
c
ia
ti
o
n
R
u
le

43
6

r
u
le

c
r
e
a
t
e
N
A
r
y
In

t
e
r
m
e
d
ia
t
e
D
ir
e
c
t
e
d
A
s
s
o
c
ia
t
io
n
(
li
n
k

:
K
A
O
S
!
L
in
k
,

43
7

t
r
a
c
e

:
SI
M
P
L
E
E
V
E
N
T
B
!

APPENDIX D. ATL TRANSFORMATION : KAOS2EVENTB.ATL 74

N
A
ry

A
s
s
o
c
ia
ti
o
n
D
e
ri
v
a
ti
o
n
,

43
8

a
s
s
o
c
ia
t
io
n

:
K
A
O
S
!
R
e
la
t
io
n
s
h
ip

)
{

43
9

to
44
0

in
t
e
r
m
e
d
ia
t
e
A
s
s
o
c

:
SI
M
P
L
E
E
V
E
N
T
B
!
N
A
r
y
In

t
e
r
m
e
d
ia
t
e
D
ir
e
c
t
e
d
A
s
s
o
c
ia
t
io
n
(

44
1

d
e
ri
v
e
d
F
ro
m
N
A
ry

A
ss
o
c
ia
ti
o
n
s
<
−

t
r
a
c
e
,

44
2

d
e
r
iv
e
d
In

v
a
r
ia
n
t
<
−

in
v
a
r
ia
n
t
,

44
3

d
e
r
iv
e
d
V
a
r
ia
b
le

<
−

v
a
r
ia
b
le

44
4

)
,

44
5

44
6

v
a
r
ia
b
le

:
SI
M
P
L
E
E
V
E
N
T
B
!
V
a
r
ia
b
le
(

44
7

id
<
−

'O
b
jM

o
d
el
_
'+

li
n
k
.
e
n
ti
ty
N
a
m
e+

44
8

'_
n
a
ry
_
a
ss
o
c
'+

a
s
s
o
c
ia
t
io
n
.n
a
m
e
.
r
e
p
la
c
e
A
ll
(
'

'
,
'_

')
+
'_

v
a
r
'

,
44
9

n
a
m
e
<
−

li
n
k
.
e
n
ti
ty
N
a
m
e+

45
0

'_
n
a
ry
_
a
ss
o
c
'+

a
s
s
o
c
ia
t
io
n
.n
a
m
e
.
r
e
p
la
c
e
A
ll
(
'

'
,
'_

')
+
'_

v
a
r
'

,
45
1

co
m
m
en
t<
−

'D
e
ri
v
e
d

fr
o
m

li
n
k

'+
li
n
k
.
e
n
ti
ty
N
a
m
e+

'
o
f
N
−
A
ry

a
s
s
o
c
ia
t
io
n

'+
45
2

a
s
s
o
c
ia
t
io
n
.n
a
m
e+

'
in

K
A
O
S

O
b
je
c
t

M
o
d
el
.
'
,

45
3

e
x
p
r
e
s
s
io
n

<
−

a
s
s
o
c
ia
t
io
n
.n
a
m
e
.
r
e
p
la
c
e
A
ll
(
'

'
,
'_

')
+
'_
T
O
_
'+

45
4

li
n
k
.
e
n
ti
ty
N
a
m
e
.
r
e
p
la
c
e
A
ll
(
'

'
,
'_

')
,

45
5

m
a
c
h
in
e
<
−

s
e
lf

.
g
e
n
e
ra
lM

a
c
h
in
e
,

45
6

d
e
ri
v
e
d
F
ro
m
N
A
ry
In
te
rm

e
d
ia
te
A
ss
o
c
<
−

in
t
e
r
m
e
d
ia
t
e
A
s
s
o
c

45
7

)
,

45
8

45
9

in
v
a
r
ia
n
t

:
SI
M
P
L
E
E
V
E
N
T
B
!
In

v
a
r
ia
n
t
(

APPENDIX D. ATL TRANSFORMATION : KAOS2EVENTB.ATL 75

46
0

id
<
−

'O
b
jM

o
d
el
_
'+

li
n
k
.
e
n
ti
ty
N
a
m
e+

46
1

'_
n
a
ry
_
a
ss
o
c
'+

a
s
s
o
c
ia
t
io
n
.n
a
m
e
.
r
e
p
la
c
e
A
ll
(
'

'
,
'_

')
+
'_

in
v
'

,
46
2

n
a
m
e
<
−

li
n
k
.
e
n
ti
ty
N
a
m
e+

46
3

'_
n
a
ry
_
a
ss
o
c
'+

a
s
s
o
c
ia
t
io
n
.n
a
m
e
.
r
e
p
la
c
e
A
ll
(
'

'
,
'_

')
+
'_

in
v
'

,
46
4

co
m
m
en
t
<
−

'D
e
ri
v
e
d

fr
o
m

li
n
k

'+
li
n
k
.
e
n
ti
ty
N
a
m
e+

'
o
f
N
−
A
ry

a
s
s
o
c
ia
t
io
n

'+
46
5

a
s
s
o
c
ia
t
io
n
.n
a
m
e+

'
in

K
A
O
S

O
b
je
c
t

M
o
d
el
.
'
,

46
6

−−
C
o
u
ld

b
e

im
p
r
o
v
e
d

b
y

u
s
in

g
c
o
m
p
a
r
is
o
n
s

o
n

li
n
k
.
m
u
lt
ip

li
c
it
y

46
7

−−
(
ty
p
e
d

a
s

E
S
tr
in
g
)

46
8

e
x
p
r
e
s
s
io
n

<
−

'T
O

D
O
'
,

46
9

d
e
ri
v
e
d
F
ro
m
N
A
ry
In
te
rm

e
d
ia
te
A
ss
o
c
<
−

in
t
e
r
m
e
d
ia
t
e
A
s
s
o
c

47
0

)
47
1

47
2

d
o
{

47
3

t
r
a
c
e
.
in

t
e
r
m
e
d
ia
t
e
A
s
s
o
c
ia
t
io
n
s
<
−

47
4

t
r
a
c
e
.
in

t
e
r
m
e
d
ia
t
e
A
s
s
o
c
ia
t
io
n
s
.
in

c
lu

d
in

g
(
in
t
e
r
m
e
d
ia
t
e
A
s
s
o
c
)
;

47
5

47
6

s
e
lf

.
g
e
n
e
ra
lM

a
c
h
in
e
.
v
a
r
ia
b
le
s
<
−

s
e
lf

.
g
e
n
e
ra
lM

a
c
h
in
e
.
v
a
r
ia
b
le
s
.
in

c
lu

d
in

g
(

v
a
r
ia
b
le

)
;

47
7

s
e
lf

.
g
e
n
e
ra
lM

a
c
h
in
e
.
in

v
a
r
ia
n
t
s
<
−

s
e
lf

.
g
e
n
e
ra
lM

a
c
h
in
e
.
in

v
a
r
ia
n
t
s
.
in

c
lu

d
in

g
(

in
v
a
r
ia
n
t
)
;

47
8

47
9
−−

s
e
lf
.
p
r
o
je
c
t
.
e
le
m
e
n
ts

<
−

s
e
lf
.
p
r
o
je
c
t
.
e
le
m
e
n
ts

.
in

c
lu
d
in

g
(
v
a
r
ia

b
le

)
;

48
0
−−

s
e
lf
.
p
r
o
je
c
t
.
e
le
m
e
n
ts

<
−

s
e
lf
.
p
r
o
je
c
t
.
e
le
m
e
n
ts

.
in

c
lu
d
in

g
(
in

v
a
r
ia

n
t
)
;

APPENDIX D. ATL TRANSFORMATION : KAOS2EVENTB.ATL 76

48
1

48
2

s
e
lf

.
p
r
o
je
c
t
.
t
r
a
c
e
s
<
−

s
e
lf

.
p
r
o
je
c
t
.
t
r
a
c
e
s
.
in

c
lu

d
in

g
(
in
t
e
r
m
e
d
ia
t
e
A
s
s
o
c
)
;

48
3

}
48
4

48
5

}
48
6

48
7
−−

Is
A

li
n
k

b
e
tw

e
e
n

2
e
n
t
it
ie

s
is

tr
a
n
s
la
te

d
a
n

in
v
a
r
ia

n
t

48
8
−−

a
c
c
o
r
d
in

g
to

th
e

t
o
t
a
l
a
n
d

th
e

d
is
jo

in
t

c
r
e
te

r
ia

o
f

th
e

48
9
−−

Is
A

li
n
k
.

49
0
−−

r
u
le

Is
A
R
u
le
{

49
1
−−

Is
A

n
o
t

im
p
le
m
e
n
te
d

in
th
e

a
c
tu

a
l
K
A
O
S
M
M

49
2
−−

}
49
3

49
4
−−

D
o
m
a
in

p
r
o
p
e
r
ty

d
e
fi
n
e
d

in
th
e

g
o
a
l
m
o
d
e
l
b
e
c
o
m
e
s

a
n

in
v
a
r
ia

n
t

49
5
−−

in
th
e

i
n
i
t
i
a
l

m
a
c
h
in
e
.

49
6
−−

r
u
le

D
o
m
a
in
P
ro
p
e
rt
y
R
u
le
{

49
7
−−

D
o
m
P
ro
p

is
n
o
t

im
p
le
m
e
n
te
d

in
th
e

a
c
tu

a
l
K
A
O
S
M
M

49
8
−−

}
49
9

50
0
−−

A
n

a
g
e
n
t

is
tr
a
n
s
la
te

d
in

to
a

m
a
c
h
in
e

r
e
fi
n
in

g
th
e

i
n
i
t
i
a
l

m
a
c
h
in
e
.

50
1

r
u
le

A
g
e
n
tR

u
le
{

50
2

fr
o
m

50
3

a
g
e
n
t

:
K
A
O
S
!A

g
e
n
t

50
4

to
50
5

r
e
fi
n
e
m
e
n
t

:
SI
M
P
L
E
E
V
E
N
T
B
!
M
a
c
h
in
e
R
e
fi
n
e
m
e
n
t
(

50
6

id
<
−

a
g
e
n
t
.n
a
m
e+

'_
M
A
C
H
IN

E
_
re
fi
n
e
s_

In
it
ia
lM

a
c
h
in
e
'
,

APPENDIX D. ATL TRANSFORMATION : KAOS2EVENTB.ATL 77

50
7

n
a
m
e
<
−

a
g
e
n
t
.n
a
m
e+

'
_
r
e
fi
n
e
s
_
In

it
ia
lM

a
c
h
in
e
'
,

50
8

co
m
m
en
t
<
−

'C
re
a
te

fr
o
m

th
e
K
A
O
S

A
g
e
n
t

:
'+
a
g
e
n
t
.n
a
m
e
,

50
9

r
e
fi
n
e
d
M
a
c
h
in
e
<
−

s
e
lf

.
g
e
n
e
ra
lM

a
c
h
in
e
,

51
0

r
e
fi
n
in
g
M
a
c
h
in
e
<
−

m
a
c
h
in
e

51
1

)
,

51
2

51
3

m
a
c
h
in
e

:
SI
M
P
L
E
E
V
E
N
T
B
!M

a
c
h
in
e

(
51
4

id
<
−

a
g
e
n
t
.n
a
m
e+

'_
M
A
C
H
IN
E
'
,

51
5

n
a
m
e
<
−

a
g
e
n
t
.n
a
m
e
,

51
6

co
m
m
en
t
<
−

'C
re
a
te

fr
o
m

th
e
K
A
O
S

A
g
e
n
t

:
'+
a
g
e
n
t
.n
a
m
e
,

51
7

v
a
r
ia
b
le
s
<
−

S
e
t
{
}
,

51
8

in
v
a
r
ia
n
t
s
<
−

S
e
t
{
}
,

51
9

v
a
r
ia
n
t
s
<
−

S
e
t
{
}
,

52
0

e
v
e
n
t
s
<
−

S
e
t
{
}
,

52
1

r
e
fi
n
e
s
<
−

S
e
t
{
r
e
fi
n
e
m
e
n
t
}
,

52
2

r
e
fi
n
e
d
B
y
<
−

S
e
t
{
}
,

52
3

v
ie
w
s
<
−

S
e
t
{
}
,

52
4

d
e
c
o
m
p
o
se
d
In

<
−

S
e
t
{
}
,

52
5

re
c
o
m
p
o
se
d
In

<
−

S
e
t
{
}
,

52
6

d
e
ri
v
e
d
F
ro
m
A
g
e
n
t
<
−

li
n
k
)
,

52
7

52
8

li
n
k

:
SI
M
P
L
E
E
V
E
N
T
B
!
A
g
e
n
tD

e
ri
v
a
ti
o
n
(

52
9

d
e
ri
v
e
d
M
a
c
h
in
e
<
−

m
a
c
h
in
e
,

53
0

a
g
e
n
tI
d

<
−

a
g
e
n
t
.
id

,
53
1

a
g
en
tN

a
m
e
<
−

a
g
e
n
t
.n
a
m
e

53
2

)

APPENDIX D. ATL TRANSFORMATION : KAOS2EVENTB.ATL 78

53
3

d
o
{

53
4

s
e
lf

.
p
r
o
je
c
t
.
t
r
a
c
e
s
<
−

s
e
lf

.
p
r
o
je
c
t
.
t
r
a
c
e
s
.
in

c
lu

d
in

g
(
li
n
k
)
;

53
5

s
e
lf

.
p
r
o
je
c
t
.
e
le
m
e
n
ts

<
−

s
e
lf

.
p
r
o
je
c
t
.
e
le
m
e
n
ts

.
in

c
lu

d
in

g
(
m
a
c
h
in
e
)
;

53
6

s
e
lf

.
p
r
o
je
c
t
.
e
le
m
e
n
ts

<
−

s
e
lf

.
p
r
o
je
c
t
.
e
le
m
e
n
ts

.
in

c
lu

d
in

g
(
r
e
fi
n
e
m
e
n
t
)
;

53
7

s
e
lf

.
in

it
ia
lD

e
c
o
m
p
o
s
it
io
n
.
d
e
c
o
m
p
o
si
n
g
M
a
c
h
in
e
s
<
−

53
8

s
e
lf

.
in

it
ia
lD

e
c
o
m
p
o
s
it
io
n
.
d
e
c
o
m
p
o
si
n
g
M
a
c
h
in
e
s
.
in

c
lu

d
in

g
(
m
a
c
h
in
e
)
;

53
9

s
e
lf

.
g
e
n
e
ra
lM

a
c
h
in
e
.
r
e
fi
n
e
d
B
y
<
−

54
0

s
e
lf

.
g
e
n
e
ra
lM

a
c
h
in
e
.
r
e
fi
n
e
d
B
y
.
in

c
lu

d
in

g
(
r
e
fi
n
e
m
e
n
t
)
;

54
1

}
54
2

}

Bibliography

[Abrial, 2009a] Abrial, J.-R. (2009a). Event model decomposition. http:

//deploy-eprints.ecs.soton.ac.uk/109/.

[Abrial, 2009b] Abrial, J.-R. (2009b). Modeling in Event-B: System and
Software Engineering. Cambridge University Press.

[Aziz et al., 2009] Aziz, B., Arenas, A., Bicarregui, J., Ponsard, C., and
Massonet, P. (2009). From goal-oriented requirements to event-b speci�-
cations. In First Nasa Formal Method Symposium, pages 96�105.

[Ball, 2008] Ball, E. (2008). An Incremental Process for the Development of
Multi-agent Systems in Event-B. PhD thesis, University of Southampton.
http://eprints.ecs.soton.ac.uk/16575/.

[Butler, 2009] Butler, M. (2009). Decomposition structures for event-b. In-
tegrated Formal Methods iFM2009, Springer, LNCS, 5423:20�38.

[Gervais et al., 2009] Gervais, F., Gnaho, C., Laleau, R., Matoussi, A.,
and Semmak, F. (2009). Tacos livrable l1.2 : Kaos extension with
non-functional properties. http://tacos.loria.fr/drupal/?q=node/74.
Projet TACOS : Trustworthy Assembling of Components: frOm require-
ments to Speci�cation ANR-06-SETI-017 Janvier 2007 - D�ecembre 2009.

[Landtsheer, 2007a] Landtsheer, R. D. (2007a). Deriving event-based secu-
rity policy from declarative security requirements.

[Landtsheer, 2007b] Landtsheer, R. D. (2007b). Elaborating Complete and
Consistent Requirements for Security-Critical Systems. PhD thesis,
Université Catholique de Louvain. http://www.info.ucl.ac.be/~rdl/

thesis/.

[Letier, 2001] Letier, E. (2001). Reasoning about Agents in Goal-Oriented
Requirements Engineering. PhD thesis, Université Catholique de Louvain.

[Matoussi, 2009] Matoussi, A. (2009). Expressing kaos goal models with
event-b. LACL, Université Paris-Est.

79

http://deploy-eprints.ecs.soton.ac.uk/109/
http://deploy-eprints.ecs.soton.ac.uk/109/
http://eprints.ecs.soton.ac.uk/16575/
http://tacos.loria.fr/drupal/?q=node/74
http://www.info.ucl.ac.be/~rdl/thesis/
http://www.info.ucl.ac.be/~rdl/thesis/

BIBLIOGRAPHY 80

[Matoussi et al., 2008] Matoussi, A., Gervais, F., and Laleau, R. (2008). A
�rst attempt to express kaos re�nement patterns with event b. In Proc.
of the Int. Conf. on ASM, B and Z (ABZ). Lecture Notes in Computer
Science, Springer-Verlag, pages 12�14. Springer.

[Matoussi et al., 2009] Matoussi, A., Laleau, R., and Petit, D. (2009). Bridg-
ing the gap between kaos requirements models and b speci�cations. Tech-
nical Report TR-LACL-2009-5, LACL (Laboratory of Algorithms, Com-
plexity and Logic), University of Paris-Est (Paris 12).

[Métayer et al., 2005] Métayer, C., Abrial, J.-R., and Voisin, L. (2005).
Rodin deliverable 3.2: Event-b language. http://rodin.cs.ncl.ac.uk/

deliverables/D7.pdf. http://rodin-b-sharp.sourceforge.net.

[Pascal and Silva, 2009] Pascal, C. and Silva, R. (2009). Event-b model de-
composition: A-style vs. b-style.

[Respect-IT, 300] Respect-IT (v 3.0.0). Objectiver. http://www.

objectiver.com/.

[REVER, 901] REVER (v 9.0.1). Db-main. http://www.db-main.be.

[RODIN, v 11] RODIN (v 1.1). Rodin platform. http://www.event-b.

org/.

[Snook and Butler, 2006] Snook, C. and Butler, M. (2006). Uml-b: Formal
modeling and design aided by uml. ACM Trans. Softw. Eng. Methodol.,
15(1):92�122.

[van Lamsweerde, 2009] van Lamsweerde, A. (2009). Requirements Engi-
neering: From System Goals to UML Models to Software Speci�cations.
Wiley.

[yah Said et al., 2009] yah Said, M., Butler, M., and Snook, C. (2009). Lan-
guage and tool support for class and state machine re�nement in uml-b.
In FM2009 - 16th International Symposium on Formal Methods, number
LNCS 5, pages 579�595. Springer.

http://rodin.cs.ncl.ac.uk/deliverables/D7.pdf
http://rodin.cs.ncl.ac.uk/deliverables/D7.pdf
http://rodin-b-sharp.sourceforge.net
http://www.objectiver.com/
http://www.objectiver.com/
http://www.db-main.be
http://www.event-b.org/
http://www.event-b.org/

	Contents
	Bridging KAOS and Event B: existing approaches
	Expressing KAOS Goal Models with Event-B: A. Matoussi
	First phase
	Second phase

	From Goal-Oriented Requirements to Event-B Specification: B. Aziz et al.
	Notion of triggered event
	Operationalisation patterns

	Deriving Event-based Security Policy from Declarative Security Requirements: R. De Landtsheer

	Bridging KAOS and Event B: proposed approach
	Overview of the approach
	KAOS Object model to Event-B Context and Machine
	Object types and Attributes
	Associations and Specializations

	Decomposition of the initial model according to Agents
	State-Based Decomposition

	Traceability between KAOS and Event-B
	Definitions
	Initial model
	Other machines in the Event-B model

	What happens if …
	…an element is added in the KAOS object model
	…an element is removed from the KAOS object model
	…an agent is added in the KAOS model
	…an agent is removed from the KAOS model
	…a control link is added in the KAOS model
	…a control link is removed from the KAOS model
	…a monitor link is added in the KAOS model
	…a monitor link is removed from the KAOS model
	…a responsibility links is moved from an agent to another

	Linear Temporal Logic notations
	Time operators

	Decomposition according to Agents: Mine pump example
	Event-B metamodel : simpleeventb.ecore
	Metamodel elements hierarchy
	Event-B machine and context
	Traceability links

	ATL transformation : KAOS2EventB.atl
	Bibliography

