Les FPGA pour des applications à très hautes performances

CETIC: groupe de discussion sur la technologie FPGA

Thierry Watteyne, Jean-Marie Cloquet

le 5 décembre 2012

BARCO

Visibly yours

Barco Silex: Profile

- Barco Silex is a micro-electronic design house
- We have design offices in Belgium and France
- Barco Silex belongs to the Barco group
- History:
 - 1991: Foundation in Louvain-La-Neuve
 - 1995: Acquired by Barco
 - 2001: Creation of Barco Silex France
 - 2006: First JPEG 2000 IP sales
 - 2010: First Public Key crypto IP
 - 2012: Start design team in Ghent
- Revenues 2011: € 6.3 Mio
- Total people count: 39
- ISO9001-2008

www.Barco-Silex.com

Barco Silex: Main activities / products

- Highly integrated embedded systems development
- Custom component development
- Specialized in high performance digital signal processing hardware design
 - ASIC/SoC Design
 - Complex FPGA design
 - PCB level development and PCBA prototyping
- Custom component solutions
 - "System on a Chip" (SoC) IC development service
 - Old obsolete ASIC retargeting solutions
 - Sales of resulting IC product, thanks to partnership with silicon manufacturers

- IPs or Intellectual Property blocks: Firmware for programming, defining custom chips (ASIC, FPGA)
 - Image compression (JPEG, JPEG 2000)
 - Crypto & Security (AES, Public Key, ...)
 - Memory Controllers

www.Barco-Silex.com

Barco Silex: Main competence areas

- ASIC/SoC Design
 - Historical strong Silex competence since 1991
 - SoC expertise mostly based on ARM architectures
 - Fom ARM7 to ARM11 and Cortex families
- Complex FPGA/PLD Design
 - Strong partnership with Xilinx, Altera & Actel for many years
 - Experience with "complex" and "High speed" latest devices
 - Stratix-4-5, Virtex-7, high speed serial links
- DO-254 compliant design methodology
 - Strong track record of ASIC and FPGA designs following DO254 with major Avionics players in France (Sagem, Airbus)
 - Active member of DO-254 User group (together with Barco D&A)
- Crypto & Security
 - Expertise in data encryption derived from many projects done in EPOS applications (Atos, Ingenico)
 - Knowledge and IP for all major standard encryption algorithms
 - AES, Hashing, Public Key,
- Video Compression & processing
 - Strong knowledge of most of image compression standards
 - JPEG, JPEG 2000, MPEG2, MPEG4, H264
 - Very advanced products based on JPEG 2000 (IP cores)
 - Video over IP reference design

Barco Silex markets

- Our technologies and competences are applicable in multiple applications and markets.
- Our main markets:
 - Communications
 - Industrial
 - Defense & Aerospace
 - Broadcast
 - Digital Cinema

Barco**Silex** Belgium +32 10 45 49 04

BARCO

Visibly yours

www.Barco-Silex.com

Barco**Silex** France +33 4 42 16 41 06

Video over IP solutions

Video over IP reference design: Main features

- Multiple SDI video inputs:
 - Input bandwidth up to 3 Gbps per channel
 - Clock frequency = 148,5 Mhz
- JPEG2000 compression:
 - Intra compression for very high quality applications
 - Complex algorithms, data management...
 - Clock frequency = 160 Mhz
- SMPTE-2022 transport:
 - Media transport over IP networks with FEC
 - Clock frequency = 200 Mhz
- Ethernet (1Gb & 10Gb):
 - Copper or optical network interface
 - Clock frequency = 156 Mhz
- DDR memory controller:
 - Memory controller for high efficiency accesses
 - Bandwidth up to 50 Gbps with 'random' accesses
 - DDR clock frequency = 800 Mhz

Why FPGA versus other solutions ?

- FPGA vs SW: much higher performances with FPGA
- FPGA vs standard ICs: much more flexible to use and to update:
 - Can be tuned to customer needs
 - SMPTE standard is not finalized but solutions can already be built

BARCO

Visibly yours

- FPGA vs GPU: higher performance with FPGA with less power consumption
- FPGA vs DSP: higher data rates not suited for DSP

The main FPGA drawback is the development complexity

Smart engine for Public Key

100% CPU offload

→No need of high performance CPU
→Easy to reach high performance requirements

Handles and optimize all memory transfer
 →Easier to use
 →Reduce power

Higher performance

→ Full processing power from hardware solution
 → For instance with 256 multipliers in Stratix4 @ 300 Mhz:
 → 1024 b RSA - Full Expon.: -> 3.000 op/sec!
 → 256 b ECC - Point Mult..: -> 1.900 op/sec!

 \rightarrow For comparison, a ARM Cortex A8 @1GHz provides:

→ 1024 b RSA: -> 56 op/sec

Design methodology

- Controlled development flow:
 - Planning with controlled milestones
 - Version control
 - Bug tracking system
 - Templates, guides,...
- Focus on validation:
 - Module and top level simulations with code coverage
 - Use XML for CPU register map and generates VHDL, C header and HTML
 - Build environment to use same test files for simulation and board testing
 - Set of validation scripts in python or C
 - C to sim for testbench in simulation
 - Build regression tests

Visibly yours

Some concluding considerations about FPGA

- FPGA have become almost unavoidable in embedded systems that require:
 - High throuput DSP content (high performance real time video, high bandwith communication,....) meaning dedicated hardwired logic.
 - Design flexibility (spec evolution, re-programmability, re-configurability,....)
- Athough they are « relatively expensive » components, they often bring an interesting tradeoff between:
 - Performance
 - Power consumption
 - Flexibility
 - System integration
- Developping complex FPGA is a complicated and difficult process that requires stringent and advanced verification methods (Times of « code and try » approach are gone!!)
- Today, we are moving from « FPGA in Embedded Systems » to « Embedded system in FPGA », which is becoming a programmable system:
 - Xilinx Zynq with embedded dual Cortex A9
 - Altera Arria5 or Cyclone5 with embedded dual Cortex A9

Visibly yours