
IBM Rational Software

© 2006 IBM Corporation

®

Modeling Software Architectures with UML 2

Bran Selic
IBM Distinguished Engineer – IBM Canada

IBM Rational Software

2

Outline

On Software Architecture and MDD

Requirements for Modeling Software Architectures

Architectural Modeling Concepts in UML

IBM Rational Software

3

SC_MODULE(producer)
{
sc_outmaster<int> out1;
sc_in<bool> start; // kick-start
void generate_data ()
{
for(int i =0; i <10; i++) {
out1 =i ; //to invoke slave;}
}
SC_CTOR(producer)
{
SC_METHOD(generate_data);
sensitive << start;}};
SC_MODULE(consumer)
{
sc_inslave<int> in1;
int sum; // state variable
void accumulate (){
sum += in1;
cout << “Sum = “ << sum << endl;}

SC_CTOR(consumer)
{
SC_SLAVE(accumulate, in1);
sum = 0; // initialize
};
SC_MODULE(top) // container
{
producer *A1;
consumer *B1;
sc_link_mp<int> link1;
SC_CTOR(top)
{
A1 = new producer(“A1”);
A1.out1(link1);
B1 = new consumer(“B1”);
B1.in1(link1);}};

A Bit of Modern Software…

Can you spot the Can you spot the
architecture?architecture?

IBM Rational Software

4

…and Its UML 2 Model

«sc_slave»
consumer
««sc_slavesc_slave»»

consumerconsumer
«sc_method»
producer
««sc_methodsc_method»»
producerproducer

start out1 in1

Can you see it now?Can you see it now?

IBM Rational Software

5

SC_MODULE(producer)
{
sc_outmaster<int> out1;
sc_in<bool> start; // kick-start
void generate_data ()
{
for(int i =0; i <10; i++) {
out1 =i ; //to invoke slave;}
}
SC_CTOR(producer)
{
SC_METHOD(generate_data);
sensitive << start;}};
SC_MODULE(consumer)
{
sc_inslave<int> in1;
int sum; // state variable
void accumulate (){
sum += in1;
cout << “Sum = “ << sum << endl;}

SC_CTOR(consumer)
{
SC_SLAVE(accumulate, in1);
sum = 0; // initialize
};
SC_MODULE(top) // container
{
producer *A1;
consumer *B1;
sc_link_mp<int> link1;
SC_CTOR(top)
{
A1 = new producer(“A1”);
A1.out1(link1);
B1 = new consumer(“B1”);
B1.in1(link1);}};

Back to Our System……

IBM Rational Software

6

Breaking the Architecture….
SC_MODULE(producer)
{
sc_outmaster<int> out1;
sc_in<bool> start; // kick-start
void generate_data ()
{
for(int i =0; i <10; i++) {
out1 =i ; //to invoke slave;}
}
SC_CTOR(producer)
{
SC_METHOD(generate_data);
sensitive << start;}};
SC_MODULE(consumer)
{
sc_inslave<int> in1;
int sum; // state variable
void accumulate (){
sum += in1;
cout << “Sum = “ << sum << endl;}

SC_CTOR(consumer)
{
SC_SLAVE(accumulate, in1);
sum = 0; // initialize
};
SC_MODULE(top) // container
{
producer *A1;
consumer *B1;
sc_link_mp<int> link1;
SC_CTOR(top)
{
A1 = new producer(“A1”);
//A1.out1(link1);
B1 = new consumer(“B1”);
//B1.in1(link1);}};

Can you see where?Can you see where?

IBM Rational Software

7

Breaking the Architecture….

«sc_slave»
consumer
««sc_slavesc_slave»»

consumerconsumer
«sc_method»
producer
««sc_methodsc_method»»
producerproducer

start out1 in1

Can you see it now?Can you see it now?

Conclusion:
Models can be quite
useful when specifying
and communicating
software architectures

Conclusion:
Models can be quite
useful when specifying
and communicating
software architectures

IBM Rational Software

8

Engineering Models

Engineering model: A reduced representation of some system
that highlights the properties of interest from a given viewpoint

Functional ModelModeled system

Modeling: A fundamental technique for coping with complexity
We don’t see everything at once – only the important stuff = abstraction
We use a representation (notation) that is easily understood

IBM Rational Software

9

The Software and Its Model

«sc_slave»
consumer
««sc_slavesc_slave»»

consumerconsumer
«sc_method»
producer

««sc_methodsc_method»»
producerproducer

start out1 in1

«sc_link_mp»

link1

SC_MODULE(producer)
{
sc_outmaster<int> out1;
sc_in<bool> start; // kick-start
void generate_data ()
{
for(int i =0; i <10; i++) {
out1 =i ; //to invoke slave;}
}
SC_CTOR(producer)
{
SC_METHOD(generate_data);
sensitive << start;}};
SC_MODULE(consumer)
{
sc_inslave<int> in1;
int sum; // state variable
void accumulate (){
sum += in1;
cout << “Sum = “ << sum << endl;}

SC_CTOR(consumer)
{
SC_SLAVE(accumulate, in1);
sum = 0; // initialize
};
SC_MODULE(top) // container
{
producer *A1;
consumer *B1;
sc_link_mp<int> link1;
SC_CTOR(top)
{
A1 = new producer(“A1”);
A1.out1(link1);
B1 = new consumer(“B1”);
B1.in1(link1);}};

IBM Rational Software

10

Model-Driven Development (MDD)
An approach to software development in which the focus and
primary artifacts of development are models (vs programs)

Based on two time-proven methods:

SC_MODULE(producer)

{sc_inslave<int> in1;

int sum; //

void accumulate (){

sum += in1;

cout << “Sum = “ <<
sum << endl;}

««sc_modulesc_module»»
producerproducer

start out1

(1) ABSTRACTION (2) AUTOMATION

««sc_modulesc_module»»
producerproducer

start out1

SC_MODULE(producer)

{sc_inslave<int> in1;

int sum; //

void accumulate (){

sum += in1;

cout << “Sum = “ <<
sum << endl;}

Realm of
modeling
languages

Realm of Realm of
modelingmodeling
languageslanguages

Realm of
tools
Realm of Realm of
toolstools

IBM Rational Software

11

Model-Driven Architecture (MDA)

An OMG initiative to support model-driven development through a
series of open standards

(1) ABSTRACTION (2) AUTOMATION

(3) OPEN STANDARDS

MDA™MDAMDA™™

• Modeling languages
• Interchange standards
• Model transformations
• Software processes
• etc.

• Modeling languages
• Interchange standards
• Model transformations
• Software processes
• etc.

IBM Rational Software

12

What is Software Architecture?

IEEE Standard 1471-2000: Architectural Description of Software-
Intensive Systems

Architecture: The fundamental organization of a system embodied
in its components, their relationships to each other, and to the
environment, and the principles guiding its design and evolution.

“fundamental” ⇒ irrelevant details are omitted ⇒ abstraction
“organization” ⇒ structural and behavioral
“components” ⇒ architecture involves decomposition into parts
“relationships” ⇒ parts are coupled structurally and dynamically
“guiding principles” ⇒ like the basic tenets of a constitution

IBM Rational Software

13

Architecture and Modeling

Software architectures are specified by models:

To architect is to model

⇒ Software modeling languages used by software architects must
have appropriate architectural modeling capabilities

What are those capabilities?

IBM Rational Software

14

Outline

On Software Architecture and MDD

Requirements for Modeling Software Architectures

Architectural Modeling Concepts in UML

IBM Rational Software

15

Sample software architecture diagram

BizbazBizbaz

RUFRUF

SneezerSneezer
GloogerGlooger

CasterCaster

POOPOOFOOFOO

GRUMPGRUMP

DooperDooper FrameworkFramework

Super FrameworkSuper Framework

BlooperBlooper

GeezerGeezer

PURRPURR

What does it actually mean?

IBM Rational Software

16

Software Architecture: Run-Time vs Design-Time

Design-time architecture: the
static organization of the system
specification in a design repository

Run-time architecture: the
dynamic organization of instances
executing in a computer

a:Aa:A

b1:Bb1:B b2:Bb2:B

c1:Cc1:C

c2:Cc2:C

c3:Cc3:C

B

A B0..*

C

0..1

0..*

«import»

0..*

The two are formally related but are distinct!The two are formally related but are distinct!

IBM Rational Software

17

Services LayerServices Layer

Application LayerApplication Layer

End-to-End Behaviors

A Simplified Run-Time Architecture Model Example

Layering
Structure

FuberFuberFuber GruberGruberGruberBooblerBooblerBoobler

DabblerDabblerDabbler

Horizontal
Structure

IBM Rational Software

18

The Communicating Peers Structural Pattern

Two (or more) components that collaborate to achieve some
greater objective

Each can exist independently of the other

PeerOnePeerOnePeerOne PeerTwoPeerTwoPeerTwo

Connectors clearly specify the intended couplings between
components

Unconnected components cannot affect each other directly
Explicit specification of architectural constraints

connectorconnector
PeerThreePeerThreePeerThree

IBM Rational Software

19

Protocols

A specification of only valid interactions along a connector
Ideally, defined as a reusable behavioral “component”

LeftLeftLeft RightRightRight

LeftLeft RightRight
m1

m4

m2

m3

ProtocolA

<A><A>
m1

m4

m2

m3

Reusable
ProtocolA

EastEastEast WestWestWest

IBM Rational Software

20

Protocol Composition

Sometimes it is useful to combine simpler protocols into more
complex ones

LeftLeft RightRight

m1

m4

m2

m3

ProtocolA

LeftLeft RightRight

m6

m3

ProtocolB

LeftLeft RightRight

m6

m7

ProtocolC

IBM Rational Software

21

Structural Composition Architectural Pattern
Part-whole relationship

Parts are used to implement the functionality of the container
Parts are hidden from other components (minimizes coupling)
Parts are owned by the container and cannot exist independently
Parts may be created dynamically after the container and destroyed
before the container

Container

Part1Part1 Part2Part2

IBM Rational Software

22

Structural Aggregation Architectural Pattern
Like composition, except that parts are “borrowed”

Parts are actually placeholders for external parts owned by other
containers

Container

Part1Part1 BufferBuffer

Buffer Manager

Buffer1Buffer1

Buffer2Buffer2

Buffer3Buffer3

Buffer2Buffer2 Buffer2Buffer2

IBM Rational Software

23

The Port Structural Pattern

Distinct interaction points of an object for multiple, possibly
simultaneous collaborations

Ports allow an object to distinguish between different external
collaborators without direct coupling to them

pp

objMobjMobjM

objGobjGobjG

objFobjFobjFobjCobjC

qq
…

objM.setA(d)

…

…

q.setA(d)

…

op ()op ()

PortPort

IBM Rational Software

24

Application 1Application 1Application 1 Application 2Application 2Application 2

The Layering Structural Pattern
Upper layers are existentially dependent on lower layer

But upper layer does not encapsulate the lower layers ⇒ different
from composition

Lower layer is independent of the upper layer entities

Operating System Operating System Operating System

File
System

IPC
Service Timing

Service

The lower layer provides a set of shared implementation
services

These cannot be encapsulated as parts by upper level components
since they may be shared by more than one component

IBM Rational Software

25

HardwareHardware
LinkLink

NetworkNetwork
Level 4Level 4
Level 5Level 5
Level 6Level 6
Level 7Level 7

The Dimensions of Layering

In complex systems, layering is a complex multidimensional
relationship

e.g., 7-layer model of Open System Interconnection (OSI)

OperatingOperating
systemsystem

IBM Rational Software

26

The Layering Structural Pattern (continued)
Layering implies differentiating two kinds of component interfaces

Implementation-independent peer interfaces
Implementation-specific layer interfaces (service access points)

Application 1Application 1Application 1 Application 2Application 2Application 2

Operating System Operating System Operating System

File
System

IPC
Service Timing

Service

Peer interfacePeer interface

Layer interfaceLayer interface

IBM Rational Software

27

Outline

On Software Architecture and MDD

Requirements for Modeling Software Architectures

Architectural Modeling Concepts in UML

IBM Rational Software

28

ClassA ClassB

1

al

1

left

1

ar

1

right

a1:ClassA b1:ClassBal left

ar right

(1)

a1:ClassA b1:ClassB
ar right

a2:ClassA
right ar

b2:ClassB

(2)

al

left

al

left

Why Class Diagrams are Not Always Sufficient

Class diagrams
sometimes
abstract away
key architectural
information!

Class diagrams
sometimes
abstract away
key architectural
information!

IBM Rational Software

29

TwoViewMVC

Collaborations in UML 2

Describes a set of “roles” communicating across “connectors”

A role can represent an instance or something more abstract

view1 : View view2 : View

ctrl:
Control

Model

CollaborationCollaboration

Constrained roleConstrained role

Unconstrained roleUnconstrained role

ConnectorConnector

IBM Rational Software

30

Collaborations in UML 2 (continued)

Collaborations provide a direct means for modeling the
“collaborating peers” architectural pattern

Collaborations can be refined through inheritance
Possibility for defining generic architectural structures

TwoViewMVC

view1 : View view2 : View

ctrl:
Control

model

ThreeViewMVC

view1 : View view2 : View

ctrl:
Control

model

view3 : View

IBM Rational Software

31

TwoViewMVC

view1 : View view2 : View

ctrl:
Control

model

Collaborations and Behavior

One or more behavior specs can be attached to a collaboration
To show interesting interaction sequences within the collaboration

startSeq stopSeq

Interaction Interaction
declarationsdeclarations

sd stopSeq

ctrl model view1 view2

1.

2a.2b.

IBM Rational Software

32

FaxProtocol

««interfaceinterface»»
FaxSender

callAck ()
dataAck ()
stopAck ()

««interfaceinterface»»
FaxReceiver
call ()
data ()
stop ()

Modeling Protocols
Usually declared between two or more interfaces

But, interfaces cannot be parts because they are not instantiable per se

sender :
FaxSender

receiver :
FaxReceiver

FaxSeq sd faxSeq

sender receiver

loop

IBM Rational Software

33

sdsd ATMATM--transactiontransaction

client: atm: dbase:

UML 2 Interaction Diagrams

insertCard

CheckPinref

alt [chk= OK]

[else]
error(badPIN)

DoTransactionref

sdsd CheckPinCheckPin

client: atm: dbase:

askForPIN

data(PIN)
check(PIN)
result(chk)

result(chk)

Interaction Frame Lifeline matches a part

Interaction Occurrence

Combined (in-line) Fragment

IBM Rational Software

34

Structured Classes in UML 2
This concept is closely related to the collaboration concept

Classes with
An internal (collaboration) structure
An external structure consisting of Ports (optional)

Heritage: various architectural description languages (ADLs)
UML-RT profile: Selic and Rumbaugh (1998)
ACME: Garlan et al.
SDL (ITU-T standard Z.100)

IBM Rational Software

35

Structured Objects: External Structure (Ports)
Complex (architectural) objects tend to collaborate with multiple clients

Need distinct interaction points

e.g., Database Admin porte.g., Database Admin port

e.g., Database Objecte.g., Database Object

e.g., Database User portse.g., Database User portse.g., Database User portse.g., Database User ports

IBM Rational Software

36

Ports and UML Interfaces

In general, a port can interact in both directions

DataBase

adminPort

clientPort

«interface»
DBserver

readDB (recNo)
writeDB (recNo,d)
notifyOfChange (recNo)

«interface»
DBclient

change (d) «uses»

ProvidedProvided interfaceinterface

RequiredRequired interfaceinterface

IBM Rational Software

37

DBserver

DBclient

Shorthand Notation

DataBase

adminPort

clientPort

IBM Rational Software

38

Assembling Structured Objects
Ports can also be joined by connectors

Call

AckCall (parms)

CallParms(par)

AckData

Dataloop

FaxSenderFaxSenderFaxSender FaxReceiverFaxReceiverFaxReceiver

sd StartCall

Connectors can be constrained to by a collaboration protocol
Static type checking for dynamic flow violations are possible
Eliminates a major source of “integration” errors

sender : Faxsender : Faxsender : Fax
remoteremote

receiver : Faxreceiver : Faxreceiver : Fax
remoteremote

IBM Rational Software

39

Models both composition and aggregation

FaxCall

receiveCtrlsendCtrl

sender:Fax

remote

receiver:Fax
remote

c c

Structured Classes: Internal Structure
Structured classes may have an internal structure of (structured
class) parts and connectors

Delegation connectorDelegation connector

PartPart

IBM Rational Software

40

A word about UML components and UML subsystems

UML Component = merely a special kind of structured class
Can act as a package ⇒ a combined design-time/run-time
concept
Mixing of these two domains results in some complex semantics
Each use of the term “component” needs to be qualified to avoid
confusion (run-time or design-time semantics?)

UML Subsystem = a stereotype of UML Component
Its parts can be optionally tagged as being either
«implementation» or «specification» elements
Inherits semantic complexity of UML Component concept
(NB: There are other ways of distinguishing implementation from
specification elements)

IBM Rational Software

41

Modeling Layers in UML 2

Layering requires special “layer interfaces” = implementation-
specific interfaces that access services of the layer(s) below

UML 2 models layer interfaces using special layer ports
(Ports whose “isService” meta-attribute set to false)

Application 1Application 1Application 1 Application 2Application 2Application 2

Operating System Operating System Operating System

File
System

IPC
Service Timing

Service

Peer interfacePeer interface

Layer Layer
interfaceinterface

IBM Rational Software

42

:ApplicationX :ApplicationY

Modeling Layers (continued)

::OperatingSystemOperatingSystem

:TimingService

LayerLayer
portport

TSport

:partY1

IBM Rational Software

43

Modeling Layers (continued)
The layer ports are in a different “dimension” than other ports

::OperatingSystemOperatingSystem

:TimingService

TSport

LayerLayer
portport

90o

IBM Rational Software

44

Summary
Software architecture:

Defines the most important characteristics of a software design
Drives the construction
Determines its evolutionary potential

⇒ It is of critical importance to ensure that architectural decisions can
be captured clearly and accurately

UML 2 has a number of architectural modeling capabilities for most
basic architectural design patterns

Finally:
In combination with MDD techniques (e.g., automated code generation) it
becomes much easier to ensure that architectural intent is preserved
during implementation and subsequent system evolution

IBM Rational Software

45

Rational tools for the software architect

Rational Software Architect/Modeler/Developer
(RSA/RSM/RSD)

Release 7.0 (coming) has extensive support for structured class
concept

Rational Rose RealTime
Supports an executable version of structured class concepts

But, based on a UML 1.4 profile

IBM Rational Software

46

Questions

IBM Rational Software

47

Bran Selic
(bselic@ca.ibm.com)

Thank You

