
Soft-Core FPGA Processor Based Platform for Embedded Systems Rapid
Prototyping

L. Guedria, D. Hubaux
Centre d’Excellence en Technologies de
l’Information et de la Communication

(CETIC)
8 Rue Clément Ader

Charleroi 6041 Belgium
lg@cetic.be
dh@cetic.be

J.-D. Legat
Université Catholique de Louvain / Unité des
Dispositifs et Circuits Electroniques (DICE)

3 Place du Levant (Maxwell buil.)
Louvain-la-Neuve 1348 Belgium

Legat@dice.ucl.ac.be

Abstract

Rapid prototyping is a highly needed capability in
today embedded systems design in order to validate
requirements, succeed the design and fulfill time-to-
market constraints. Efficient and flexible
hardware/software platforms are the ultimate support
to achieve this goal. In this scope Soft-Core FPGA
processor based Platforms constitute an interesting
approach thanks to customization capability offered
for both the hardware and software parts of the system.

This paper describes a soft-core FPGA processor
based platform targeted for embedded systems
prototyping. It shows how it is possible to achieve very
short development cycle times with such platform. It
details the key characteristics that are most relevant
with regard to fast and flexible prototyping approach.

Keywords: embedded system; soft-core; FPGA;

flexibility; rapid prototyping.

1. Introduction

With the advances of today technology, embedded
systems design is getting more and more complex:
Systems are implementing a continuously increasing
number of advanced functionalities and integrating
more and more interfaces at both hardware and
software levels.

Hence embedded systems design has to master this
complexity while being able to efficiently address time-
to-market constraints. Also it should be able to quickly
adapt to changing needs and new or additional
demands.

In this scope, rapid prototyping is necessary to
achieve the first challenge. However, for the second
one, high flexibility is highly needed.

Some prototyping approaches of embedded systems
design, mainly guided by performance issues, tend to
rely on platforms whose hardware is very close to the
final product one: This way, the design process could
focus on tuning and optimizing software with regard to
the almost fixed hardware system architecture.

These approaches are not well adapted for
embedded systems which may need to support new or
evolving interfaces or connectivity while keeping their
main functionality: For instance, an embedded data
logger which needs to support a new wireless
communication interface.

Platforms based on soft-core FPGA processor offer
an alternative which combines the benefits of a
mastered prototyping environment and a flexible
support allowing easy extension of hardware features
without heavy penalty on software adaptations.

The next chapter identifies relevant issues about
rapid prototyping of embedded systems.

Chapter III describes a flexible platform developed
by CETIC and dedicated for rapid prototyping of
embedded systems. It also enumerates the key benefits
of this soft-core FPGA processor platform within the
scope of rapid and flexible prototyping.

Chapter IV presents a relevant use case of such
platform for rapid prototyping of an In-Vehicle
telematics system (IVTS).

The last Chapter discusses the advantages and
limitations of the platform and identifies the most
suited application frameworks for it.

2. Rapid prototyping of embedded systems

Several definitions could be given for prototyping
[1] [2] depending on the application domain. A slightly
global and general one could be: The construction of
an intermediate system to demonstrate, evaluate and
validate some aspects of the intended system behavior
in order to gain user acceptance or to establish
technical feasibility.

 Rapid prototyping may be defined as a set of
techniques aimed to accelerate the prototyping process
in the objective of shortening the design cycle of a
system while maintaining efficiency. Main advantages
taken from rapid prototyping are risk management and
early end-user involvement.

For embedded systems, rapid prototyping issues
apply to both hardware and software parts [3]. The
integration aspect is also highly important and should
be addressed carefully.

Techniques used in embedded systems rapid
prototyping give high importance to efficient
methodologies elaboration. In [4] a concurrent design
methodology is presented and applied to the rapid
prototyping of wearable computers. It allowed
achieving fast design cycles thanks to an optimized
management of time and resources. This results also in
a higher level of concurrency in the design process.

In [5] a comparison is elaborated between custom
and off-the-shelf design methodologies on basis of six
key characterizing attributes for embedded systems:
features overhead, cost, person effort, power
consumption, storage requirements and software
portability.

Besides the design methodology, the approach
adopted in rapid prototyping for embedded systems
may differ. One approach consists of developing a draft
implementation dedicated to the early specification
phases in order to learn more about the requirements.
The prototype is then “thrown-away” and the
production final system is developed on basis of
experiences from the prototyping effort. The other
approach targets the development of a high quality
prototype that evolves over time.

Both approaches present some problems [6]. The
most common one with “throw-away” prototyping is
managerial. In many projects, the development of a
throw-away prototype, primarily intended for
experimentation purposes, evolves under timing
constraints pressure, to a risky and difficult tentative to
deliver it as a production system. This prototype
misuse inevitably leads to poorly structured designs,
hard to validate, maintain or evolve.

Evolutionary prototyping requires, till the start
point, a good and accurate evaluation of the potential
evolution scope of the system. Usually this is difficult
to identify at first stages but decision has to be made.
Often, this approach leads to either an over
complicated prototype with lot of unnecessary
evolution capabilities or a too limited prototype unable
to handle, without lot of difficulties, additional or
evolving features.

In both cases this leads to inadequate prototype with
regard to the first intent.

In [7] an Integrated Design Environment (IDE)
approach is presented for the rapid prototyping of In-
Vehicle telematics systems (IVTS). It is aimed to tackle
difficulties related to system complexity and resources
management. Rapid prototyping is seen here as a
technique for validating system requirements and
improving specification. The approach considers the
“throw-away” prototype as a basis for the phases of
system design and implementation. Off-the-shelf
components based design is presented as an inherent
characteristic of IVTS and is adopted in order to master
the prototyping process duration.

Prototyping of IVTS specifically and other
embedded systems in general usually requires system to
be extensible and flexible by offering facilities to add,
remove or upgrade components preferably in a “plug
and play”-like way.

We believe that succeeded prototyping process of
many embedded systems would rely on both:

- Tools to master complexity and accelerate
design cycle mainly for the software part (like
in [7])

- Availability of a flexible platform that offers
powerful customization capabilities while
remaining well tailored to the target
application.

3. Soft-core FPGA processor based
platform

3.1. Platform hardware

Our rapid prototyping platform, named SAND, is a
multi board system consisting of a main board for the
system kernel and stackable extension boards for
peripheral and external connectivity support. Figure 1
illustrates the stackable structure of the SAND
platform.

Main board is based on a low cost FPGA device
(Altera Cyclone II family). It integrates SDRAM and
flash memories, watchdog and power supply stage. The
board size is compact (8x4 cm) and presents at its

borders the I/O connections for extension boards. Table
1 summarizes the main characteristics of the main
board.

Figure 1. SAND Stackable Boards Structure

Extension boards are customizable depending on the
application connectivity needs.
Two boards were developed:

- A connectivity board with integrated wireless
(WiFi, Bluetooth and GPS) and wireline
(Serial, USB and OneWire) connectivity.

- An automotive dedicated board supporting
connection to two standardized open
automotive interfaces: Fleet Management
System (FMS) built on top of CAN bus and
implemented in trucks and buses, and On
Board Diagnostic (OBD) mainly implemented
in cars. This board integrates also some extra
features such as accelerometer and
Analog/Digital I/Os. The use of this board
with regard to the whole platform is detailed
in chapter IV.

Table 1. Main board characteristics

feature family range/size

FPGA Cyclone C6/C12 6k/12k LE

Flash mem. NOR 32 Mbytes
Config Mem. EPCS 8MBits

RAM SDRAM 16MBytes

Power stage
Input:

4-35V/2A
I/Os GPIO 64

Soft-Core NiosII
PCB 4 layers 4 x8 cm

3.2. Soft-core FPGA processor

A soft-core processor is a customizable software
description of processor hardware which could be
synthesized and implemented on programmable logic
ICs like FPGAs. For instance: the Nios II by Altera, the
MicroBlaze by Xilinx, or other cores under LGPL
licence (Leon II, OpenRisc, etc.).

Soft-core processors ensure a high flexibility and

reconfigurability since they are implemented as
customizable blocks inside the FPGA. For instance, it
is easy to add a serial port or a USB MAC layer in the
FPGA without changing anything to the board, but only
changing the configuration of the FPGA.

The configuration of the FPGA (including the soft-
core processor) is kept in a special flash memory used
at boot time. This means that the processor can modify
its own configuration in flash memory so that a new
processor can be started at next startup. Another
advantage of this technology is the possibility to
instantiate several processors within the same FPGA.
Current boards accept up to six processors being
created inside the FPGA.

3.3. Platform rapid prototyping key features

Figure 2. Platform HW/SW architecture

The platform architecture, illustrated in figure 2, is
based on a comprehensive separation between core and
communication functionalities on the hardware side,
and between hardware dependant and hardware
independent parts on the software side. This enables
interesting features like:

Flexibility: As stated above, flexibility is a key feature
for succeeded rapid prototyping of many embedded
systems.
As discussed in chapter II, prototype flexibility level
should be carefully conceived. It should not be
uselessly higher than needed or uncomfortably too low.
Flexibility is aimed to allow quick and easy design
adaptations.

8cm

PCB
Components

Inter board
connector

Main board

Connectivity
board

Automotive
board

1cm

The SAND platform flexibility is manifested through
the following points:

- Inherent flexibility of the soft-core processor
which allows easy and fast support of new
interfaces at both the software and hardware
levels.

- Inherent flexibility of FPGA technology
allowing fast integration of hardware blocks
(standard or custom IPs).

- Availability of several configurable I/Os from
FPGA to the extension boards.

- Easiness of building software application even
when platform hardware changes (i.e. new
processor configuration or new peripheral
added) thanks to the modular software
architecture.

Extensibility: The SAND platform was designed on
the principle of stackable boards. This allows
customizing the prototype to the target application by
adjunction, to the main board, of one or more boards
tailored to the features and connectivity requirements
of the final system.
Hence, this modular architecture of the platform
enables focusing on design of specific features and
avoiding reinventing the wheel for general features.
This obviously enhances the rapid prototyping process.
Furthermore, potential bad design choices would only
impact a limited part of the system and are less fatal to
the overall design process.
On the software side, the platform structure allows for
comprehensive support of new hardware at the
hardware dependant software level. At the application
level, writing communication and configuration
routines is eased thanks to the API availability.

Reusability: The main board which constitutes the
system kernel is a general purpose board that could be
reused, as it is, for large number of prototypes. This is
due to the fact that the board includes a common sub-
structure for large number of systems that is the
processing element(s) and the memory.
The “soft” customization capability of this board at
processor and FPGA levels improves its reusability.

Upgradability: This is the ability:
a. To replace (a software program) with a more
recently released, enhanced version.
b. To replace (a hardware device) with one that
provides better performance and/or additional features.

In the SAND platform this is enabled at different
levels:

- The hardware configuration of the FPGA
(including the soft-core description, standard
and custom IP blocks, and I/O configuration)
is easily upgradable by programming the new
configuration files into the board.

- The software program for the processor is, in
the same way, easily upgradable.

- Some main components (FPGA, flash
memory, SDRAM) could be replaced directly
with other components having the same
footprint. This allows for fast assembly of
customized main board avoiding by the way
the design of a new PCB. For example, to
support a USB MAC IP, we need a bigger
FPGA (a C12 chip rather than C6). Boards
can be assembled seamlessly with either chips.
The same substitution could apply to SDRAM
and flash memories, in order to tailor the
prototype to the application requirements.

4. In-Vehicle Telematics System rapid
prototyping

4.1. Context description

A company specialized in the coaching of truck
drivers, has decided to use telematics in order to gather
the required objective data from drivers and vehicle,
directly acquired while driving. Concretely, the
company was searching for a system able to collect
information on the CAN bus of the vehicle (speed,
position of the accelerator pedal, braking, etc.) and
give an advanced report on the driver’s driving
behavior. This system would be used for training and
also for monitoring (before, while and after the
training) so that the results are clearly demonstrated.
These results have to be transferred to the final user
(the trainer for example) and be displayed
comprehensibly on a computer, preferably directly after
the training [8]. Data acquisition and all computations
are made in real time and stored locally in an optimal
way. Data can be accessed in real time inside the
vehicle through wireless connection. Data acquisition
can either be automatically triggered on a specific trip
or turned on all the time.

Since the acquisition of such data needs connection
to the CAN bus, an embedded and communicating
smart system becomes mandatory.

4.2. System analysis

From hardware viewpoint, the system needs to be

flexible: The primary objective was to achieve a rapid

prototype for data acquisition on the CAN bus through
the FMS gateway. However, the system have to be
enough adaptable to support easy integration of new,
but not yet well specified, features like GPS
integration, wireless data transmission interface (WiFi
or Bluetooth), Temperature sensing, driver
identification mechanism, etc.

From embedded software viewpoint, we distinguish
two parts:

- Hardware Independent Software: This
comprises the computations done on raw data:
Statistics, histograms, etc.

- Hardware Dependant Software: This
comprises all the low level protocol
encapsulations and peripheral drivers.

The two parts should be enough flexible to allow fast
and easy support of new hardware interfaces and
implementation of additional statistics.

In this scope, the soft-core FPGA processor based
platform brings flexibility at several levels: The soft-
core processor is easily adaptable to integrate built-in
peripherals (Serial interfaces, memory interfaces,
custom I/Os, etc.) to connect either to hardware blocks
inside FPGA or directly to components outside.
Besides, FPGA technology allows implementation of
wide variety of custom or standard hardware interfaces
and logic (USB MAC, Ethernet MAC, OneWire Logic,
etc).

4.3. Prototyping process

The adopted prototyping process was inspired from

agile software development methods [9] [10]. These
are mainly customer-centric approaches targeting very
short development cycles and early and frequent
delivery with particular focus on ability to harness
changing requirements.

The start points were:
- For hardware part: The already available

general purpose main board with the
connectivity board.

- For software part: A well structured template
project with a clear identification of hardware
dependent and hardware independent pieces
of software.

An external off-the-shelf interfacing module to the
FMS system was rapidly integrated to the connectivity
board over its serial link.

Hardware dependant software, consisting mainly of
FMS module protocol implementation, was quickly
developed.

Hardware independent software, consisting of the an
implementation of a first draft of features specification

was developed almost concurrently, with the hardware
dependant software thanks to the early definition of a
flexible data structure serving as data sharing
mechanism between the two software parts.

This first prototyping phase was achieved very
quickly (few days) and served as a basis for capturing
end-user feedback.

New requirements emerged then. They mainly
consist of:

- Need to integrate an internal FMS chip to the
platform in order to reduce size.

- Implementing a broadcasting mechanism
through wireless connection in order to allow
some real time parameters monitoring.

- Implementing a control mechanism over
wireless link: pinging the embedded system,
asking for status, downloading stored data,
changing mode, etc.

- Implementing a GPS geofencing mode: i.e.
System should be able to start automatically
computing statistics based on preconfigured
GPS positions settings.

 A second prototype was developed in the following
way:
Thanks to platform modularity, a new custom extension
board was being designed while work on wireless
features implementation was being pursued on the first
prototype. This separation of concerns allowed a
precious time gain with no negative impact on design
quality.

Implementation of wireless new features consisted
of:

- Implementing a two serial channel links over
wireless connection: One for control purpose
and the other for real-time monitoring.

- Adaptation of the soft-core processor by
adding the needed serial interfaces.

- Design of encapsulation protocol and
associated routines for the execution of the
different commands.

- Design of a Graphical User Interface on a PC
(or Laptop) allowing wireless communication
with the platform, mainly for sending
commands and displaying the real-time data.

The GPS geofencing mode support was rapidly
implemented thanks to availability of hardware and
software driver.

The custom board was developed conforming to the
form factor of the other boards. Since there was enough
space left on it, we decided to add support for OBD
too, despite that there weren’t an immediate need or
demand for it. The motivation was that OBD data could
be exploited in a similar way to FMS one. Furthermore

some less important features, but relevant for
automotive domain, were added for investigation
purposes like accelerometer and analog/digital I/Os.

This approach allowed the rapid setup of the second
prototype which was put to tests.

The availability of OBD on the automotive board
induced a light overhead (hardware and software
interface implementations) however it allowed us to
gain lot of time to carry extensive tests on the hardware
independent software part of the application: We
weren’t constrained by the availability of an FMS
equipped truck to do it since we were able to
experiment directly on OBD equipped cars (more
easily available).

The prototype examples are now installed and
running on several trucks. They proved to fit well as
final systems despite that this was not the first intent
when we started the development. The installed
prototype examples were assembled with integration of
only-needed components. For instance, Bluetooth and
OBD chips weren’t assembled on them in order to
master the overall cost.

Table 2. Short development cycles

Date
(weeks)

Customer request work
(days)

Prototypes
delivered

0 First customer
contact

N/A 0

2 Field tests for
feasibility issues

2 0

12 First prototype 10 1
16 Prototype install 1 1
17 Feature update 1 1
20 New features 1 1
25 New features 10 1
28 New features &

prototype install
5 4

31 Prototype install &
Field tests

3 5

40 New features 10 5
54 Update software &

prototype install
2 7

60 prototype install 2 10

Table 2 summarizes the history of the project and

shows the fast development cycles we achieved with
our ‘agile like’ approach in our rapid prototyping
process based on the SAND platform. As we can see,
the platform flexibility allowed very fast response to
new requirements or features implementation demands
(generally one to three days, and less than ten days for
more complex demands). Note That the field tests done
on week 2 were essential for our customer to convince
some of his potential clients to opt for an embedded
solution. He then came back with the first concrete
demand for a prototype at week 12.

5. Discussion

Rapid prototyping using our soft-core FPGA
processor based platform, proves to be a promising
approach. It could bring significant improvements
thanks to its inherent offered capabilities of flexibility,
extensibility reusability and upgradability.

However, taking full advantage of these capabilities
requires a careful approach:

- Attention must be taken to design modularity
till the start.

- A reuse thought and mindset must be
omnipresent at all design steps.

Based on our experience, achieving rapid
prototyping objective relying upon soft-core FPGA
processor based platform implies some conditions or
prerequisites such as:

- Clear separation between platform processing
kernel and connectivity extension.

- Rigorous structuring in software development
mainly through clear separation between
hardware dependent and hardware
independent parts.

- Availability of a comprehensive development
environment and tools (preferably integrated
within an IDE) that allows a fast and easy
support of new processor hardware and
software features integration.

With the soft-core FPGA processor based platform,
we are in an evolutionary prototype approach rather
than a “throw-away” prototype one. However, thanks to
inherent flexibility of the platform the side-effects of
evolutionary prototyping are better mastered.

On another hand, the prototyping here is a balanced
mix between a custom design and off-the-shelf
components based one.

If we analyze the approach presented in this article
with regard to the six attributes mentioned in chapter II
(overhead, cost, person effort, power consumption,
storage requirements and software portability) we may
conclude the following:

- Overhead and cost could stay mastered giving
a structured design methodology.

- Power consumption is a strong constraint in
some embedded systems. In that case, the
approach is poorly adapted.

- Storage requirements depend on the project
type but generally embedded systems design is
aware of limited resources. Hence, in most
cases our approach remains well adapted.

- Software portability is enhanced by this
approach giving a well structured software

design with clear separation between hardware
dependent and hardware independent parts. In
our application example, code supports both a
native execution on the soft-core processor
and OS-based execution (µClinux). Selection
is easily done through a define tag and
adequate compilation scripts. Source code
files were sorted in three categories: OS
specific, native execution specific and
common.

Finally we can conclude that soft-core FPGA
processor based platform prove to fit well as an
approach for rapid prototyping for several embedded
systems providing a structured design process. This is
particularly true for designs requiring flexibility and
extensibility capabilities.

10. References

[1] Stephen Haag, Maeve Cummings, Donald J. McCubbrey,
Alain Pinsonneault, Richard Donovan Management
Information Systems For The Information Age, Chapter 6:
system development, McGraw-Hill Ryerson, ISBN 0-07-
095569-7, 2006.

[2] Web definitions from:
http://www.cbu.edu/~lschmitt/I351/glossary.htm
http://en.wikipedia.org/wiki/Prototyping
http://uis.georgetown.edu/departments/eets/dw/GLOSSARY0
816.html

[3] Sommerville, I., Software Engineering, 8th Edition,
Addison-Wesley, ISBN 0321313798, 2006.

[4] Siewiorek, D.P, Smailagic, A., Lee, J.C.Y.,
Tabatabai,Computers, A.R.A., “ Interdisciplinary Concurrent
Design Methodology as Applied to the Navigator Wearable
Computer System”, Journal of Computer and Software
Engineering, Vol. 2, No. 3, pp. 259-292, Mellon University,
July 1994.

 [5] Asim Smailagic, Daniel P. Siewiorek, Richard Martin,
John Stivoric, “Very Rapid Prototyping of Wearable
Computers: A Case Study of Custom versus Off-the-Shelf
Design Methodologies”, Journal on Design Automation for
Embedded Systems, Kluwer Academic Publishers, Vol 3., No.
1, 1998.

[6] Jeffrey M. Thompson , Mats P. E. Heimdahl , Steven P.
Miller, “Specification-based prototyping for embedded
systems”, Proceedings of the 7th European software
engineering conference held jointly with the 7th ACM
SIGSOFT international symposium on Foundations of
software engineering, p.163-179, September 1999.

[7] D. Reilly, A. Taleb Bendiab, “A Rapid Prototyping
Approach For Design Of Extensible In-Vehicle Telematics
Systems”, Journal of Integrated Design & Process Science,
Volume 6, Issue 2 (April 2002), p.91-106, 2002.

[8] M. Delehaye, D. Hubaux, L. Guedria, J.-D. Legat, T.
Delvaulx, B. Goffard, “Smart adaptable network device for
fleet management and driver coaching”, Proceeding of the 7th
ITS and Telecommunication conference, ITST, 2007.

 [9] Abrahamsson, P., Warsta, J., Siponen, M.T., &
Ronkainen, J. “New Directions on Agile Methods: A
Comparative Analysis”, ICSE, 2003.

[10] Pikkarainen, M. & Salo, O. “A Practical Approach for
Deploying Agile Methods”, The 7th International Conference
on eXtreme Programming and Agile Processes in Software
Engineering, 2006.

The SAND is a result of a research project
(RETICOM), conducted by CETIC, supported by
the European Union (ERDF) and the Walloon
Region (DGTRE) under the terms defined in
Convention n° n°EP1A1203000076F – 130004.

