
Defining Software Evolvability from a Free/Open-Source Software

Perspective

Jean-Christophe Deprez
⊂

, Frédéric Fleurial Monfils
⊂

, Marcus Ciolkowski
∈

 and Martín Soto
∈

Fraunhofer IESE

⊂

CETIC (Charleroi, Belgium),
 ∈

Fraunhofer IESE (Kaiserslautern, Germany)

jean-christophe.deprez@cetic.be, frederic.fleurialmonfils@cetic.be,

ciolkows@iese.fraunhofer.de, soto@iese.fraunhofer.de

Abstract

This paper studies various sources of information to

identify factors that influence the evolvability of Free

and Open-Source Software (FlOSS) endeavors. The

sources reviewed to extract criteria are (1) interviews

with FlOSS integrators, (2) the scientific literature,

and (3) existing standard, norms as well as (4) three

quality assessment methodologies specific to FlOSS ,

namely, QSOS, OpenBRR and Open Source Maturity

Model. This effort fits in the larger scope of

QUALOSS, a research project funded by the European

Commission, whose goal is to develop a methodology

to assess the evolvability and robustness of FlOSS

endeavors.
1

1. Introduction

Many organizations have started to integrate Free
(libre) Open-Source Software (FlOSS2) in their
software systems and infrastructures. Furthermore,
systems relying on FlOSS components become more
frequently available to or viewable by customers. In
turn, organizations want guarantee regarding the
quality of the FlOSS components integrated in their
solutions but also regarding the complete FlOSS
endeavor3. So, companies are faced with the problem

1 Acknowledgment: this work is partly funded by the
QUALOSS project, FP6 #033547 and the Belgian
project CRAQ-155 convention EP1A1203000073F-
130008.
2 The 'l' in FlOSS is the italicized letter l that stands for
libre.
3 A FlOSS endeavor is defined later the paper

of identifying FlOSS endeavors that meet their quality
needs, in particular, concerning evolvability so as to
avoid having to switch FlOSS components after a few
years because the initial FlOSS endeavor selected has
come to a halt.

This paper presents the initial task of QUALOSS, a
European-funded research project whose overall
objective is to develop a methodology to assess
evolvability and robustness of FlOSS endeavors in part
to facilitate the FlOSS acquisition process in Industry
but also to address quality concerns of other
stakeholders such as FlOSS community members. To
develop this methodology, QUALOSS draws its
inspiration from the Goal-Question-Metric (GQM)
paradigm [1]. The GQM is set up in three steps. First,
the reasons for wanting to measure quality are
identified, i.e., the goal are determined. The second
step enumerates questions that will help assess whether
a quality goal has been reached or not. Finally, the third
step transforms the questions into metrics. When
applying GQM to a very specific industrial context,
one may directly interview stakeholders to determine
exact quality goals. However, the FlOSS world is a
much broader context hence we slightly adapt the
initial step. This paper only covers the initial step of the
process, i.e., identify quality goals or criteria.

Incidentally, the current definition of quality as
specified in [4] and the different standards and norms
related to quality are better suited to the traditional
commercial model. For instance, the ISO 9126
standard [2] and the CMMI model [3] are oriented
towards traditional organizations. ISO 9126 suggests
metric formulæ based on data not commonly found in
FlOSS project repositories, for example, many metrics
require data extracted from design and specification
documents. In FlOSS project, such information is

rarely found in a single, well-identified document.
Similarly, CMMI processes such as validation may be
problematic to evaluate properly for FlOSS endeavors
that heavily relying on user community for testing.

The main contributions of this paper are, first, to
explain how we have adapted the initial step of the
GQM to apply it to the broad context of FlOSS.
Second, to inventory criteria related to evolvability of
FlOSS endeavor. Criteria are extracted from several
sources of information. In particular, (1) we conducted
interviews of several FlOSS integrators; (2) we review
the existing ISO9126 standards; (3) we studied the
scientific literature on software evolution; (4) we
analyzed three existing FlOSS assessment models,
namely QSOS, OpenBRR and Open Source Maturity
Model.

The paper is organized as follows. In Section 2, we
present definitions and explain how we are setting up
the initial step of GQM. Section 3 presents our study of
existing works to extract criteria relevant to
evolvability of FlOSS endeavors. Section 4 presents
related efforts. Then, Section 5 concludes and presents
our future work.

2. Overview of QUALOSS and Initiating

GQM
QUALOSS [20] proposes to apply the Goal-

Question-Metric paradigm (GQM) [4] to create an
assessment methodology specifically tailored to
evaluate the evolvability and robustness of FlOSS
endeavors. Data to feed to the methodologies will be
extracted from various data sources, among others,
software distributions list, version control repositories,
issue tracking data, mailing lists, websites, and even
datasets outside the direct scope of FlOSS projects
such CVE [21] and NVD [22] security databases,
publication databases [23, 24], and eventually other
FlOSS data repositories created by other projects such
as FlossMole [25], FLOSSMETRICS [26], or ohloh
[27].

As Wernick shown in [19], the GQM approach has
been successfully applied in industry to help
organizations enter in a continuous cycle of product-
quality assessment and improvement but it is a
challenge to apply GQM to a wider context such as, in
our particular case, the whole of FlOSS world. When
dealing with a broader context, it becomes harder to
identify all relevant stakeholders, which, in turn,
increases the risk of missing important quality goals.
We present a more detail account of our effort to
inventory and categorize our goals and our questions in
[28], which also include our validation plan.

In order to identify as complete a set of relevant
quality goals, we first need to define what evolvability
means. In turn, a definition of FlOSS endeavor is also
required.

The definition of FlOSS endeavor is guided by
concepts of activity theory, which highlights the
elements involved in a human-group activity [5]. It is in
complete agreement with the view presented by CMMI
where, in [3], product development is shown to be
supported by the three pillars: people, tools, and
processes.

Definition: A FlOSS endeavor includes
• The software product (which itself eventually

includes code, documentation, and tests),
• The community (members closely or remotely

connected to the endeavor),
• The rules and division of labor that community

members obliged to when performing activities
(aka development processes),

• The tools used by the community during their
respective activities. A tool can be a version
control system, a code or parser generator, or a
library developed by another FlOSS endeavor.

Our definition does not impose a specific scope on
software product however once defined, it transitively
defines the scope of community, processes, and tools.
A large scope on software product will likely make it
more complex to identify clearly the complete scope of
community, development processes, and tools
associated. Here are a few examples of software
product scopes. The most common scope is likely to be
defined at the level of a single FlOSS project such as
BIRT under Eclipse or Apache Jakarta and all its
subprojects; in both cases all versions of the software
product would fall under the selected scopes.
Conversely, a scope could also be much smaller such
as a specific version of a FlOSS product e.g., Azureus
2.4.

Definition: Evolvability of FlOSS endeavor is the
degree to which a FlOSS endeavor can evolve or is
perceived to be evolvable.

Pragmatically, we instantiate the first part of the or

conjunction in the definition over each element of a
FlOSS endeavor. In turn, evolvability of a FlOSS
endeavor is the degree to which the software product,
the community, the development processes and the
tools used can evolve.

Furthermore, the second part of the or conjunction
the definition “is perceived to be evolvable” indicates
that there is always a degree of uncertainty in
determining evolvability, in turn, factors that affect the
degree of confidence granted to a FlOSS endeavor's
evolvability could themselves influence the evolvability

of a FlOSS endeavor. For example, the age of project
or the number of bugs reported in the past may
influence the adoption rate of the product hence the
user community evolvability.

To have a complete understanding of evolvability,
we must therefore include criteria that directly
influence or impact evolvability but also those that are
perceived to influence evolvability. Moreover, given
that we apply the GQM approach, we must inventory as
many goals as stakeholders may have. And such goals
could definitely be defined on the age of a FlOSS
endeavor.

The next section inventories a long list of criteria
that influence evolvability. This indeed will help
continue with the initial step of GQM, which consist in
defining our measurement sub-goals. These criteria are
our quality goals. They specify the aspects to monitor
about a FlOSS endeavor in order to assess its
evolvability.

3. Criteria of Evolvability for FlOSS

endeavors
Section 3.1 presents the quality criteria identified by

interviewing FlOSS integrators. Section 3.2 reviews
characteristics related to software product evolvability
and robustness present in ISO 9126 [2]. Section 3.3
enumerates quality goals extracted from the scientific
literature, and Section 3.4, identifies the quality goals
used by the three FlOSS assessment methodologies,
QSOS [6], OpenBRR [7], and OSMM [8].

It is worth noting that we also tried to maintain the
review of standard and of the scientific literature
separated from the analysis of the FlOSS assessment
methodologies in order to keep a neutral viewpoint not
influenced by any FlOSS specifics. In turn, we started
our analysis by interviewing FlOSS users (or adopters),
then went on with review of the ISO 9126 standards
and of the scientific literature in parallel. Finally, we
finished our analysis by reviewing the FlOSS
assessment methodologies, which, a priori, seems to be
a richer source of information for our purpose.

3.1 Evolvability from User Interviews

The goal of the interviews was to probe the relevant
quality aspects used by FlOSS users in industry when
assessing FlOSS components. The approach we
followed was to elicit goals from industrial partners
through a structured interview. In total, we interviewed
nine practitioners, in most cases responsible for IT in
their organizations, from five different domains: OSS
developer/integrator, general IT, (web-based) Services,
Health care, and public administration.

Preliminary results indicate that in all cases, the
evaluation criteria for FlOSS components are ad-hoc;
that is, usually one expert does the evaluation using
(often implicit) criteria for evaluating required product
qualities. In the interviews, we tried to elicit these
criteria, as they can serve as basis for a definition of
evolvability and robustness from the practitioners'
viewpoint. At that stage, we had not yet defined
evolvability as presented in chapter 2. In fact, one of
the goals for the interviews was to help us come up
with a definition. In turn, the interviews clearly show
that evolvability is not limited to the product but also
includes other elements such as community and
processes.

Robustness EvolvabilityFunctionality
Support /
Service

Stability

Validation
of Robustness

Performance

Readability TestabilitySuitability

Safety
Standard

Adherence
Maintainability

Community
Quality

Project
Maturity

Figure 1: Preliminary Definition of Robustness and

Evolvability from Interviews. An arrow indicates a

relationship of the kind contributes to

Figure 1 shows the preliminary results from the

interviews concerning relevant quality criteria for
evaluation of FlOSS components. There are four top-
level constructs that users are interested in:
Functionality, robustness, level of support, and
evolvability.

Functionality: Typical evaluation criteria are
performance and suitability to the problem to be
solved; in some cases, stability and safety are
considered as part of the required functionality. These
criteria are usually evaluated by conducting “ad-hoc”
testing.

Robustness: Typical evaluation criteria are stability,
safety, maturity, and community quality. In addition,
readability, adherence to standards, and testability are
considered as enhancing robustness, as they increase
the evaluator's trust into the product.

Support: Evaluation criteria are community quality,
and maturity

Evolvability: Typical evaluation criteria are
maturity, readability, adherence to standards,
interoperability, testability, and maintainability.

In the following, we elaborate on the criteria used to
evaluate robustness and evolvability.

Community quality: Evaluation criteria used are the
continuity of the community (i.e., whether the project

will go on further), activity in mailing lists, whether
developers with reputation are in the team, the size of
the community, whether company support exists for the
community, quality of responses to questions / ability
of the community to explain questions, and response
time for bug fixes.

Continuity of the community is evaluated by
looking at the frequency of releases, ease of updates,
whether the project is based on standards, existence of
a roadmap and evaluation of previous timeline, and the
project is sufficiently focused to guarantee future
survival.

Project maturity: This is evaluated by using criteria
such as that the project should be “not too young” (i.e.,
age of the project), neither should it be a closed
project, success cases should exist in large companies,
a stable version of the product should be available, and
user opinions and OSS community views should be
generally positive.

Stability and safety: These criteria are evaluated by
looking at user opinions in mailing lists, and by doing
ad-hoc tests.

Readability, maintainability and testability: These
criteria are evaluated by looking at the clarity of code,
use of standards in the project, and at code
documentation. That is, the interviewed persons do not
distinguish between these different quality attributes,
except by using different implicit criteria in testing.

Standard adherence: Main evaluation criterion is
whether the project adheres to relevant development
standards, such as design patterns or existing libraries.
Concrete criteria used are typically defined ad-hoc by
the evaluators.

The insights from the interviews will provide one
input for defining evolvability and robustness of FlOSS
endeavor. In Figure 1, all the criteria that are the source
of an arrow going directly or indirectly to evolvability
are of interest.

3.2 Evolvability and Robustness in ISO9126

One aspect became quite clear after conducting our
interviews with FlOSS integrators: evolvability and
robustness are concepts that in the mind of people
covered a broad spectrum. Interviewee included factors
whose contribution to evolvability and robustness were
not always obvious and direct, for instance, readability
of the source code. In turn, to identify as complete a set
of goals relevant to many stakeholders, we have to
keep an open mind and identify a large range of quality
criteria that contributes to evolvability and robustness
even if such a contribution is not necessarily major. In
turn, based on our long list of quality criteria, all

stakeholders will be able to express their quality needs
(or goals).

ISO9126 does not cover community characteristics
however it presents an interesting list of characteristics
for product quality. Since evolvability and robustness
also covers the software products, ISO9126 provides
appropriate information for our identifying our criteria.

ISO9126 contains 6 main characteristics that in turn
contain sub-characteristics, 27 in total. The main
characteristics are: functionality, usability, efficiency,
maintainability, reliability, portability. Although we
could segregate and select based on these six main
characteristics, we could miss some sub-characteristics.
To support our point, a survey led by Ho-Won Jung
et al. showed that for many people the ISO9126
classification was not intuitive [9].

Based on the definition provided by ISO9126, we
have identified the following characteristics and sub-
characteristics to be relevant to evolvability.

All characteristics under maintainability, including
it, were found to be relevant: maintainability,
analyzability, changeability, stability (however, from
the definition, we prefer to substitute it with the term
flexibility), testability, and compliance to

maintainability standards. Many characteristics under
portability including it, could also contribute to
evolvability: portability, adaptability, installability,
coexistence, compliance to portability standards.
Under other main characteristics, we have also
identified the following sub-characteristics as maybe
impacting the evolvability of a FlOSS endeavour:
interoperability (under functionality), usability
characteristics (understandability, learnability,
operability, attractiveness) are likely to influence rate
of adoption and also to motivate the developer
community hence they influence community
evolvability.

3.3 Evolvability in the Scientific Literature

We reviewed the literature for definitions of
evolvability and robustness. Many researchers have
studied software evolution starting in 1976 with
Lehman's laws of software evolutions [10, 11]. The
most thorough definition of software evolution seems
to come from Perry [12], who identifies three
dimensions that influence software evolution: evolution
in domain, in experience, and in process. The text box
below presents Perry's 3 dimensions and their types of
evolution. The text in bold represents the quality
criteria we identified for each type of evolution.
Furthermore, the text box lists characteristics extracted
from Seifert and Pizka's definition [13] that point to the
importance of refactoring. Finally, we also refer to

research on modeling software evolution based on
system dynamics [14, 15, 16]. Although not the
primary intent of that research, they are the only pieces
of scientific literature we could find that emphasize the
need to integrate new members in the team producing a
software product.

Table 1: Characteristics related to evolvability

extracted from Perry’s definition of software

evolution, from Seifert and Pizka's and from research

in system dynamics modeling research. (continues on

next page)
Perry's definition and related quality characteristics
Evolution in the Domains

Evolution of the domains in the Real World (new requirements,
influence of the systems once introduced in the Real World).

• Stability of Users' Needs
• Stability of norms and standards implemented by the

software product
• Stability in Laws, Regulations implemented by the

software product
Evolution of the abstract representation of the Real World
domains

• Stability/Maturity of the design (abstraction) in

modeling the particular real world domain implemented

by the software product.
Evolution in Experience

Evolution of Understanding based on Feedback
• Capacity to listen criticism from the users' community

(related to software defects)
• Capacity to listen to suggestion from the users'

community (related to feature requests)
Evolution of Understanding Experiments

• Willingness to measure work activities and work

products
Evolution in process

Evolution of Methods (Theories and Experiences)
• Stability of the theories implemented in the software

product
Evolution of technologies

• Stability/Maturity of the technologies used for

implementing the software product
• Stability/Maturity of competing technologies
Evolution of organizations
• Willingness of the developing community to follow

organizational process
• Maturity of the development process
• Willingness of the developing community to follow new

organizational process
• Willingness of the developing community to record new

types of data
Additional quality characteristics from Seifert and Pizka's

definition of software evolution:
• Willingness of the developer community to refactor and

reengineer a system (this characteristic should be

repeated respectively for communities of

analyst/architect and management)

(Continue from Table 1)

Additional quality characteristic extracted from software

evolution from system dynamics modeling research:
• Capability of experts in the community to integrate new

members.

Table 2: Quality criteria extracted from QSOS,

OpenBRR and OSMM.
Project age
Product stability (
Management ability to solve

crisis
Professionalism of Process for

proposition of modifications
Road map availability and

precision
Driving force behind

production
Strategical Independence
Fork probability
Project popularity
Project referencing (used by)
Management style
Developer identification
Developer turnover
Activity on bugs
Bug reporting activity (in a

specified period of time)
Reactivity on critical bugs
Reporting activity on product

vulnerability
Reactivity on security bugs
Activity on functionalities
Activity on releases
Independence of development
Training diversity

(geographical, cultural and
level)

Support (level of commitment
dedicated to support)

Support professionalism
Consulting diversity

(geographical, cultural and
level)

Documentation availability
Documentation recency

Definition and Documentation
of QA Process

Tools Used for Project
Management and for QA
activities

Diversity of packaged
distributions (with source, for
what *nix distribution)

Modularity of Architecture
Ease of build-ability
Ease of extensibility or plug-

ability
License permissiveness
License protection against

proprietary forks
Size of copyright owning team
Source comment volume
Use of design patterns
Technological dispersion
Intrinsic complexity of

algorithms
Code expertise availability
Protocol for external

communication (product)
Diversity of user community

mailing lists
Ease of Vanilla Deploy-ability

(Installability or
Configurability)

Community involvement on
security issues

Testability for preformance
(including presence of
testsuite and benchmark
reports)

Tunability & Configurability
(on user's side)

Scalability (of
design/architecture)

Feature Configurability (on
deployment or by user)

Diversity of documentation
contributors

Diversity of actual deployments
(depends on diversity of user
community)

Integrability / permeability of
core developer team

Volume of contributing
community

Diversity of contributing
community

Volume of book published
Leading team size

3.4 Evolvability in QSOS, OpenBRR and

OSMM
In this section, we present quality criteria found in

the three FlOSS assessment methodologies, QSOS [6],
OpenBRR [7] and OSMM [8]. The criteria in the table
below are sometimes reworded from the original form
to bring them to an appropriate level of abstraction. For

example, OpenBRR words them as metrics e.g.,
“Number of bugs reported in the last 6 months”, which
we changed into “Bug reporting activity (within a given
period of time)”. Some of the criteria are very closely
related. In some cases, we could get rid of some, in
others we could organize them in a hierarchy or if a
hierarchy is not intuitive, we could clearly express the
relationships between two or more criteria. This
exercise is left for future work.

4. Related Works

As shown in section 3, ISO 9126 influenced our
work. On the other hand, the ISO 9126 quality
characteristics are often not precise enough for our
needs. Many stakeholders will need quality goals
refined to a much finer level so they become quite
concrete. Furthermore, ISO9126 focuses mainly on
software product; it does not intend to characterize
community, processes and tools.

More directly related to our work, the three FlOSS
assessment methodologies, QSOS, OpenBRR and
OSMM also inventory criteria of FlOSS endeavor.
They had a strong influence on our work. However,
they lack depth in certain aspect. For example, they do
not provide rigorous definition of what they intend to
characterize. Hence, each of the three methodologies,
when taken on its own, overlooks certain criteria.
Moreover, none of them investigate in details the areas
of development processes or tools used. Most
importantly, none are directive enough in asking
evaluators to record the data sources to measure. This
could lead to very subjective results in the end.

5. Conclusions and Future Work

The QUALOSS project is applying GQM to FlOSS
endeavors in order to assess their evolvability and
robustness. So far, we have applied the initial step of
GQM, i.e., identification of the top-level measurement
goals and we have also inventoried a list of criteria that
have an impact of the evolvability of a FlOSS
endeavor. To obtain this long list of quality criteria, we
interviewed FlOSS integrators, surveyed the scientific
literature, and reviewed the three existing FlOSS
assessment methodologies, QSOS, OpenBRR and
OSMM. These criteria will then be used to either
elaborate more specific measurement sub-goals and
also to enumerate questions whose answer will
determine whether or not a FlOSS endeavors meets our
goals.

The following steps of our research are:
• Review the literature on FlOSS development

process and also extract the practices of CMMI
that could be of interest to FlOSS endeavors. From

these review we expect to extract new criteria
related evolvability.

• Compare and prune our criteria to obtain a single
comprehensive list that combine results from
different sources.

• Organize the list hierarchically, similarly to
ISO9126, QSOS, OpenBRR and OSMM.

In parallel to identifying a comprehensive list of
quality goals, we have started inventorying indicators
and metrics that can be used to measure the criteria
specified. The next part of QUALOSS will connect
these criteria or goals these indicators and metrics
continuing with the GQM approach.

6. References

[1] Victor R. Basili, Software Modeling and Measurement:
The Goal Question Metric Paradigm, Computer Science
Technical Report Series CS-TR-2956 (UMIACS-TR-92-96),
September 1992, University of Maryland , College Park,
MD, USA.

[2] ISO/JTC 1/SC 7, ISO/IEC 9126 Software Engineering -
Product Quality (Part1-4), 2001.

[3] Mary Beth Chrissis et al., CMMI — Guidelines for
Process Integration and Product Improvement, August 2005,
Adison-Wesley, Boston, USA, (9th Printing).

[4] ISO/TC 176/SC 1, ISO 8402 - Quality management and
quality assurance -- Vocabulary, 1994

[5] Bjørke, S.Å. (2005) 'The Concepts of Communities of
Practice, Activity Theory and Implications for Distributed
Learning' in Lager, R. (ed) Artikler om høgskolepedagogikk,
Skriftserien nr 118, Agder University College, Kristiansand
2005, ISBN: 82-7117-558-0

[6] Atos Origin, Method for Qualification and Selection of
Open Source software (QSOS) v1.6, April 2006, Licensed
under GNU Free Documentation License .
(http://www.qsos.org/download/qsos-1.6-en.pdf)

[7] OpenBRR.org (SkipeSource, Carnegie Mellon West,
Intel), Business Readiness Rating for Open Source, 2005,
BRR_whitepaper_2005RFC1.pdf. (http://www.openbrr.org)

[8] Frans-Willem Duijnhouwer and Chris Widdows
(Capgemini), Open Source Maturity Model 1.5.3, August
2003, (Expert Letter) (http://www.seriouslyopen.org)

[9] Ho-Won Jung, Seung-Gweon Kim and Chang-Shin
Chung, Measuring Software Product Quality: A Survey of
ISO/IEC 9126 , IEEE Software, September/October 2004, pp
88-92.

[10] Belady, L., and Lehman, M., A Model of Large Program
Development, IBM Systems Journal, Vol. 15(1), 1976, pp
225-252.

[11] Lehman, M. Meir, Programs, lifecycles and the Laws of
Software Evolution, Proceedings of the IEEE, Sept. 1980,
Vol. 68(9), pp 1060-1076, ISBN:0018-9219.

[12] Dewayne E. Perry, Dimensions of Software Evolution,
1994, Proc. of the Int. Conf. on Software Maintenance (Ed.
Hausi A. Muller and Mari Georges), pp 196-203.

[13] Tilman Seifert and Markus Pizka, Supporting Software-
Evolution at the Process Level, Net.ObjectDays 2003,
,September 2003, Erfurt, Germany, Ed. tranSIT GmbH.

[14] Marc I. Kellner, Raymond J. Madachy, and David M.
Raffo, Software Process Simulation Modeling: Why? What?
How?, Journal of Systems and Software, 46(2/3), April 1999.

[15] Manny M. Lehman and Juan F. Ramil, Modeling
Process Dynamics in Software Evolution Processes - Some
Issues, Workshop on Software Change and Evolution
(SCE'99), May 17, 1999.

[16] Manny M. Lehman and Paul Wernick, System
Dynamics Models of Software Evolution Processes, Int.
Wrkshp on the Principles of Soft. Evol., IWPSE-98 (ICSE-
20), April 1998, Kyoto, Japan, pp 6-10.

[17] IEEE, IEEE Standard 601.12-1990: IEEE Standard
Glossary of Software Engineering Terminology, IEEE Press,
1990
[18] D. Firesmith, Common Concepts Underlying Safety,
Security, and Survivability Engineering, SEI Technical
Report CMU/SEI-2003-TN-033, 2003

[19] P. Wernick, Identifying and Justifying Metrics for
Software Evolution Investigations Using the Goal-Question
Metric Method, FEAST 2000 Workshop, Imperial College,
London, 10-12 July 2000.

[20] QUALOSS, Quality of Open Source Software,
http://www.qualoss.eu

[21] CVE, Common Vulnerabilities and Exposures,
http://cve.mitre.org

[22] NVD, NIST National Vulnerability Database,
http://nvd.nist.gov

[23] Amazon, http://www.amazon.com

[24] Citeseer, http://citeseer.ist.psu.edu

[25] FlossMole, http://www.flossmole.org

[26] FLOSSMETRICS, http://flossmetrics.org

[27] ohloh. http://www.ohloh.net

[28] Jean-Christophe Deprez, Marcus Ciolkowski and Martín
Soto, Deliverable D1.2 Measurement Requirements
Specifications – version 1.3, March 16, 2007,
http://www.qualoss.org/about/Progress/deliverables/WP1_De
liverable1.2_final.pdf

