Safety Critical Code (SA) Checklist
Version 1.0, Dated January 2010.

Adapted from: Almaida, J., et al, ‘Best Practices in Code Inspection for Safety-Critical Software’, IEEE Software, May/June 2003, p 56-63.
SA 1 (Return) - Routine Return Method

All paths that conduct to the end must have a returned value

Parameter receiving and stack cleaning must be coherently established

SA 2 (Interruption) - Interruption Handling Routines and Critical Regions
Verify, if routines activated by hardware interruptions make all the correct housekeeping before returning

Verify, in the case of interrupt handling routines, the correct process of return

Check, for the interrupt handling routines, preventing the corruption of portions of code that were executed before the interruption occurrence

Check the link process for verifying if the correct memory address of each routine is generated and written into the proper interrupt vector table position or equivalent.

The maximum execution time of the interruption service must be limited

The use of the global symbols, identified as being addressed by interrupt service routines, must be verified in the entire source code for critical regions

SA 3 (Loop) - Repetitive loop control

If the loop control variables are tested and updated in a correct way

If the type of variables used in loop control is consistent with the form of their use

SA 4 (Input/Output) - Input/output tests

Existence of an input test guarantying that the routine had reached its end in the previous execution

Existence of output test guarantying that the routine had started from its beginning in the previous execution

SA 5 (Flow) - Check of program flow control

Verification of control structures through selector blocks

Interrupt disabling commands must have their corresponding enabling commands

For Assembly language, stack commands must have the corresponding unstack commands

In the case of Assembly language, if all operands are correctly referenced to their register/memory segment

SA 6 (Unused) - Avoid unused source code
SA 7 (Variable/Constants) - Use of variables/constants
Verify indexes against the limits of vectors and matrixes before addressing them

Check the place and scope of declared symbols, verifying if double declarations have not occurred

When a program module needs to re-declare a symbol in the same scope of a declaration or header file, the types present in the external declarations have to be consistent

Verify if all global and static symbols are initialized

SA 7 (Comments) – Use source code comments

SA 8 (Legibility) – Increase source code legibility
Avoid abbreviations in names of constants, variables and routines, as well as very long names

Use of a mechanism for word delimitation, as for example separator characters, capital letter, etc

Coherent and consistent criteria for variable and routine names

Use of prefixes and/or suffixes related to symbol functions

Different representation for constants and variables

Use of indentation with consistent criteria

Use of brackets whenever they contribute to expression clarity, even if they are semantically unnecessary

Avoid extremely complex structures

SA 9 (Pre-Processor) – Avoid use of pre-processor directives
SA 10 (Optimization) – Avoid use of code optimization
