
Local search with OscaR.cbls
explained to my neighbor

OscaR v3.0 (Sept 2015)

Renaud De Landtsheer, Yoann Guyot,
Christophe Ponsard, Gustavo Ospina

What are optimization problems?

• Scheduling
– Tasks, precedence's
– Shared resources
– Deadlines

• Routing
– Points, vehicles
– Distance
– Time windows
– Minimize overall distance

• In general
– Find values (possibly “structured values”)
– Minimizing / optimizing objective (s)
– Satisfying constraint (s)

3

– Oscar
• Open source framework for combinatorial

optimization
• CP, CBLS, MIP, DFO engines

– Open source LGPL license
• https://bitbucket.org/oscarlib/oscar
• Implemented in Scala

– Consortium
• CETIC, UCL, N-Side Belgium
• Contributions from UPPSALA, Sweden

Why open sourcing this code?

• Higher credibility
– Since it is very intricate algorithms,

customers can look at the quality of the
work

– Being able to look at the commit activity is
also a plus for customers

• Easier transfer
• Mutualise extensions between

customers
• Attract contributions

– From external contributors
– Find internships

Optimization by local search
(LS)

• Perform a descend in the solution space;
repeatedly move from one solution to a better one

• Next solution identified via neighborhood
exploration

TSP Example: moving a city
to another position in the current circuit
• Current state: a  b  c  d  e  a
• Moving c gives three neighbors:

– a  c  b  d  e  a
– a  b  d  c  e  a
– a  b  d  e  c  a

• Lots of black magic's, to escape from local minima

The basic equation of local
search

Local search–based solver = model + search procedure

Defines
variables
constraints
Objectives
…

Neighborhoods That modify
some variables of the problem

Constraint-based local search

• Goal: make it easy to write optimization engine based
on the principle of local search

• Approach: Separate the modeling from the search in
different component
– Represent the problem as a large collection of mathematical

formulas
– Evaluate moves on this formula

• Technically:
– Have an engine to evaluate the formula quickly
– Based on the fact that very few decision variables are

impacted by a move
– So rely on incremental model updates

The uncapacitated warehouse
location problem

• Given
– S: set of stores that must be stocked by the warehouses
– W: set of potential warehouses

• Each warehouse has a fixed cost fw

• transportation cost from warehouse w to store s is cws

• Find
– O: subset of warehouses to open
– Minimizing the sum of the fixed and the transportation

cost.

• Notice
– A store is assigned to its nearest open warehouse

9








Ss

wsOw
Ow

w cf)(min

?

?

? ?

?
I w

ill s
how you the so

urce code

of th
e so

lution on a sin
gle slid

e!

A model of the WLP,
written with OscaR.cbls

val m = new Store()

//An array of Boolean variables representing that the warehouse is
open or not
val warehouseOpenArray = Array.tabulate(W)

(w => CBLSIntVar(m, 0 to 1, 0, "warehouse_" + w + ""))

//The set of open warehouses
val openWarehouses = Filter(warehouseOpenArray)

//for each shop, the distance to the nearest open warehouse
val distanceToNearestOpenWarehouse = Array.tabulate(D)

(d => Min(distanceCost(d), openWarehouses,
defaultCostForNoOpenWarehouse))

//summing up the distances and the warehouse opening costs
val obj = Objective(Sum(distanceToNearestOpenWarehouse)

+ Sum(costForOpeningWarehouse, openWarehouses))

Modeling Support with OscaR

• Two types of variables
– IntVar and SetVar

• Invariant library (they are functions, actually)
–Logic, such as:

• Acces on array of IntVar, SetVar
• Sort
• Filter, Cluster (indexes of element whose value is…)

–MinMax, such as:
• Min, Max
• ArgMin, ArgMax

–Numeric, such as:
• Sum, Prod, Minus, Div, Abs

–Set, such as:
• Inter, Union, Diff, Cardinality

Summing up to roughly 80 invariants in the library

Propagation graph for the
WLP(4,6)

W0

W1

W2

W3

OpenWs
Filte

r

Su
m

Su
m

WsCost

+
OpenWToS0MinWsToS0

OpenWToS1MinWsToS1

OpenWToS2MinWsToS2

OpenWToS3MinWsToS3

OpenWToS4MinWsToS4

OpenWToS5MinWsToS5

Opening
Cost

Transport
Cost

obj

From the
Distance
 matrix

What we can do with a model

• Model has some input variables
– warehouseOpenArray

• We can modify the value of these input
variables

• The model is updated through a procedure
called propagation.
– Propagation is triggered when the value of an

output variable is queried, so you always have
coherent answers on the model

– Propagation is very fast, thanks to adequate
algorithms and data structures

Let’s play with the model in
console

>println(openWarehouses)
openWarehouses:={}
>println(obj)
IntVarObjective(Sum2:=1500000
)

> warehouseOpenArray(0) := 1
> println(openWarehouses)
IntVarObjective(Sum2:=7849)
> println(obj)
openWarehouses:={0}

> warehouseOpenArray(5) := 1
> println(openWarehouses)
IntVarObjective(Sum2:=6024)
> println(obj)
openWarehouses:={0,5}

How the model will help
optimizing?

• Model is fit for local search, based on neighborhood
exploration
– Eg: switching one warehouse (open or close it)

• Does a move improve on the objective?
– Perform the move Eg: switch the warehouse
– Query the objective value
– RollBack
– Methods available in the Objective class perform this

• Neighborhood exploration is fast:
– Propagation is incremental
– Propagation is not performed after the rollback
– Partial propagation: only involves what is needed to evaluate obj

//summing up the distances and the warehouse opening
costs
val obj =
Objective(Sum(distanceToNearestOpenWarehouse)

+ Sum(costForOpeningWarehouse,
openWarehouses))

Some Relevant Neighborhoods
• Switching a single warehouse

– either closing an open warehouse,
or opening a closed one

– Size: O(#W)
– Connected: all solutions are reachable

• Swapping two warehouses
– close an open warehouse and open a closed one
– Size: O(#W²)
– Not Connected

• Randomization at local minimum
– Randomize a fraction of the warehouses

How can we assemble these bricks? 18

Searching the WLP: sample strategy

• Do all switch moves
• Then all the swap moves
• Iterate until no more moves

• Perform some randomization when minimum reached

• Stop criterion: only two randomizations authorized

• Save the best solution at all time,
and restore it when search is finished

Note: the idea of combining neighborhood is not new
(eg. [Glo84], [Ml97], and many papers at MIC)

We want to

write
/re

ad/m
odify

this e
asily

We want to try also
the random neighborhood choice

A WLP solver written with
neighborhood combinators

val neighborhood = (AssignNeighborhood(warehouseOpenArray,
"SwitchWarehouse")
 exhaustBack SwapsNeighborhood(warehouseOpenArray,
"SwapWarehouses")
 orElse (RandomizeNeighborhood(warehouseOpenArray, W/5)
maxMoves 2)

 saveBestAndRestoreOnExhaust obj)

val it = neighborhood.doAllMoves(obj)

val m = new Store()
val warehouseOpenArray = Array.tabulate(W)

(w => CBLSIntVar(m, 0 to 1, 0, "warehouse_" + w + ""))
val openWarehouses = Filter(warehouseOpenArray)

val distanceToNearestOpenWarehouse = Array.tabulate(D)
(d => Min(distanceCost(d), openWarehouses,

defaultCostForNoOpenWarehouse))

val obj = Objective(Sum(distanceToNearestOpenWarehouse)
+ Sum(costForOpeningWarehouse, openWarehouses))

m.close()

The console output
WarehouseLocation(W:15, D:150)
SwitchWarehouse(warehouse_0:=0 set to 1; objAfter:7052) - #
SwitchWarehouse(warehouse_1:=0 set to 1; objAfter:5346) - #
SwitchWarehouse(warehouse_2:=0 set to 1; objAfter:4961) - #
SwitchWarehouse(warehouse_3:=0 set to 1; objAfter:4176) - #
SwitchWarehouse(warehouse_4:=0 set to 1; objAfter:3862) - #
SwitchWarehouse(warehouse_9:=0 set to 1; objAfter:3750) - #
SwitchWarehouse(warehouse_12:=0 set to 1; objAfter:3620) - #
SwitchWarehouse(warehouse_0:=1 set to 0; objAfter:3609) - #
SwapWarehouses(warehouse_0:=0 and warehouse_4:=1; objAfter:3572) - #
SwapWarehouses(warehouse_1:=1 and warehouse_6:=0; objAfter:3552) - #
SwapWarehouses(warehouse_0:=1 and warehouse_1:=0; objAfter:3532) - #
SwitchWarehouse(warehouse_7:=0 set to 1; objAfter:3528) - #
RandomizeNeighborhood(warehouse_12:=1 set to 0, warehouse_
SwitchWarehouse(warehouse_7:=0 set to 1; objAfter:3656) -
SwapWarehouses(warehouse_12:=0 and warehouse_13:=1; objAfter:3528) - °
RandomizeNeighborhood(warehouse_14:=0 set to 1, warehouse_
SwitchWarehouse(warehouse_7:=0 set to 1; objAfter:3907) -
SwitchWarehouse(warehouse_12:=1 set to 0; objAfter:3882) -
SwitchWarehouse(warehouse_13:=1 set to 0; objAfter:3862) -
SwitchWarehouse(warehouse_14:=1 set to 0; objAfter:3658) -
SwitchWarehouse(warehouse_12:=0 set to 1; objAfter:3528) - °
MaxMoves: reached 2 moves
openWarehouses:={1,2,3,6,7,9,12}

Three shades of Warehouse
Location

• The presented one:

• Chosing the neighborhood randomly

• Learning about neighborhood efficiency

val neighborhood = (AssignNeighborhood(warehouseOpenArray,
"SwitchWarehouse")
 exhaustBack SwapsNeighborhood(warehouseOpenArray,
"SwapWarehouses")
 orElse (RandomizeNeighborhood(warehouseOpenArray, W/5)
maxMoves 2)

 saveBestAndRestoreOnExhaust obj)
val neighborhood = (AssignNeighborhood(warehouseOpenArray,
"SwitchWarehouse")
 random SwapsNeighborhood(warehouseOpenArray,
"SwapWarehouses")
 orElse (RandomizeNeighborhood(warehouseOpenArray, W/5)
maxMoves 2)

 saveBestAndRestoreOnExhaust obj)val neighborhood = (AssignNeighborhood(warehouseOpenArray,
"SwitchWarehouse")
 learningRandom SwapsNeighborhood(warehouseOpenArray,
"SwapWarehouses")
 orElse (RandomizeNeighborhood(warehouseOpenArray, W/5)
maxMoves 2)

 saveBestAndRestoreOnExhaust obj)

Conclusion: Features of
Oscar.cbls

• Modeling part: Rich modeling language
– IntVar, SetVar
– 80 invariants: Logic, numeric, set, min-max, etc.
– 17 constraints: LE, GE, AllDiff, Sequence, etc.
– Constraints can attribute a violation degree to any variable
– Model can include cycles
– Fast model evaluation mechanism

• Efficient single wave model update mechanism
• Partial and lazy model updating, to quickly explore neighborhoods

• Search part
– Library of standard neighborhoods
– Combinators to define your global strategy in a concise way
– Handy verbose and statistics feature, to help you tuning your search

• Business packages: Routing, scheduling
– Model and neighborhoods

• FlatZinc Front End [Bjö15]

• 27kLOC

To some extend, brain cycle
is more valuable than CPU cycle

(1/2)
• Why don’t you use C with templates,

and compile with gcc –o3? You would be
2 times faster!

• Why should I use your stuff? I can
program a dedicated solver that will run
2 times faster because it will not need
the data structures you need in OscaR

To some extend, brain cycle
is more valuable than CPU cycle

(2/2)
• That is true, but

– Algorithmic tunings deliver more than 2 to 4!
• Ex: We lately had a speedup 10 by tuning a search

procedure
• Using symmetry elimination on neighborhoods
• Restricting your neighborhood to relevant search zones

– Our approach cuts down dev cost, so you have
time to focus on these high-level tunings.
• Since budget is always limited

– Next step: parallel propagation
• So you will have the same “basic speed” than a

dedicated implem, by using more cores
• A core is cheaper than a single day of work for an

engineer

Who is behind OscaR.cbls?

• CETIC team
– Renaud De Landtsheer
– Yoann Guyot
– Christophe Ponsard
– Gustavo Ospina

• Contributions from Uppsala
– Jean-Noël Monette

• Gustav Björdal

Where is OscaR?

• Repository / source code
– https://bitbucket.org/oscarlib/oscar/wiki/Ho

me
• Released code and documentation

– https://oscarlib.bitbucket.org/

• Discussion group / mailing list
– https://groups.google.com/forum/?fromgrou

ps#!forum/oscar-user

Aéropôle de Charleroi-Gosselies
Rue des Frères Wright, 29/3
B-6041 Gosselies
info@cetic.be

www.cetic.be

Thank you
Merci

	Diapo 1
	What are optimization problems?
	Diapo 3
	Why open sourcing this code?
	Optimization by local search (LS)
	The basic equation of local search
	Constraint-based local search
	The uncapacitated warehouse location problem
	A model of the WLP, written with OscaR.cbls
	Modeling Support with OscaR
	Propagation graph for the WLP(4,6)
	What we can do with a model
	Let’s play with the model in console
	How the model will help optimizing?
	Some Relevant Neighborhoods
	Searching the WLP: sample strategy
	A WLP solver written with neighborhood combinators
	The console output
	Three shades of Warehouse Location
	Conclusion: Features of Oscar.cbls
	Diapo 24
	Diapo 25
	Who is behind OscaR.cbls?
	Where is OscaR?
	Diapo 28

