IBM Rational Software

Modeling Software Architectures with UML 2

Bran Selic
IBM Distinguished Engineer — IBM Canada

[software

| IBM Rational Software

Outline

[- On Software Architecture and MDD]

= Requirements for Modeling Software Architectures

= Architectural Modeling Concepts in UML

ke —

| IBM Rational Software

A Bit of Modern Software...

SC_MODULE(producer)

{

sc_outmaster<int> outl;
sc_in<bool> start; // Kick-start
void generate data ()

{

for(int 1 =0; 1 <10; 1++) {

outl =1 ; //to invoke slave;}

+
SC_CTOR(producer)

{
SC_METHOD(generate_data);
sensitive << start;}};
SC_MODULE(consumer)

{

sc_inslave<int> inl;

int sum; // state variable
void accumulate (O

sum += 1nl;

cout << “Sum = * << sum << endl;}

SC_CTOR(consumer)

{

SC_SLAVE(accumulate, 1Inl);
?gm = 0; /7 initialize

SC_MODULE(top) // container
{

producer *Al;

consumer *Bl;
sc_link_mp<int> linkl;
SC_CTOR(top)

{

Al = new producer(“Al”);
Al.outl(linkl);

Bl = new consumer(“B1”);
Bl.in1(linkl);}};

Can you spot the
architecture?

| IBM Rational Software

...and Its UML 2 Model

<SERMBINeE @6 Slelye
preduce: | _ [N Consumer

inl

start

Can you see it now?

| IBM Rational Software

Back to Our System

SC_MODULE(producer)

sc_outmaster<int> outl;
sc_in<bool> start; // Kick-start
void generate _data ()

for(int 1 =0;
outl =i

1 <10; 1++) {

;. //to invoke slave;}
SC_CTOR(producer)

SC_METHOD(generate_data);
sensitive << start;}};
SC_MODULE(consumer)

sc_inslave<int> inl;

Int sum; // state variable
void accumulate (Q{

sum += 1nl;

cout << “Sum “ << sum << endl;}

SC_CTOR(consumer)

{

SC_SLAVE(accumulate, 1Inl);
fgm = 0; /7 initialize

SC_MODULE(top) // container
{

producer *Al;

consumer *Bl;
sc_link_mp<int> linkl;
SC_CTOR(top)

{

Al = new producer(“Al”);
Al.outl(linkl);

Bl = new consumer(“B1”);
Bl.in1(linkl);}};

K ——

| IBM Rational Software

Breaking the Architecture....

SC_MODULE(producer) SC_CTOR(consumer)
{ {
Sc_outmaster<int> outl; SC_SLAVE(accumulate, inl);

sc_in<bool> start; // Kick-start

m = 0; // initiali
void generate_data () 3" initialize

{ SC_MODULE(top) // container
for(int 1 =0; 1 <10; 1++) { {

outl =1 ; //to invoke slave;} producer *A1;

} consumer *B1;
?C_CTOR(producer) sc_link_mp<int> linkl;
SC_METHOD(generate_data); SC_CTOR(top)

sensitive << start;}}; {

SC_MODULE(consumer) Al = new producer(“Al”);
{ //A1 _outl(linkl);
sc_inslave<int> inl; Bl = new consumer(“B1l”);
Iint sum; // state variable //B1_in1(link1);}};

void accumulate (O{
sum += inl;

cout << “Sum = “ << sum << endl;} Can you see where?

| IBM Rational Software

Breaking the Architecture....

<SERMBINeE
PIOOLCEr

@6 Slelye

- CORSUmEN:

Can you see it now?

| IBM Rational Software

Engineering Models

= Engineering model: A reduced representation of some system
that highlights the properties of interest from a given viewpoint

rLow Gain Receiver j
ADC 12 | Pipeline Memory 12
40 MHz 7 40 MHz
10 bit 100 wds o -§
I |__: o ROD
o 2
N o
High Gain Receiver E 3 3
o (o]
ADC 12 | Pipeline Memory 12 s 5
40 MHz 7 40MHz g5
10 bit 100 wds .
40 MHz Clock B/C RLvL1
Optical Fiber tag | Accept
{) TTC receiver ROD
- phased clock
- event & BIC tag Controller ISP
- LVL1 accept
. Digitizer System p

Modeled system Functional Model

= Modeling: A fundamental technique for coping with complexity
= We don’t see everything at once — only the important stuff = abstraction
= We use a representation (notation) that is easily understood

| IBM Rational Software

The Software and Its Model

C_MODULE(producer) SC_CTOR(consumer)
{ {

sc_outmaster<int> outl; SC_SLAVE(accumulate, inl);
sc_in<bool> start; // kick-start ?um = 0: // initialize

void generate data ()

{ SC_MODULE(top) // container
for(aint 1 =0; 1 <10; 1++) { {

outl =i ; //to invoke slave;} producer *Al:

} consumer *B1l;
?C_CTOR(producer) sc_link_mp<int> linkl;
SC_METHOD(generate_data); SC_CTOR(top)

sensitive << start;}}; 1

SC_MODULE (consumer) Al = new producer(“AX”);

{ Al.outl(linkl);
sc_inslave<int> inl; Bl = new consumer(“Bl”);

int sum; // state variable Bl.inl

void accumulate (O{

sum += iInl; ZSermeEthoa
<< “Sum = * << sum <</endi} pr(_)ducer

p» <56 SIaVEY
= CONSUINEN

link1

| IBM Rational Software

Model-Driven Development (MDD)

= An approach to software development in which the focus and
primary artifacts of development are models (vs programs)

= Based on two time-proven methods:
(1) ABSTRACTION (2) AUTOMATION

ZSCNTEUUIEY «5¢ goculey
ofoclicer PIOUUCES
start outl start outl

Realm of
modeling
languages

Realm of
tools

SC_MODULE (producer) SC_MODULE (producer)
{sc_inslave<int> inl; {sc_inslave<int> inl;
int sum; // int sum; //

void accumulate () { void accumulate () ({
sum += inl; sum += inl;

cout << “Sum_= “ << cout << “Sum_= “ <<
sum << endl;} sum << endl;}

K

| IBM Rational Software

Model-Driven Architecture (MDA)

= An OMG initiative to support model-driven development through a
series of open standards

(1) ABSTRACTION (2) AUTOMATION

(3) OPEN STANDARDS

 Modeling languages
Interchange standards
Model transformations
Software processes

« etc.

| IBM Rational Software

What is Software Architecture?

= |[EEE Standard 1471-2000: Architectural Description of Software-
Intensive Systems

= Architecture: The fundamental organization of a system embodied
In its components, their relationships to each other, and to the
environment, and the principles quiding its design and evolution.

» “fundamental” = irrelevant details are omitted = abstraction

» “organization” = structural and behavioral

» “components” = architecture involves decomposition into parts
» “relationships” = parts are coupled structurally and dynamically
» “guiding principles” = like the basic tenets of a constitution

ke

| IBM Rational Software

Architecture and Modeling

= Software architectures are specified by models:

» To architect is to model

— Software modeling languages used by software architects must
have appropriate architectural modeling capabilities

= What are those capabilities?

e

| IBM Rational Software

Outline

= On Software Architecture and MDD

[- Requirements for Modeling Software Architectures]

= Architectural Modeling Concepts in UML

.

| IBM Rational Software

Sample software architecture diagram

= What does it actually mean?

Caster Blooper

Geezer SUper Eramework
Gloeger ,
Sheezer DEOpPEr Eramework

Bizaz

POO

| IBM Rational Software

Software Architecture: Run-Time vs Design-Time

B cl:C
: iz
A 0.* B 2 0
'/«import» ﬁ
0.1
0.7 C c3:.C

= Run-time architecture: the
dynamic organization of instances
executing in a computer

= Design-time architecture: the
static organization of the system
specification in a design repository

| The two are formally related but are distinct! I
| 3

| IBM Rational Software

A Simplified Run-Time Architecture Model Example

Layering Horizontal
Structure Structure

Boobler Gruber

Agoaliezijon Ezyer

SEenvices; Layer

1
- e S

>
b

s u

| IBM Rational Software

The Communicating Peers Structural Pattern

= Two (or more) components that collaborate to achieve some
greater objective

» Each can exist independently of the other

PeerOne Peerlwo
connector
PeerThree

= Connectors clearly specify the intended couplings between
components

» Unconnected components cannot affect each other directly

» Explicit specification of architectural constraints

'S 2

| IBM Rational Software

Protocols

= A specification of only valid interactions along a connector
» Ideally, defined as a reusable behavioral “component”

: R ~~ Reusable ;
o ProtocolA “*x;:\‘ §§§§§§ “w..__ ProtocolA ,,'
‘ ﬁs-
m1 < ml >
L m2 < m2
m3 > m3 >
ma_ m4_

K ——

| IBM Rational Software

Protocol Composition

= Sometimes it is useful to combine simpler protocols into more

complex ones

ProtocolA

m1>

<m’)

m3 >
ma >

A

S

ProtocolB

Left

mé

m?3

K e —

ProtocolC

-?_

mé

|<m7

| IBM Rational Software

Structural Composition Architectural Pattern

= Part-whole relationship
» Parts are used to implement the functionality of the container
» Parts are hidden from other components (minimizes coupling)
» Parts are owned by the container and cannot exist independently

» Parts may be created dynamically after the container and destroyed
before the container

Container

| IBM Rational Software

Structural Aggregation Architectural Pattern

= Like composition, except that parts are “borrowed”

» Parts are actually placeholders for external parts owned by other
containers

Buffer Manager

Container
Bufferl

Buffer2

Buffer3

F D S

| IBM Rational Software

The Port Structural Pattern

= Distinct interaction points of an object for multiple, possibly
simultaneous collaborations

= Ports allow an object to distinguish between different external
collaborators without direct coupling to them

Port
objC obj|F
0)))
&}p> q.setA(d) ..ok obiG

'S :

| IBM Rational Software

The Layering Structural Pattern

= Upper layers are existentially dependent on lower layer

» But upper layer does not encapsulate the lower layers = different
from composition

= Lower layer is independent of the upper layer entities

Application 1 — Application 2

IPC
File Service Tlmlng
System SerV|ce
eIm

Operating Syst

= The lower layer provides a set of shared implementation
services

» These cannot be encapsulated as parts by upper level components
since they may be shared by more than one component

.

| IBM Rational Software

The Dimensions of Layering

= In complex systems, layering is a complex multidimensional
relationship

» e.g., 7-layer model of Open System Interconnection (OSI)

Level 7
Level 6
Level 5

Network Operating
Link system

Hardware

\
\
\
Level 4 ‘
\
\
\

| IBM Rational Software

The Layering Structural Pattern (continued)

= Layering implies differentiating two kinds of component interfaces
» Implementation-independent peer interfaces

» Implementation-specific layer interfaces (service access points)

‘ Peer interfaceg

Application
File
System

Application 2
IPC _
Service

Service
Y

Operating System

Layer interface

K ——

| IBM Rational Software

Outline

= On Software Architecture and MDD

= Requirements for Modeling Software Architectures

[- Architectural Modeling Concepts in UML]

. -

| IBM Rational Software

Why Class Diagrams are Not Always Sufficient

Class diagrams
sometimes
abstract away
key architectural
Informatlon | __

| IBM Rational Software

Collaborations in UML 2

= Describes a set of “roles” communicating across “connectors”

= A role can represent an instance or something more abstract

[Connector I
S

TwoViewMVC
viewl : View view?2 : View
curl: /

Nﬂtrm

Model

\

}boraﬁon j

fConstrained rolej
T N—

~
\LUnconstrained role]

K e ——

| IBM Rational Software

Collaborations in UML 2 (continued)

= Collaborations provide a direct means for modeling the
“collaborating peers” architectural pattern

= Collaborations can be refined through inheritance
» Possibility for defining generic architectural structures

TwoViewMVC
viewl : View view?2 : View
ThreeViewMVC
ctrl:
Control
j viewl : View view?2 : View view3 : View
model I :
I~ ctrl: :
Control
model

F

| IBM Rational Software

Collaborations and Behavior

= One or more behavior specs can be attached to a collaboration
» To show interesting interaction sequences within the collaboration

Interaction

TwoViewMVC declarations j
JstartSeq JstopSeq A />sdstop8eq|
2
'-\‘-\‘\‘\ N cfrl moldel vielwl vie|w2
v \‘\ v*ev\vl : View view?2 : View _\ {_>= : :
" . | > |
1\2t2 o0 112 \"-\ i '“E‘l i >i
\\.\\ Control '\\ : :< l :
B N
o | | |
model \ - - . .
|

| IBM Rational Software

Modeling Protocols

= Usually declared between two or more interfaces
» But, interfaces cannot be parts because they are not instantiable per se

FaxProtocol
|)F axSeq sd faxSeq |
- sender| |receiver
i | |
«interface» «interface» —>
FaxSender FaxReceiver N
callAck () call () loop_J 1 |
dataAck () data () N :<—:
stopAck () stop () || ||
| |
sender : receiver :
FaxSender FaxReceiver

K ——

| IBM Rational Software

UML 2 Interaction Diagrams

Lifeline matches a part ’

Interaction Frame

sd ATM-transactlorQ Interaction Occurrence |

client: atm:
. insertCard >E sd CheckPin)
ref CheckPin client: atm: dbase:
| | |
| : : \ E< askForPIN : i
alt) [chk=DK] [, | data(PIN) _, l
. | l \ : >: check(PIN) >:
_"eT /' DoTransaction ‘ | E< result(chk) |
‘ | result(chk) | :
. |< 1 1
___________ 1 1 I

Combined (in-line) Fragment ’

| IBM Rational Software

Structured Classes in UML 2

= This concept is closely related to the collaboration concept

= Classes with
» An internal (collaboration) structure
» An external structure consisting of Ports (optional)

= Heritage: various architectural description languages (ADLS)
» UML-RT profile: Selic and Rumbaugh (1998)
» ACME: Garlan et al.
» SDL (ITU-T standard Z.100)

a0«

| IBM Rational Software

Structured Objects: External Structure (Ports)

= Complex (architectural) objects tend to collaborate with multiple clients
» Need distinct interaction points

e.g., Database Object :|

Eg., Database Admin port

e.g., Database User portsj

a0

| IBM Rational Software

Ports and UML Interfaces

= In general, a port can interact in both directions

Provided interfacej

«interface»
DBserver

/

readDB (recNo)
writeDB (recNo,d)
notifyOfChange (recNo)

q o -i clientPort

adminPort

«interface»
DBclient

< ______

change (d)

«uses»

Required interfacej

DataBase

36

| IBM Rational Software

Shorthand Notation

adminPort
DBserver clientPort
O DataBase
DBclient

| IBM Rational Software

Assembling Structured Objects

= Ports can also be joined by connectors

= Connectors can be constrained to by a collaboration protocol
» Static type checking for dynamic flow violations are possible
» Eliminates a major source of “integration” errors

remote remote

sender : Fax receiver ; Fax

- — —
sd StartCaII
IEaxReceive}

Call_>
7

1
: < AckCall (garms)I
|
1
1L

CallParm%(ngi
1L

| oop)

Data s 1

|

| 1

1~ AckData 1
~

| |

T T

E T S

| IBM Rational Software

Structured Classes: Internal Structure

= Structured classes may have an internal structure of (structured
class) parts and connectors

= Models both composition and aggregation

Delegation connector |

sendCtrl / receiveCtrl

/

C C
Part
remote

sender:Fax receiver:Fax -~
remote

FaxCall

'S 2

| IBM Rational Software

A word about UML components and UML subsystems

= UML Component = merely a special kind of structured class

» Can act as a package = a combined design-time/run-time
concept

v

Mixing of these two domains results in some complex semantics

» Each use of the term “component” needs to be qualified to avoid
confusion (run-time or design-time semantics?)

= UML Subsystem = a stereotype of UML Component

» Its parts can be optionally tagged as being either
«implementation» or «specification» elements

» Inherits semantic complexity of UML Component concept

» (NB: There are other ways of distinguishing implementation from
specification elements)

F e

| IBM Rational Software

Modeling Layers in UML 2

= Layering requires special “layer interfaces” = implementation-
specific interfaces that access services of the layer(s) below

= UML 2 models layer interfaces using special layer ports
» (Ports whose “isService” meta-attribute set to false)

‘ Peer interfacg
Application Application 2

_ IPC —
Operating system

| IBM Rational Software

Modeling Layers (continued)

Layer
port

J

:ApplicationX

S

_O

:ApplicationY

partYl

_O

TSport

:TimingService

:OperatingSystem

42

| IBM Rational Software

Modeling Layers (continued)

= The layer ports are in a different “dimension” than other ports

TSport

:TimingService

:OperatingSystem

F e

| IBM Rational Software

Summary

= Software architecture:
» Defines the most important characteristics of a software design
» Drives the construction
» Determines its evolutionary potential

— It is of critical importance to ensure that architectural decisions can
be captured clearly and accurately

= UML 2 has a number of architectural modeling capabilities for most
basic architectural design patterns

= Finally:

» In combination with MDD techniques (e.g., automated code generation) it
becomes much easier to ensure that architectural intent is preserved
during implementation and subsequent system evolution

.«

| IBM Rational Software

Rational tools for the software architect

= Rational Software Architect/Modeler/Developer
(RSA/RSM/RSD)

» Release 7.0 (coming) has extensive support for structured class
concept

= Rational Rose RealTime
» Supports an executable version of structured class concepts

» But, based on a UML 1.4 profile

. s

IBM Rational Software

Questions

IBM Rational Software

Thank You

Bran Selic
(bselic@ca.ibm.com)

