
Abstract

This paper presents a tool-supported method to reengi-
neer web sites, that is, to extract the page contents as XML
documents structured by expressive DTDs or XML Sche-
mas. All the pages that are recognized to express the same
application (sub)domain are analyzed in order to derive
their common structure. This structure is formalized by an
XML document, called META, which is then used to extract
an XML document that contains the data of the pages and a
XML Schema validating these data. The META document
can describe various structures such as alternative layout
and data structure for the same concept, structure multi-
plicity and separation between layout and informational
content. XML Schemas extracted from different page types
are integrated and conceptualised into a unique schema
describing the domain covered by the whole web site.
Finally, this conceptual schema is used to build the data-
base of a renovated web site. These principles will be illus-
trated through a case study using the tools that create the
META document, extract the data and the XML Schema.
keywords: reengineering, web site, XML, data extraction.

1. Introduction

Web sites can be seen as software systems comprising
thousands of line of "code" (HTML) split into many "mod-
ules". Static HTML pages are sort of programs with encap-
sulated data, which violate software engineering good
practice.

Nowadays large web sites are dynamically managed.
The pages are built on-the-fly through (programs) scripts
that get data from a database. The dissociation of the data
from the layout can overcome or simplify web site mainte-
nance problems [2] such as out-of-date data, inconsistent
information or inconsistent style.

Web sites publish a large amount of data that change fre-
quently and the same data are present on many different
pages (redundancy). If the data are stored in a well struc-
tured database, keeping them up-to-date is easier than if
these data were disseminated in multiple pages. Pages that

are generated through a script or a style sheet have all the
same style which increases the user’s comfort and gives a
more professional look to the site.

Many sites are made up of static pages because such
pages can be easily created using a variety of tools that can
be used by people with little or no formal knowledge of
software engineering. When the size of these sites
increases and when these sites require frequent update,
these HTML pages cannot be managed any more. Hence
the need to migrate static websites to dynamic ones that are
easier to maintain.

This paper presents a methodology to extract the data
from static HTML pages to migrate them into a database. If
we want to separate pages’ data from their layout, these
pages need to be analysed in order to retrieve the encapsu-
lated data and their their semantic structure have to be elic-
ited. For example, we need to know that a page describing
a customer contains its name, one or two phone number(s),
an address (itself comprising street, city and zip informa-
tion). When the data structure of each page has been recov-
ered, it can be transformed into a normalized database.
Then, the data can be stored into the newly created data-
base. The latter can now be used to generate the dynamic
pages of the new web site. This database can also be used
for other applications such as e-business application, or to
generate information on other media. The database can also
be connected to the company back-office applications to
exchange up-to-date information.

As suggested, a web site exhibits similarities with a
software system. Retrieving its data structure is close to
recovering the conceptual schema of a legacy database, a
process called, in the database community, database
reverse engineering (DBRE) [3]. DBRE is described as the
reverse of database design, thus we can sketch our web site
reverse engineering methodology as the reverse of ideal
web site design.

A possible method to design a web site is to decide what
kind of information has to be displayed and for each kind
of information to define the layout of the pages. Then the
pages are created (edited) according to this layout.

A tool-supported method to extract data and schema from web sites

Fabrice Estiévenart1, Aurore François1, Jean Henrard1,2, Jean-Luc Hainaut2

1CETIC, rue Clément Ader, 8 - B6041 Gosselies - Belgium
2Institut d’Informatique, University of Namur, rue Grandgagnage, 21 - B5000 Namur - Belgium

{fe, af, jh}@cetic.be, jlh@info.fundp.ac.be

The reverse of this design methodology can be
expressed as follows: first, we detect the different type of
pages (kind of information); then, for each type of pages
we retrieve the common structure and layout; thanks to this
common structure we extract the data and we integrate and
conceptualize the structure of all the types of pages as a
global schema, that is, the schema of the future database.

The remainder of the paper is organized as follows. In
Section 2, we give a short and non-exhaustive presentation
of related works in web sites reverse engineering. Section 3
details the steps of the web sites reverse engineer proce-
dure. After this methodological point of view, we shortly
specify the META format that allows us to mark the perti-
nent components of the page types (Section 4). The method
is supported by prototype tools that will be described in
Section 5. Finally, Section 6 illustrates the method and the
tools with a small but representative case study.

2. State of the Art

Many researches and developments propose methods and
tools to analyse web page structures and layout. However,
goals aimed at are various and sometimes totally differ
from ours.

[2] suggests to apply conventional reverse engineering
techniques such as code analysis and clone detection in
order to reduce duplicated content and achieve maintain-
able web sites. The developed system includes an HTML
parser and analysers that separate content from layout by
integrating in HTML pages scripts for retrieving the
dynamic data from a database.

By a static analysis of HTML code, VAQUISTA tries to
recover the presentation model of web pages in order to
facilitate presentation migration to other kinds of user
interfaces [4].

Others claim that by a semantic enrichment of web
pages, information can be found on the Web in a more effi-
cient way than by keyword-based queries [5]. In that con-
text, the extracted data are considered as the result of a
query rather than the required basis for data migration.

In most cases, data extraction can only be done after a
user-oriented step that consists of building the domain
ontology by locating and naming the web information
[6][7][8][9]. At the opposite, [5] suggests to automate as
much as possible that process and therefore assumes that
there is some knowledge specific to the topic the web
pages are about.

These different approaches use a specific inner formal-
ism to specify the extraction of structures from HTML
pages. Lixto [6] is a wrapper generation tool which is well-
suited for building HTML/XML wrappers. Patterns discov-
ered by the user are internally expressed by a logic-based
declarative language called Elog. In XWRAP [8], the

extraction rules are defined in a more procedural way using
if...then...else and loop structures. Finally, [7] uses the term
"command" to describe a concept, its HTML location and
its data value.

Figure 1. The suggested web reverse-engineering
process

3. Methodology

3.1. Overview of the methodology

Figure 1 shows a general overview of the proposed meth-
odology and tools. It takes as input data-centric documents
[10] in order to produce interpreted XML data and a con-
ceptual schema covering the domain of the whole web site.
"Cleaning" and "Extraction" are two automated processes
while "Classification", "Semantic Enrichment" and "Con-
ceptualisation" are user-driven ones. All these processes
are chronologically detailed in the next paragraphs.

3.2. Web pages classification

Web pages within a site can be gathered into semantic
groups according to their informational content. A page
type is a set of pages related to a same concept. All the
pages of a type have some similarities: they display the
same pieces of information and have a very similar, while
possibly different, layout. The file path is a good clue to
detect the page types through a web site. Indeed, in many

Web Page

Web site

Classification

Web Page
HTML

Page Type

Cleaning

Web Page
XHTML

Page Type

Semantic Enrichment

META
File

Page Type

XML
Page Type

XML schema

Conceptual schema

Conceptualisation

Extraction

Tidy

Semantic
browser

HTML
validator

Data
extractor

Schema
extractor

DB-Main

Web Page

Web site

Classification

Web Page
HTML

Page Type

Cleaning

Web Page
XHTML

Page Type

Semantic Enrichment

META
File

Page Type

XML
Page Type

XML schema

Conceptual schema

Conceptualisation

Extraction

Tidy

Semantic
browser

HTML
validator

Data
extractor

Schema
extractor

DB-Main

cases, all the files belonging to a same type are gathered in
the same web directory. [11] discusses a clustering algo-
rithm that gathers pages into cohesive groups (clusters) by
computing the structural edit distance between pages.

3.3. HTML cleaning

When editing web pages with a plain text editor, syntactical
mistakes are frequent: opening tags are not closed, quotes
around attribute values are forgotten or some element
names are undefined in the HTML standards.

HTML interpreters such as web browsers are very lax-
ists when they display HTML pages: visual information
could indifferently appear to the user even if unrecognized
tags or attributes are used in the source code.

The web reverse engineering process takes as input
HTML pages. As HTML is a short-constrained language, it
should be useful to check the well-formedness and the
validity of these sources before working on it.

Tools, such as Tidy [12], allow to transform any HTML
page into a well-formed XHTML-valid document [13].
The result is an XML document that can be parsed and
transformed by specific processors such as DOM [14] or
XSLT [15].

3.4. Semantic enrichment

Defined by the World Wide Web Consortium, HTML is a
tagged meta-language used to specifiy how text, graphics
and images will be displayed in a web page. It allows to
create headings, item numbered lists, paragraphs and so on.
This presentation language is therefore semantically very
poor. Identical real world entities can be displayed in many
different manners while, at the opposite, information dis-
played in a homogeneous way do not always have the same
meaning. However, heuristics allow to deduce some data
structures from the HTML source code. For example, the
headings hierarchy induced by the tags <H1>, <H2>...,
often reflects a tree structure composed by the concepts
associated with the headings. Similarly, the lines of a table
can be instances of a more general concept associated with
the table. Based on these assumptions, the first step in our
system redocumentation process will be to add some struc-
ture and semantics to the web content. To enable data and
structure extraction, information about the name and the
position of the concepts in web pages are stored in an XML
file called META. A META description is associated with
each page type. In the next paragraphs, we detail the format
and goal of this description.

3.4.1. Concepts identification and description
As mentioned above, pages of a same type show a similar
informational content. Before extracting data and struc-

tures from web pages, it is first necessary to identify,
among all the pages of the same type, the most significative
concepts displayed in them.

In our study, a concept could be defined as a part of a
HTML tree describing the layout, the structure and possi-
bly the value of a certain real entity. A concept is therefore
not restricted to a value on a web page but is extended to
the whole page area related to the described reality.

The following example shows the concept "Phone Num-
ber". It consists of a single line (tag <tr>) in a HTML table
and is therefore composed of both HTML and text nodes.

<tr>

<td align="middle" bgcolor="#FFFF66">Phone :</td>
<td bgcolor="#FFFF99">+32 71 72.23.49</td>

</tr>

The master concept of the page type must be identified.
It covers the entire page and gives its name to the page
type.

Each concept is characterized by its name and its
description, that is made up of an abstract tree containing
presentation node(s) (i.e., compliant HTML tags), possibly
structure node(s) and value node.

Some concepts include other identified (sub)concepts,
providing a hierarchical concept structure that must be
materialized in the META file. For example, a concept
named "Order" could be a HTML list (tag) whose
items (tag) form another concept named "Detail". The
corresponding HTML code may look like the following:

<h1>Order 001562</h1>

1 printer at 89 €
1 flat screen at 499 €

To represent optional and/or multiple occurrences of the
same concept in a page, maximum and minimum concept
cardinalities are used.

Terminal concepts (leaves), that are not decomposed in
subconcepts, may contain the data values. These dynamic
pieces of information must be identified in order to make
data extraction possible. In the HTML code, a value can be
a simple text node, a mixed-content node (text containing
HTML tags) or an attribute value.

3.4.2. Anchor and links
Hypertext link are a major property of the World Wide
Web. As most of the HTML tags are semantically very
poor, anchors and links can be interpreted, in many cases,
as semantic relations between concepts. All links and
anchors within the web site should be marked out as rele-
vant in our reengineering process.

3.4.3. Alternative structures
Pages of the same type have similar structure and layout
but may exhibit some differences, particularly if HTML
code written by hand. We distinguish data structure differ-
ences from layout differences. A data structure difference

occurs when the data structure of the same (sub)concept
varies in two pages of the same type. The concept "Loca-
tion", for example, can be made up of "Street", "Number"
and "City" components on one page while it is expressed
by atomic component "Country" on another page.

When the layout of a concept is different on two pages
of the same type, it is called a layout difference. A label,
for example, might appear in bold-face on a page and in
italic on another page.

Since the META file is to exhaustively describe a page
type, it must allow alternative structure to be expressed,
that declares multiple descriptions of a unique concept.

3.5. Data and schema extraction

When the META file have been completed (i.e., it contains
sufficient information to describe all the pages of the same
type), it can be used to extract data from HTML pages and
to store them in an XML document. The element names
and structure of this document are deduced from the
semantic information provided by the META file. This
data-oriented document has to comply with an XML
Schema [16] that is also automatically extracted from the
META file.

3.6. Schema integration and conceptualisation

If a site comprises several page types, their XML Schemas
must be integrate into a single integrated schema that can
then be conceptualized to represent the application domain
covered of the whole web site [17].

During this phase, relationships expressed by HTML
links are materialised into XML Schema reference mecha-
nisms (xs:key, xs:unique and xs:keyref constraints). These
references, similar to database foreign keys, are deduced
from data analysis - in this case URLs - and domain exper-
tise.

In practice, the following heuristic is applied. When a
page of type X contains a link that targets a page of type Y,
we can deduce that a relation exists between the two pages.
If throughout all pages of category X, the same type of link
targets the same type of anchor on pages of category Y, it
appears to be a good candidate to become a foreign key. Of
course, only a good knowledge of the domain allows to dis-
tinguish semantic relations from purely navigational or
external links.

Finally, redundant information is detected and deleted.
For example, labels of links often consist in data from the
targeted page. Data analysis, especially surrounding links,
allows this replicated information to be identified.

3.7. Database design and data migration

Classical database engineering process aims at building an
information system from the conceptual schema produced
in the preceeding step [1]. Finally, the extracted XML data
are migrated to this new database.

4. Syntactic description of the "META"
XML file

As mentioned above, the goal of the META file is to pro-
vide information about the name, the location and the inner
structure of the concepts displayed on the pages of a spe-
cific type. This descriptive document will then be used to
extract data and their XML structure from web pages.

In the next sections we describe the major syntactic ele-
ments of the META file. They consist of reserved XML
elements belonging to the namespace "meta".

4.1. Root and global elements

For each page type, a list of the displayed concepts has to
be drawn. In the META file describing the page type, each
concept becomes an element <meta:element> whose
attribute "name" informs about the name of the concept.
All these XML elements are globally declared in a XML
Schema way, i.e., they are the direct children of the root
element, named "HTMLDescription". This root element
does not accept other direct child and its first child will be
the <meta:element> describing the general concept. Here is
the general XML structure of all META file.

<HTMLDescription xmlns:meta="http://www.cetic.be/FR/CRAQ-DB.htm" >
<meta:element name="Main concept">

…
</meta:element>
<meta:element name="Concept1">

…
</meta:element>
...

</HTMLDescription>

4.2. Subelements and values

The description of a concept is usually composed of its
HTML subtree. Some reserved elements have also been
defined to represent the concept hierarchy, the concept car-
dinalities or to locate concept values. The description of a
concept is enclosed within the tag <meta:element> of this
concept.

The hierarchical concept structure is materialised in the
META file through a reference mechanism which allows
references to a globally declared concept inside a concept
description to be declared. To do so, a <meta:element>
with an attribute "ref" is introduced in the HTML tree,
replacing the referenced concept. The value of the "ref"
attribute is the name of the global referenced <meta:ele-
ment>. An attribute "min_card" (resp. "max_card") can be

declared in subelements to specify its minimum (resp.
maximum) cardinality within its parent element.

Locating concept values inside web pages is necessary
to enable data extraction. A value is, usually, a simple text
node. In that case, we simply suggest to replace this leave
node by a special XML element called <meta:value/>.

4.3. Anchors and links

An anchor is a HTML tag <A> having an attribute "name"
whose value identifies the tag within the web page. To
reflect this property, an element <meta:key> will enclose
all significant anchors.

In a analogous way, a link is a HTML tags <A> with an
attribute named "href". The content of this tag determines
how the link will appear on the web page. It is usually
either a simple text node or a HTML tag introducing a
clickable picture. In both cases, we suggest to surround sig-
nificant HTML links with an element <meta:keyref>.

4.4. Alternative structure

To enable multiple description for a single concept, an
alternative structure is defined in the META file. This is
introduced by a <meta:choice> element whose direct chil-
dren are all <meta:group> elements. Each of these group-
ings contains a probable description of the concept. The
content of a <meta:group> element is therefore identical to
a simple concept description. Detailed syntax for alterna-
tive structures will be used in the case study (Section 6).

5. Tools

5.1. The semantic browser ("META" generator/
editor)

Users that wish to reengineer a web site are supposed to
have a good knowledge of the HTML language. However,
we think that the tool allowing to locate concepts in web
pages should offer a visual comfort. For this reason, we are
now developing the semantic web browser. For each page
type, the user selects and names some areas in a first sam-
ple web page. He can also specify concept cardinalities,
locate data values and mark off significant links/anchors.
On the basis of these user-driven information, a META file
can be automatically generated and applied to all the pages
of a type. Ultimately, each page type is described by a
META file.

5.2. The HTML validator

Usually the semantic browser is used to analyse some of
the pages of a type; analyse all of them would take too

much time. So this first analysis produces a META file that
must be validated against all the pages of that type. The
HTML validator checks if all the pages of a given type
complies with this META file, i.e., if the latter correctly
describes this web page.

To achieve this, a Java program parses in parallel the
META file and the web page. The names of the HTML
nodes are compared against those declared in the META
file while constraints, such as elements structure and cardi-
nalities, are checked out.

If the validation process succeeds for all the pages of a
type, the META file is said "exhaustive" and the extraction
process may be executed for that type.

5.3. The data and schema extractors

Using the information contained in the META file, the data
values can be identified in the web pages and can be given
specific semantics through expressive names. From these
pages and their META file, the data extractor generates a
data-oriented XML document. It contains all the extracted
data values enclosed in elements. Element names depend
on concept names previously defined by the user.

A META file describes the layout and the concept struc-
ture of all the web pages of a type. By ignoring the presen-
tation elements (HTML tags), the schema extractor extracts
the XML Schema that validates the XML document hold-
ing the data. The W3C XML Schema standard was chosen
for its precise cardinalities and referential constraints.

Both data and schema extractors are Java programs
using the DOM.

5.4. The DB-Main CASE tool

DB-Main [18][19] is a general-purpose database engineer-
ing CASE environment that offers sophisticated reverse
engineering tool-sets. Its purpose is to help the analyst in
the design, reverse engineering, migration, maintenance
and evolution of database applications. DB-Main offers the
usual CASE functions, such as database schema creation,
management, visualization, validation, transformation, as
well as code and report generation.

XML schemas generated in the previous step are
imported in DB-Main where they are visually displayed as
tree structures. Using advanced transformation primitives,
these schemas are integrated and conceptualised.

Figure 2. The Web Page of the Law’s Department

Figure 3. The Web page of the Pharmacy’s Department

6. Case study

We will illustrate our purpose by resolving a small case
study. A university has decided to reverse engineer its
static website made up of pages describing departments
and people working in these departments.

6.1. Preparation work: classification and cleaning
of the pages

The implementation of the first step - the web pages classi-
fication - will confirm our first feeling. Indeed, the analysis
of file paths and pages brings us to the conclusion that two
pages types are coexisting on the web site: "Department"
and "Staff". The second phase, consisting in the cleaning of
the HTML code, turns out to be quite easy.

6.2. The page type "Department"

For the needs of this case study, we will mainly examine
two pages (Figure 2 and Figure 3) of the Department page
type. These pages describe respectively the departments of
Law and Pharmacy. One glance at the two pages is enough
to ensure that these pages, even if they both definitely
belong to the same type, present some differences, con-
cerning their informational content and they layout as well.
Concerning the data structures, we notice that some ele-
ments are present in one page but not in the other, while the
multiplicity of some elements exhibits variations too. For
instance, the page of the Department of Pharmacy (Figure
3) is the only one that contains a map localising the depart-
ment and to mention the presence of PhD Students, while
the page relative to the Department of Law (Figure 2)
describes some administrative Staff, which the Department
of Pharmacy doesn't seem to be concerned with. In terms of
multiplicity, we observe that pages of departments of Law
and Pharmacy contain respectively three and two academic
staff members and two and three projects. About the lay-
out, we can observe that the staff members are either enu-
merated in a table or introduced by bullets.

Moreover, the names of projects undertaken by Depart-
ments of Pharmacy and Law are respectively italicised and
written in bold type.

6.3. Building the META file

We construct the META XML document that will
inform the extractors about the various structure and pre-
sentation of the contents.

We analyse a first sample page, the "Department of
Law" page, in which, we locate the concepts of "Depart-
ment", "DeptName", "Phone", "Fax", "Address", "Mail",
"Description", "Staff", "Academic staff", and so on… We
all place them in a "meta" namespace and position them as
direct children of a <HTMLDescription> root element:

<HTMLDescription xmlns:meta="http://www.cetic.be/FR/CRAQ-DB.htm" >
<meta:element name="Department">

…
</meta:element>
<meta:element name="DeptName">

…
</meta:element> …

</HTMLDescription>

Elements definition. Each <meta:element> contains the
sequence of HTML tags that describe the concept. The
position where the data takes place is marked by a
<meta:value/> tag. In our example, the META's section
describing the "Description" element - that takes place as a
paragraph introduced by a third-level heading named
"Description" - is the following:

<meta:element name="Description">
<h3>Description</h3>
<p><meta:value/></p>

</meta:element>

Subelements reference. Hierarchical structures, like
"Details" - that is composed of "Phone", "Fax", "Address",
and "Mail" - are represented by elements referenced in
their father through a "ref" attribute giving their name. If an
element has a multiplicity different from 1-1, "min_card"
and "max_card" attributes are used.

So, in the META file, the "Details" is represented as:
<meta:element name="Details">

<table> <tr>
<meta:element ref="Phone"/>
<meta:element ref="Fax"/>

</tr>
<meta:element ref="Address"/>
<meta:element ref="Mail"/>

</table>
</meta:element>

… while the "ProjectsList" element, describing two
projects, looks like:

<meta:element name="ProjectsList">
<h3>Projects</h3>
 <meta:element ref="Project" min_card="2" max_card="2"/>

</meta:element>

Subelements, like "Phone", are completely described fur-
ther:

<meta:element name="Phone">
<td> Phone </td>
<td> <meta:value/> </td>

</meta:element>

Following this strategy, the META file declares that a
Department is composed of the "Name", "Description",
"Details", "Staff" and "ProjectList" subelements. A "Staff"
element can be divided into "Academic" and "Administra-
tive". Both "Academic" and "Administrative" represent a
list of "Person" elements. A "Person" element has two sub-
elements: "PersonName" and "PersonFunction". In turn,
"ProjectsList" is composed of "Project" elements, which
are declared as sequences of "ProjectName" and "Project-
Dates" subelements.

Anchors and links. <A> tags, representing anchors and
links, are surrounded by respectively <meta:key> and
<meta:keyref> elements. The latest contains a
<meta:value/> if the inner content of the <A> tag is perti-
nent, which is the case of the "PersonName" element:

<meta:element name="PersonName">
<meta:keyref>

<a> <meta:value/>
</meta:keyref>

</meta:element>

The second page analysis. Let us now consider that a first
version of the META file is completed: all the elements of
the page have been described. We can apply that META
file to the second page, "Department of Pharmacy". Of
course, some conflicts - detected by the HTML validator -
occur, because of the differences observed before. So, the
main problem we encounter when reengineering Web sites,
typically structure and layout variations, has now to be
solved.

Among many others, the "Staff" element is concerned:
its subelements vary from one page to another. Indeed,
while the "Department of Law" page mentioned a sequence
of "Academic" and "Administrative" as subelements of
"Staff", the "Staff" element is now composed of "Aca-
demic" and "PhD". As mentioned above, these alternative
structures are enclosed by <meta:group> elements, them-
selves surrounded by a <meta:choice> tag:

<meta:element name="Staff">
<meta:choice>

<meta:group>
<h3>Staff</h3>
<meta:element ref="Academic"/>
<meta:element ref="Administrative"/>

</meta:group>
<meta:group>

<h3>Staff</h3>
<meta:element ref="Academic"/>
<meta:element ref="PHD"/>

</meta:group>
</meta:choice>

</meta:element>

Another kind of structure variation affects the multiplicity
of subelements declared in a <meta:element>. For instance,
the "Department of Pharmacy" page contains a "Map" ele-
ment, not present in the previous page. This optional char-
acteristic can be formalised by a "min_card" attribute set to
"0". The declaration of the "Map" element is added in
"Details":

<meta:element name="Details">
…
<meta:element ref="Address"/>
<meta:element ref="Map" min_card="0"/>
…

</meta:element>

The "ProjectName" element has two kinds of layout:
italicised in the case of the Department of Law, it is now
written in bold characters. The reasoning we applied for the
"Staff" element can also be used to represent layout differ-
ences:

<meta:element name="ProjectName">
<meta:choice>

<meta:group>
<i><meta:value/></i>

</meta:group>
<meta:group>

<meta:value/>
</meta:group>

</meta:choice>
</meta:element>

All the descendants of the "Staff" element - "Aca-
demic", "Administrative", "PhD", "Person", "PersonName"
and "PersonFunction" - are expressed in a similar way.

This is due to a major variation of layout (HTML Table and
List), that has consequences on all levels of the hierarchy.

6.4. Data and schema extraction

When the META file has been completed, the data and
schema extractors can be run. This automated process pro-
duces an XML file containing the data from the two pages
and a XML Schema validating this data file.

Figure 4. The two XML-Schema imported in DB-
MAIN.

Figure 5. The conceptual and relationnal schema.

6.5. Schema integration and conceptualisation

The previous processes have to be iterated for each page
type. In the case of the university web site that we are
studying, the pages describing staff members are also anal-
ysed. Afterwards, their data and schema can be extracted.
This extraction produces an XML-Schema per page type.

All the XML-Schemas are imported into the DB-Main
CASE tool (Figure 4), where they are integrated. Before to
be able to conceptualize the schema we need to recover
two kinds of constraints, namely the relationships between
elements and location and redundancies or irrelevant infor-
mation that can be discarded.

Anchors and links, respectively formalised by
<meta:key> and <meta:keyref> elements, help us to detect
relations. For example, the "PersonName" element
declared within the page type "Department" contains a
<meta:keyref> element. A data analysis shows that this ele-
ment always targets pages of the category "Staff". Our
domain knowledge allows us to consider this relation
semantically rich enough to materialize it by the XML
Schema referential mechanism (xs:keyref and xs:unique).

Nevertheless, the "PersonName" element extracted from
the pages "Department" appears to be the exact copy of
another "PersonName" element displayed on each "Staff"
page. This redundant information is removed from the
schema. From now on, the "PersonName" of the member
of a department can be found thanks to its key value.

Finally, the integrated schema is conceptualised using
reverse engineering specific transformations defined in the
DB-Main tool (Figure 5).

6.6. Web site engineering

The conceptual schema is transformed into a relational
schema (Figure 5). This schema is used to create the new
database and the data (the XML file) are migrated into it.
The new web site can be build dynamically by querying
this database.

7. Conclusions and future work

This paper proposes a methodological approach for web
sites reverse engineering, supported by tools. It applies on
relatively well structured web sites and aims at extracting
data values and data structure from the pages. These results
are the needed basis for web site redocumentation and data
migration towards a newly created information system.

As good practices for web sites engineering and HTML
writing are often ignored, we first have to face with an
enormous diversity of web pages structures and layouts to
represent the same reality. A preparation work made of
pages classification and cleaning helps to partially resolve
the first difficulty.

A user-driven semantic enrichment is then necessary to
make up the relatively poor semantic of HTML code. All
the information provided by the user is stored in the META
file. That XML document specify, for each page type, the
concepts displayed, their location in the HTML tree and
their inner description. Using these information, data and

1-1
f

1-1

1-1
f 1-11-1

f
1-10-N

f
1-1

1-1
f

1-1

1-1
f

1-1

1-1
f

1-1

1-1
f

1-1

1-1
f

1-1

1-1
f 1-1

Title
«content»

Publications
Publication

seq: .Title
.Editor
.Date

PersonName
«content»

PersonFunction
«content»

PersonAddress
«content»

Person
key
gid: key
seq: .Description

.Publications

«tech»
GR1

Editor
«content»

Description

seq: .PersonName
.PersonFunction
.PersonAddress

Date
«content»

1-1
f

1-1

1-1
f

1-1

1-1
f

1-1

1-1
f

1-1

1-1
f

1-1
1-1
f

1-1

1-1
f

1-1

1-1
f 0-1

1-1
f

1-1

1-1
f 1-1

1-1
f

0-1

1-1
f

1-1

1-N
f

0-1

1-N
f 1-1

1-1
f

1-1
1-1
f

1-1

1-1
f

1-1

1-1
f

1-1

1-N
f

0-1

1-1
f

1-1

0-1
f

1-1

1-1
f

1-1

1-1
f 1-1

1-N
f

0-1

Staff

choice: .GR1
.GR2

ProjectsList

ProjectName
«content»

ProjectDate
«content»

Project

seq: .ProjectName
.ProjectDate

Phone
«content»

PHD

PersonName
keyref
«content»

PersonFunction
«content»

Person

exact-1: .f
.f
.f

seq: .PersonName
.PersonFunction

Map
«content»

Mail
«content»
keyref[0-1]

«tech»
GR2

seq: .Academic
.PHD

«tech»
GR1

seq: .Academic
.Administrative

Fax
«content»

Details

seq: .Phone
.Fax
.Address
.Map
.Mail

Description
«content»

DeptName
«content»

Department
webFileName[0-1]
seq: .DeptName

.Details

.Description

.Staff

.ProjectsList

Address
«content»

Administrative

Academic

exact-1: .f
.f

1-1 0-Nstaff

1-1

1-N

in

PROJECT
Name
Date
id: in.DEPARTMENT

Name

PERSON
Name
Function
Address
Status
id: Name

DEPARTMENT
Name
Phone
Fax
Address
Map
Mail
Description
id: Name

PROJECT
Dept_Name
Name
Date
id: Dept_Name

Name
equ: Dept_Name

PERSON
Name
Function
Address
Status
Dept_Name
id: Name
ref: Dept_Name

DEPARTMENT
Name
Phone
Fax
Address
Map
Mail
Description
id: Name

their structure can automatically be extracted from all the
pages of the analysed web site. This extraction is taken in
charge by two java programs that take as input the META
file and the HTML pages to produce the XML-schema and
the XML data. In a final step, the data structures are inte-
grated and conceptualised to produce a conceptual standar-
dised data schema.

Future work will consist of further tests of the method
and XML conventions on real-size web sites. Nevertheless,
with the various mechanisms defined in the META file
(alternative layout and data structure or structure repetitiv-
ity), we think to be able to represent most semi-structured
web sites.

With a good knowledge of the conventions, it is always
possible to build the META file by hand with a plain XML
editor. However, some efforts have still to be done to give
the user a more comfortable interface for that task. To
achieve this, we are developing a semantic visual browser
based on the Mozilla engine. By integrating selected heu-
ristics to the browser, we will achieve a higher degree of
automation for the semantic enrichment process. The heu-
ristics would help detect some HTML patterns and auto-
matically deduce the concepts and their implicit structure.
Even if it seems laborious at a first glance, the semantic
enrichment step is, at that point, partially automated thanks
to the use of the HTML validator that stops its treatment
only when it encounters some conflicts with the META
file. The use of the pre-cited heuristics would also shorten
that semi-automated step.

Based on the existing integration primitives included in
the DB-MAIN CASE environment, schema integration
tools should also be adapted to the XML Schema model.

8. Acknowledgement

That research project is supported by the European Union
(ERDF) and the Walloon Region (DGTRE) under the terms
defined in Convention n° EP1A12030000062 130007.

9. References

[1] Batini, C., Ceri, S., Navathe, S., B.: Conceptual Database
Design. Benjamin/ Cummings, 1992.

[2] Boldyreff C., Kewish R.: "Reverse Engineering to Achieve
Maintainable WWW Sites", in Proc. of the 8th Working Con-
ference on Reverse Engineering (WCRE'01), Germany,
2001.

[3] Hainaut, J.-L., Roland, D., Hick, J.-M., Henrard, J., Engle-
bert, V.: "Database Reverse Engineering: from Requirements
to CARE Tools", Journal of Automated Software Engineer-
ing, 3(1), 1996.

[4] Vanderdonckt J., Bouillon L., Souchon N., "Flexible Reverse
Engineering of Web Pages with VAQUITA", in Proc. of
IEEE 8th Working Conference on Reverse Engineering
WCRE'2001 (Stuttgart, 2-5 October 2001), IEEE Computer

Society Press, Los Alamitos, 2001, pp. 241-248.
[5] Yip Chung C., Gertz M., Sundaresan N.: "Reverse Engineer-

ing for Web Data: From Visual to Semantic Structures", in
Proc. of the 18th International Conference on Data Engineer-
ing (ICDE’02), 2002.

[6] Baumgartner R., Flesca S., Gottlob G.: "Visual Web Informa-
tion Extraction with Lixto", The VLDB Journal, 2001.

[7] Hammer J., Garcia-Molina H., Cho J., Aranha R., Crespo A.:
"Extracting Semistructured Information from the Web", in
Proc. of the Workshop on Management fo Semistructured
Data, 1997.

[8] Ling Liu, Calton Pu, Wei Han: "XWRAP: An XML-enabled
Wrapper Construction System for Web Information
Sources", in Proc. of the 16th International Conference on
Data Engineering (ICDE’00), 2000.

[9] Sahuguet A., Azavant F.: "Building Intelligent Web Applica-
tions Using Lightweight Wrappers", Data Knowledge Engi-
neering, 2000.

[10] Bourret R.: "XML and Databases", http://www.rpbour-
ret.com/xml/XMLAndDatabases.htm, 2003.

[11] Ricca F., Tonella P.: "Using Clustering to Support the Migra-
tion from Static to Dynamic Web Pages", in Proc. of the 11th
IEEE International Workshop on Program Comprehension
(IWPC’03), Portland, 2003.

[12] Ragget D.: "Clean up your Web pages with HTML TIDY",
http://www.w3.org/People/Raggett/tidy/.

[13] World Wide Web Consortium: "XHTML 1.0 The Extensible
HyperText Markup Language (Second Edition)", http://
www.w3.org/TR/xhtml1/.

[14] World Wide Web Consortium: "Document Object Model
(DOM)", http://www.w3.org/DOM/.

[15] World Wide Web Consortium: "XSL Transformations
(XSLT)", http://www.w3.org/TR/xslt.

[16] World Wide Web Consortium: "XML Schema", http://
www.w3.org/XML/Schema.

[17] Hainaut J-L., Tonneau C., Joris M., Chandelon M.: "Schema
Transformation Techniques for Database Reverse Engineer-
ing", in Proc. 12th Int. Conf. on Entity-Relationship
Approach, Arlington-Dallas, E/R Institute Publish., 1993.

[18] Englebert V., Henrard J., Hick J.-M., Roland D. and Hainaut,
J.-L.: "DB-MAIN: un Atelier d'Ingénierie de Bases de Don-
nées", Ingénierie des Système d’Information, 4(1), HER-
MES-AFCET, 1996.

[19] Hainaut J.-L, Roland D., Hick J-M., Henrard J. and Englebert
V.: "Database Reverse Engineering: from Requirements to
CARE Tools", Journal of Automated Software Engineering,
3(1), 1996.

