\Jcetic

Your Connectionto ICT Research

[.ocal search with OscaR.cbls
explained to my neighbor

OscaR v3.0 (Sept 2015)

i
L

Renaud De Landtsheer, Yoann Guyot, . &
Christophe Ponsard, Gustavo Ospina

OscaR

OPERATIONAL RESEARCH IN SCALA

C)CQHC What are optimization problems?

Your Connection to ICT Research

* Scheduling
— Tasks, precedence's
— Shared resources
— Deadlines

* Routing
— Points, vehicles
— Distance
—Time windows
— Minimize overall distance

* In general

e @
Neooa @ ~ @
0p R b o ® % $%5 o

— Find values (possibly “structured values”) '
— Minimizing / optimizing objective (s)
— Satisfying constraint (s)

' Oscar OscaR

OPERATIONAL RESEARCH IN SCALA

* Open source framework for combinatorial
0 tion

* CP, S, MIP, DFO engines

— Open source LGPL license
* https://bitbucket.org/oscarlib/oscar
* Implemented in Scala

— C tium
. , UCL, N-Side Belgium
* Contributions from UPPSALA, Sweden

Your Connection to ICT Research

* Higher credibility
—Since it is very intricate algorithms,

customers can look at the quality of the
work

— Being able to look at the commit activity is
also a plus for customers

e Easier transfer

e Mutualise extensions between
customers
e Attract contributions

— From external contributors
CinA i”hFArm~lATi A ~

celicC

Your C Researc h

* Perform a descend in the solution space;
repeatedly move from one solution to a better one

* Next solution identified via neighborhood
exploration

TSP Example: moving a city
to another position in the current circuit
* Currentstate:a[Jb[Jc[Jd[]le[]a

* Moving c gives three neighbors: @ © @ @ @ ©
~afcObOdde[a @ olo @ @0
—allbfjdclela oo o(e)e e
-20b0d0enena "eTelolotele

I 0 -l
-o;@o:o;o ®

——————

* Lots of black magic's, to escape fror'ndocaimlmﬁm

(\ cetnc The basic equation of local
. search

al search-based solver = model + search procedur

f

Defines
variables
constraints
Objectives

Neighborhoods That modify
some variables of the probler

celicC

Your C Researc h

* Goal: make it easy to write optimization engine based
on the principle of local search

 Approach: Separate the modeling from the search in
different component

— Represent the problem as a large collection of mathematical
formulas

— Evaluate moves on this formula

* Technically:

— Have an engine to evaluate the formula quickly

— Based on the fact that very few decision variables are
Impacted by a move

— So rely on incremental model updates

C)cetic The uncapacitated warehouse
R sfihreddd location problem

* Given 6@
— S: set of stores that must be stocked by th- CO \

— W: set of potential warehouses (Ce : d@

« Each warehouse has a fixed cost * O\)

» transportation cost from w- e .
 Find \(\ 6\(\

X
o : V) Yo
O: subset of
- Miniw;\t\O\N \J?O(\ OQ and the transportation
~ \ .
O\\)" . L
< ‘\\e Loe .

A store is assigned to its nearest open warehouse

C) . A model of the WLP,
CeIC written with OscaR.cbls

val m = new Store()

//An array of Boolean variables representing that the warehouse is
open or not
val warehouseOpenArray = Array.tabulate(W)

(w => CBLSIntVar(m, O to 1, O, "warehouse " + w + ""))

//The set of open warehouses
val openWarehouses = Filter(warehouseOpenArray)

//for each shop, the distance to the nearest open warehouse
val distanceToNearestOpenWarehouse = Array.tabulate(D)
(d => Min(distanceCost(d), openWarehouses,
defaultCostForNoOpenWarehouse))

//summing up the distances and the warehouse opening costs
val obj = Objective(Sum(distanceToNearestOpenWarehouse)
+ Sum(costForOpeningWarehouse, openWarehouses))

celicC

Your C Researc h

* Two types of variables
— IntVar and SetVar

* Invariant library (they are functions, actually)

—Logic, such as:

* Acces on array of IntVar, SetVar

*Sort

* Filter, Cluster (indexes of element whose value is...)
—MinMax, such as:

* Min, Max

* ArgMin, ArgMax
—Numeric, such as:

* Sum, Prod, Minus, Div, Abs
—Set, such as:

* Inter, Union, Diff, Cardinality

Summing up to roughly 80 invariants in the library

C)cehc Propagation graph for the

Your Connection to ICT Researc ‘{‘f r E !g g! tg !

WO
W1
W2 WsCost—— D> gopsetmng
W3
"~ WsToSO- >OpenWToS 1O ob
WsToS1- OpenWToS
Erizg 52; WsToS2> OpenWTos s Transpor
matrix WsToS3 >OpenWToS P Cost
WsToS4 OpenWToS
\W5T055->®>OpenWToS

]
celicC
* Model has some input variables

— warehouseOpenArray
* We can modify the value of these input

variables

* The model is updated through a procedure

called propagation.

— Propagation is triggered when the value of an
output variable is queried, so you always have
coherent answers on the model

— Propagation is very fast, thanks to adequate
algorithms and data structures

(\

)cetnc

ectionto ICT Researc

Let’s play with the model in

consnle

W W T R B U

>printin(openWarehouses)
openWarehouses:={}
>printin(oby)
IntVarObjective(Sum2:=1500000
)

> warehouseOpenArray(0) ;=1
> printin(openWarehouses)
IntVarObjective(Sum2:=7849)
> printin(oby)
openWarehouses:={0}

> warehouseOpenArray(5) ;=1
> printin(openWarehouses)
IntVarObjective(Sum2:=6024)
> printin(oby)

Nnben\A/arehniicec =N 51

(/cehc

Your Connection to Researc

* Model is fit for local search, based on neighborhood
exploration

— Eg: switching one warehouse (open or close it)

 Does a move improve on the objective?
— Perform the move EQ: switch the warehouse
— Query the objective value
— RollBack
— Methods available in the Objective class perform this

//summing up the distances and the warehouse opening
costs

val obj =
Objective(Sum(distanceToNearestOpenWarehouse)

* Nei hborhtbé;élfé%méc raEler ioTégenouse,

W
- Progggat%% Psulsncsr)%mental

— Propagation is not performed after the rollback
— Partial propagation: only involves what is needed to evaluate obj

|
cetic

Your Connection to Researc h

* Switching a single warehouse

— either closing an open warehouse,
or opening a closed one

— Size: O(#W)
— Connected: all solutions are reachable

 Swapping two warehouses
— close an open warehouse and open a closed one
— Size: O(#W?)
— Not Connected

e Randomization at local minimum
— Randomize a fraction of the warehouses

How can we assemble these bricks?

()cet@archmg the WLP: sample strategy

ooooooooooooooooooooooooooo

* Do all switch moves We want to try also
 Then all the swap moves the random neighborhood choice

* [terate until no more mov- &\;
6\ ached

\<°
\(e 6@’5‘6\\\;

. 1S finished

e Perform some r'

Note: t .1bining neighborhood is not new
(eqg. [G _197], and many papers at MIC)

) . A WLP solver written with
Lcelc neighborhood combinators

val m = new Store()
val warehouseOpenArray = Array.tabulate(WV)

(w => CBLSIntVar(m, 0 to 1, O, "warehouse " + w + ""))
val openWarehouses = Filter(warehouseOpenArray)

val distanceToNearestOpenWarehouse = Array.tabulate(D)
(d => Min(distanceCost(d), openWarehouses,
defaultCostForNoOpenWarehouse))

val obj = Objective(Sum(distanceToNearestOpenWarehouse)
+ Sum(costForOpeningWarehouse, openWarehouses))

m.close()

val neighborhood = (AssignNeighborhood(warehouseOpenArray,
"SwitchWarehouse")
exhaustBack SwapsNeighborhood(warehouseOpenArray,
"SwapWarehouses")
orElse (RandomizeNeighborhood(warehouseOpenArray, W/5)
maxMoves 2)
saveBestAndRestoreOnExhaust obH/)

cetic

Your Connection to Research

WarehouselLocation(W:15, D:150)
SwitchwWarehouse(warehouse_0:=0 set to
SwitchwWarehouse(warehouse_1:=0 set to
SwitchwWarehouse(warehouse_2:=0 set to
SwitchwWarehouse(warehouse_3:=0 set to
SwitchWarehouse(warehouse_4:=0 set to 1; objAfter:3862)
SwitchwWarehouse(warehouse_9:=0 set to 1; objAfter:3750)
SwitchwWarehouse(warehouse_12:=0 set to 1 objAfter:3620)
SwitchwWarehouse(warehouse_0:=1 set to 0; objAfter:3609)
SwapWarehouses(warehouse_0:=0 and warehouse_4:=1; objAfter:3572)
SwapWarehouses(warehouse_1:=1 and warehouse_6:=0; objAfter:3552)
SwapWarehouses(warehouse_0:=1 and warehouse_1:=0; objAfter:3532)
SwitchwWarehouse(warehouse_7:=0 set to 1; objAfter:3528)
RandomizeNeighborhood(warehouse_12:=1 set to 0, warehouse_
SwitchWarehouse(warehouse_7:=0 set to 1; objAfter:3656)
SwapWarehouses(warehouse_12:=0 and warehouse_13:=1; objAfter:3528)
RandomizeNeighborhood(warehouse_14:=0 set to 1, warehouse_
SwitchWarehouse(warehouse_7:=0 set to 1; objAfter:3907)
SwitchWarehouse(warehouse_12:=1 set to 0; objAfter:3882)
SwitchWarehouse(warehouse_13:=1 set to 0; objAfter:3862)
SwitchWarehouse(warehouse_14:=1 set to 0; objAfter:3658)
SwitchWarehouse(warehouse_12:=0 set to 1; objAfter:3528)

MaxMoves: reached 2 moves

openwWarehouses:={1,2,3,6,7,9,12}

objAfter:7052)
objAfter:5346)
objAfter:4961)
objAfter:4176)

= N= N=

~=

RPRRRRR

ST P e 1t T N g ey

!)cetnc Three shades of Warrehoqse
Your Connection to ICT Res 1l ocation

* The presented one:

val neighborhood = (AssignNeighborhood(warehouseOpenArray,
"SwitchWarehouse")

exhaustBack SwapsNeighborhood(warehouseOpenArray,
"SwapWarehouses")

orEl (Random:zeNe ighborhood(warehouseOpenArray, W/5)
m&AQE NQg the neighbor cod ran omly

saveBestAndRestoreOnExhaust oby)

val neighborhood = (AssignNeighborhood(warehouseOpenArray,
"SwitchWarehouse")

random SwapsNeighborhood(warehouseOpenArray,
"SwapWarehouses")

* Learn m@“amfb'wm@wwwh@@fdue?ﬁmﬁen@gﬁ

maxMoves 2

val néQHB@M%MM@WW@WWérehouseOpenArray,

"SwitchWarehouse")
learningRandom SwapsNeighborhood(warehouseOpenArray,
"SwapWarehouses")

orElse (RandomizeNeighborhood(warehouseOpenArray, W/5)
maxMoves 2)

|
cetic

Your Connection to Research

* Modeling part: Rich modeling language
—IntVar, SetVar
— 80 invariants: Logic, numeric, set, min-max, etc.
— 17 constraints: LE, GE, AlIDiff, Sequence, etc.
— Constraints can attribute a violation degree to any variable
— Model can include cycles

— Fast model evaluation mechanism
 Efficient single wave model update mechanism
 Partial and lazy model updating, to quickly explore neighborhoods

Search part

— Library of standard neighborhoods

— Combinators to define your global strategy in a concise way

— Handy verbose and statistics feature, to help you tuning your search

Business packages: Routing, scheduling
— Model and neighborhoods

FlatZinc Front End [Bjo15]

27kLOC

Your Connection to ICT Research

* Why don’t you use C with templates,
and compile with gcc -037 You would be
2 times faster!

» Why should | use your stuff? | can
program a dedicated solver that will run
2 times faster because it will not need
the data structures you need in OscaR

celicC

Your C Researc h

e That is true, but

— Algorithmic tunings deliver more than 2 to 4!

* Ex: We lately had a speedup 10 by tuning a search
procedure

* Using symmetry elimination on neighborhoods
* Restricting your neighborhood to relevant search zones

— Our approach cuts down dev cost, so you have
time to focus on these high-level tunings.
* Since budget is always limited

— Next step: parallel propagation

* So you will have the same “basic speed” than a
dedicated implem, by using more cores

* A core is cheaper than a single day of work for an
engineer

(DCe“C Who is behind OscaR.cbls?

ooooooooooooooooooooooooooo

 CETIC team
— Renaud De Landtsheer
—Yoann Guyot
— Christophe Ponsard
— Gustavo Ospina

e Contributions from Uppsala S

— Jean-Noel Monette
* Gustav Bjordal

Your Connection to ICT Research

* Repository / source code

— https://bitbucket.org/oscarlib/oscar/wiki/Ho
me

* Released code and documentation
— https://oscarlib.bitbucket.org/
* Discussion group / mailing list
— https://groups.google.com/forum/?fromgrou

ps#!forum/oscar-user

Thank you
Merci

Ocetic

Your Connectionto ICT Research

Aéropole de Charleroi-Gosselies
Rue des Freres Wright, 29/3
B-6041 Gosselies
info@cetic.be

www.cetic.be

	Diapo 1
	What are optimization problems?
	Diapo 3
	Why open sourcing this code?
	Optimization by local search (LS)
	The basic equation of local search
	Constraint-based local search
	The uncapacitated warehouse location problem
	A model of the WLP, written with OscaR.cbls
	Modeling Support with OscaR
	Propagation graph for the WLP(4,6)
	What we can do with a model
	Let’s play with the model in console
	How the model will help optimizing?
	Some Relevant Neighborhoods
	Searching the WLP: sample strategy
	A WLP solver written with neighborhood combinators
	The console output
	Three shades of Warehouse Location
	Conclusion: Features of Oscar.cbls
	Diapo 24
	Diapo 25
	Who is behind OscaR.cbls?
	Where is OscaR?
	Diapo 28

