Local search with OscaR.cbls explained to my neighbor

OscaR v3.0 (Sept 2015)

Renaud De Landtsheer, Yoann Guyot, Christophe Ponsard, Gustavo Ospina
What are optimization problems?

• Scheduling
 – Tasks, precedence's
 – Shared resources
 – Deadlines

• Routing
 – Points, vehicles
 – Distance
 – Time windows
 – Minimize overall distance

• In general
 – Find values (possibly “structured values”)
 – Minimizing / optimizing objective (s)
 – Satisfying constraint (s)
– Oscar
 • Open source framework for combinatorial optimization
 • CP, CBLS, MIP, DFO engines

– Open source LGPL license
 • https://bitbucket.org/oscarlib/oscar
 • Implemented in Scala

– Consortium
 • CETIC, UCL, N-Side Belgium
 • Contributions from UPPSALA, Sweden
Why open sourcing this code?

- Higher credibility
 - Since it is very intricate algorithms, customers can look at the quality of the work
 - Being able to look at the commit activity is also a plus for customers
- Easier transfer
- Mutualise extensions between customers
- Attract contributions
 - From external contributors
 - Find internships
Optimization by local search (LS)

- Perform a descend in the solution space; repeatedly move from one solution to a better one
- Next solution identified via neighborhood exploration

TSP Example: moving a city to another position in the current circuit

- Current state: \(a \rightarrow b \rightarrow c \rightarrow d \rightarrow e \rightarrow a\)
- Moving c gives three neighbors:
 - \(a \rightarrow c \rightarrow b \rightarrow d \rightarrow e \rightarrow a\)
 - \(a \rightarrow b \rightarrow d \rightarrow c \rightarrow e \rightarrow a\)
 - \(a \rightarrow b \rightarrow d \rightarrow e \rightarrow c \rightarrow a\)
- \(O(n^2)\) neighbors in total

- Lots of black magic's, to escape from local minima
Local search–based solver = model + search procedure

- Defines variables
- Constraints
- Objectives

- Neighborhoods That modify some variables of the problem
Constraint-based local search

- **Goal:** make it easy to write optimization engine based on the principle of local search

- **Approach:** Separate the modeling from the search in different component
 - Represent the problem as a large collection of mathematical formulas
 - Evaluate moves on this formula

- **Technically:**
 - Have an engine to evaluate the formula quickly
 - Based on the fact that very few decision variables are impacted by a move
 - So rely on incremental model updates
The uncapacitated warehouse location problem

• Given
 – S: set of stores that must be stocked by the warehouses
 – W: set of potential warehouses
 • Each warehouse has a fixed cost f_w
 • transportation cost from warehouse w to store s is c_{ws}

• Find
 – O: subset of warehouses to open
 – Minimizing the sum of the fixed and the transportation cost.
 $$\sum_{w \in O} f_w + \sum_{s \in S} \min_{w \in O} (c_{ws})$$

• Notice
 – A store is assigned to its nearest open warehouse
val m = new Store()

//An array of Boolean variables representing that the warehouse is open or not
val warehouseOpenArray = Array.tabulate(W)
 (w => CBLSIntVar(m, 0 to 1, 0, "warehouse_" + w + ")")

//The set of open warehouses
val openWarehouses = Filter(warehouseOpenArray)

//for each shop, the distance to the nearest open warehouse
val distanceToNearestOpenWarehouse = Array.tabulate(D)
 (d => Min(distanceCost(d), openWarehouses,
 defaultCostForNoOpenWarehouse))

//summing up the distances and the warehouse opening costs
val obj = Objective(Sum(distanceToNearestOpenWarehouse)
 + Sum(costForOpeningWarehouse, openWarehouses))
• Two types of variables
 – IntVar and SetVar

• Invariant library (they are functions, actually)
 – Logic, such as:
 • Access on array of IntVar, SetVar
 • Sort
 • Filter, Cluster (indexes of element whose value is...)
 – MinMax, such as:
 • Min, Max
 • ArgMin, ArgMax
 – Numeric, such as:
 • Sum, Prod, Minus, Div, Abs
 – Set, such as:
 • Inter, Union, Diff, Cardinality

Summing up to roughly 80 invariants in the library
Propagation graph for the WLP(4,6)

From the Distance matrix:

- WsToS0 → Min → OpenWToS0
- WsToS1 → Min → OpenWToS1
- WsToS2 → Min → OpenWToS2
- WsToS3 → Min → OpenWToS3
- WsToS4 → Min → OpenWToS4
- WsToS5 → Min → OpenWToS5

Filter → OpenWs

WsCost → Sum

Opening Cost

Transport Cost

obj

W0
W1
W2
W3
What we can do with a model

• Model has some input variables
 – warehouseOpenArray

• We can modify the value of these input variables

• The model is updated through a procedure called
 propagation.
 – Propagation is triggered when the value of an output variable is queried, so you always have coherent answers on the model
 – Propagation is very fast, thanks to adequate algorithms and data structures
Let’s play with the model in console

```plaintext
> println(openWarehouses)
openWarehouses := {}
> println(obj)
IntVarObjective(Sum2 := 1500000)

> warehouseOpenArray(0) := 1
> println(openWarehouses)
openWarehouses := {0}
> println(obj)
IntVarObjective(Sum2 := 7849)

> warehouseOpenArray(5) := 1
> println(openWarehouses)
openWarehouses := {0, 5}
> println(obj)
IntVarObjective(Sum2 := 6024)
```
How the model will help optimizing?

- Model is fit for local search, based on neighborhood exploration
 - Eg: switching one warehouse (open or close it)
- Does a move improve on the objective?
 - Perform the move Eg: switch the warehouse
 - Query the objective value
 - RollBack
 - Methods available in the Objective class perform this

    ```scala
    //summing up the distances and the warehouse opening costs
    val obj = Objective(Sum(distanceToNearestOpenWarehouse)
    + Sum(costForOpeningWarehouse, openWarehouses))
    ```

- Neighborhood exploration is fast:
 - Propagation is incremental
 - Propagation is not performed after the rollback
 - Partial propagation: only involves what is needed to evaluate obj
Some Relevant Neighborhoods

- Switching a single warehouse
 - either closing an open warehouse, or opening a closed one
 - Size: $O(#W)$
 - Connected: all solutions are reachable

- Swapping two warehouses
 - close an open warehouse and open a closed one
 - Size: $O(#W^2)$
 - Not Connected

- Randomization at local minimum
 - Randomize a fraction of the warehouses

How can we assemble these bricks?
Searching the WLP: sample strategy

- Do all switch moves
- Then all the swap moves
- Iterate until no more moves

- Perform some randomization when minimum reached

- Stop criterion: only two randomizations authorized

- Save the best solution at all time, and restore it when search is finished

Note: the idea of combining neighborhood is not new (eg. [Glo84], [MI97], and many papers at MIC)
A WLP solver written with neighborhood combinators

```scala
val m = new Store()
val warehouseOpenArray = Array.tabulate(W)
    (w => CBLSIntVar(m, 0 to 1, 0, "warehouse_" + w + ""))
val openWarehouses = Filter(warehouseOpenArray)

val distanceToNearestOpenWarehouse = Array.tabulate(D)
    (d => Min(distanceCost(d), openWarehouses,
                defaultCostForNoOpenWarehouse))

val obj = Objective(Sum(distanceToNearestOpenWarehouse)
                    + Sum(costForOpeningWarehouse, openWarehouses))

m.close()

val neighborhood = (AssignNeighborhood(warehouseOpenArray, "SwitchWarehouse")
                      exhaustBack SwapsNeighborhood(warehouseOpenArray, "SwapWarehouses")
                      orElse (RandomizeNeighborhood(warehouseOpenArray, W/5) maxMoves 2)
                      saveBestAndRestoreOnExhaust obj)

val it = neighborhood.doAllMoves(obj)
```
WarehouseLocation(W:15, D:150)
SwitchWarehouse(warehouse_0:=0 set to 1; objAfter:7052) - #
SwitchWarehouse(warehouse_1:=0 set to 1; objAfter:5346) - #
SwitchWarehouse(warehouse_2:=0 set to 1; objAfter:4961) - #
SwitchWarehouse(warehouse_3:=0 set to 1; objAfter:4176) - #
SwitchWarehouse(warehouse_4:=0 set to 1; objAfter:3862) - #
SwitchWarehouse(warehouse_9:=0 set to 1; objAfter:3750) - #
SwitchWarehouse(warehouse_12:=0 set to 1; objAfter:3620) - #
SwitchWarehouse(warehouse_0:=1 set to 0; objAfter:3609) - #
SwapWarehouses(warehouse_0:=0 and warehouse_4:=1; objAfter:3572) - #
SwapWarehouses(warehouse_1:=1 and warehouse_6:=0; objAfter:3552) - #
SwapWarehouses(warehouse_0:=1 and warehouse_1:=0; objAfter:3532) - #
SwitchWarehouse(warehouse_7:=0 set to 1; objAfter:3528) - #
RandomizeNeighborhood(warehouse_12:=1 set to 0, warehouse_13:=0 set to 1; objAfter:3528) - °
SwitchWarehouse(warehouse_7:=0 set to 1; objAfter:3656) -
SwapWarehouses(warehouse_12:=0 and warehouse_13:=1; objAfter:3528) - °
RandomizeNeighborhood(warehouse_14:=0 set to 1, warehouse_13:=0 set to 1; objAfter:3528) -
MaxMoves: reached 2 moves
openWarehouses:={1,2,3,6,7,9,12}
Three shades of Warehouse Location

• The presented one:

```scala
val neighborhood = (AssignNeighborhood(warehouseOpenArray, "SwitchWarehouse")
  exhaustBack SwapsNeighborhood(warehouseOpenArray, "SwapWarehouses")
orElse (RandomizeNeighborhood(warehouseOpenArray, W/5) maxMoves 2)
saveBestAndRestoreOnExhaust obj)
```

• Chosing the neighborhood randomly

```scala
val neighborhood = (AssignNeighborhood(warehouseOpenArray, "SwitchWarehouse")
  random SwapsNeighborhood(warehouseOpenArray, "SwapWarehouses")
orElse (RandomizeNeighborhood(warehouseOpenArray, W/5) maxMoves 2)
saveBestAndRestoreOnExhaust obj)
```

• Learning about neighborhood efficiency

```scala
val neighborhood = (AssignNeighborhood(warehouseOpenArray, "SwitchWarehouse")
  learningRandom SwapsNeighborhood(warehouseOpenArray, "SwapWarehouses")
orElse (RandomizeNeighborhood(warehouseOpenArray, W/5) maxMoves 2)
saveBestAndRestoreOnExhaust obj)
```
Conclusion: Features of Oscar.cbls

- **Modeling part:** Rich modeling language
 - IntVar, SetVar
 - 80 invariants: Logic, numeric, set, min-max, etc.
 - 17 constraints: LE, GE, AllDiff, Sequence, etc.
 - Constraints can attribute a violation degree to any variable
 - Model can include cycles
 - Fast model evaluation mechanism
 - Efficient single wave model update mechanism
 - Partial and lazy model updating, to quickly explore neighborhoods

- **Search part**
 - Library of standard neighborhoods
 - Combinators to define your global strategy in a concise way
 - Handy verbose and statistics feature, to help you tuning your search

- **Business packages:** Routing, scheduling
 - Model and neighborhoods

- **FlatZinc Front End** [Bjö15]

- **27kLOC**
To some extent, brain cycle is more valuable than CPU cycle (1/2)

- Why don’t you use C with templates, and compile with gcc –o3? You would be 2 times faster!

- Why should I use your stuff? I can program a dedicated solver that will run 2 times faster because it will not need the data structures you need in OscaR
To some extend, brain cycle is more valuable than CPU cycle (2/2)

• That is true, but
 – Algorithmic tunings deliver more than 2 to 4!
 • Ex: We lately had a speedup 10 by tuning a search procedure
 • Using symmetry elimination on neighborhoods
 • Restricting your neighborhood to relevant search zones
 – Our approach cuts down dev cost, so you have time to focus on these high-level tunings.
 • Since budget is always limited
 – Next step: parallel propagation
 • So you will have the same “basic speed” than a dedicated implem, by using more cores
 • A core is cheaper than a single day of work for an engineer
Who is behind OscaR.cbls?

- CETIC team
 - Renaud De Landtsheer
 - Yoann Guyot
 - Christophe Ponsard
 - Gustavo Ospina

- Contributions from Uppsala
 - Jean-Noël Monette
 - Gustav Björdal
Where is OscaR?

• Repository / source code
 – https://bitbucket.org/oscarlib/oscar/wiki/Home

• Released code and documentation
 – https://oscarlib.bitbucket.org/

• Discussion group / mailing list
 – https://groups.google.com/forum/?fromgroups#!forum/oscar-user
Thank you
Merci

Aéropôle de Charleroi-Gosselies
Rue des Frères Wright, 29/3
B-6041 Gosselies
info@cetic.be

www.cetic.be