Deployment Package
Construction and Unit Testing
Basic Profile

Notes:

This document is the intellectual propriety of its author’s organization. However, information contained in this document is free of use. The distribution of all or parts of this document is authorized for non commercial use as long as the following legal notice is mentioned:

© 5th level
Commercial use of this document is strictly forbidden. This document is distributed in order to enhance exchange of technical and scientific information.

This material is furnished on an “as-is” basis. The author(s) make(s) no warranties of any kind, either expressed or implied, as to any matter including, but not limited to, warranty of fitness for purpose or merchantability, exclusivity, or results obtained from use of the material.

The processes described in this Deployment Package are not intended to preclude or discourage the use of additional processes that Very Small Entities may find useful.

	Author
	ANA VAZQUEZ – 5th level (México)

	Editors
	ANA VAZQUEZ – 5th level, (México)

C. Y. LAPORTE – École de technologie supérieure (ÉTS), (Canada)

	Creation date
	28 April 2009

	Last update
	23 September 2010

	Version
	0.4

Version History
	Date

(yyyy-mm-dd)
	Version
	Description
	Author

	2009-04-28
	0.1
	Document Creation
	Ana Vázquez

	2009-08-14
	0.2
	Revision
	Claude Laporte

	2009-10-15
	0.3
	Update of section 5 and arrangement of SI 4.1 subtasks
	Ana Vázquez

	2010-09-21
	0.4
	Change of task and sub-task arrangement in SI 4.3 to achieve consistency with the last version of 29110-5 and revision of section 9.
	Ana Vázquez

Abbreviations/Acronyms

	Abre./Acro.
	Definitions

	DP
	Deployment Package - a set of artefacts developed to facilitate the implementation of a set of practices, of the selected framework, in a Very Small Entity.

	VSE
	Very Small Entity – an enterprise, organization, department or project having up to 25 people.

	VSEs
	Very Small Entities

	UI
	User Interface

	TL
	Technical Leader

	AN
	Analyst

	DES
	Designer

	PR
	Programmer

Table of Contents
41. Technical Description

4Purpose of this document

4Why are Construction and Unit Testing Important?

62. Definitions

6Generic Terms

6Specific Terms

73. Relationships with ISO/IEC 29110

94. Description of Processes, Activities, Tasks, Steps, Roles and Products

9Sub-task: Select the User Interface standard

11Sub-task: Define Construction Standards

13Assign Tasks to the Members of the Work Team

15Construct or Update Software Components

15Note: Components are based on the detailed part of the Software Design.

17Design or update unit test cases and apply them

18Correct the Defects

18Update the Traceability Record

19Role Description

20Product Description

22Artefact Description

235. Template

246. Example

257. Checklist

25Code Review Checklist

268. Tool

26Traceability Matrix

309. Reference to Other Standards and Models

30ISO 9001 Reference Matrix

31ISO/IEC 12207 Reference Matrix

33CMMI Reference Matrix

3510. References

3611. Evaluation Form

1. Technical Description
Purpose of this document

This Deployment Package (DP) supports the Basic Profile as defined in ISO/IEC 29110 Part 5-1-2: Management and Engineering Guide. The Basic Profile is one profile of the Generic profile group. The Generic profile group is composed of 4 profiles: Entry, Basic, Intermediate and Advanced. The Generic profile group is applicable to VSEs that do not develop critical software, commercial off the shelf software products. The Generic profile group does not imply any specific application domain.
A DP is a set of artefacts developed to facilitate the implementation of a set of practices in a Very Small Entity (VSE). A DP is not a process reference model (i.e. it is not prescriptive). The elements of a typical DP are: description of processes, activities, tasks, roles and products, template, checklist, example, reference and reference to standards and models, and tools.

The content of this document is entirely informative.

This document has been produced by Ana Vazquez of 5th level (México) beyond her participation to ISO JTC1/SC7/WG24.

Why are Construction and Unit Testing Important?

There is no need to explain in great details why Construction and Unit Testing is important. This is the only activity which is executed in every project that produces software, unlike other activities, like Project Management activities which sometimes are skipped or performed incompletely. Construction is not only executed it is also complemented to perform some analysis and design in several agile approaches like Extreme Programming and Scrum.

Construction is, most of the times, the activity which spends most of the effort in a software project. Its performance has a significant impact on the project cost and schedule.
Regarding quality, about 12 % of defects
, as illustrated in Figure 1, are injected during Construction. They should be removed through unit tests.

[image: image1.png]49.1%

8%

I U7% 0.1% 00%

Figure 1 Origins of software defects (Selby 2007)

The construction activities should have been planned during the Project planning activity of the project. The construction activities should be described in the project plan.

2. Definitions

In this section, the reader will find two sets of definitions. The first set defines the terms used in all Deployment Packages, i.e. generic terms. The second set of terms used in this Deployment package, i.e. specific terms.

Generic Terms

Process: set of interrelated or interacting activities which transform inputs into outputs [ISO/IEC 12207].

Activity: a set of cohesive tasks of a process [ISO/IEC 12207].

Task: required, recommended, or permissible action, intended to contribute to the achievement of one or more outcomes of a process [ISO/IEC 12207].
Sub-Task: When a task is complex, it is divided into sub-tasks.
Step: In a deployment package, a task is decomposed in a sequence of steps.
Role: a defined function to be performed by a project team member, such as testing, filing, inspecting, coding. [ISO/IEC 24765]

Product: piece of information or deliverable that can be produced (not mandatory) by one or several tasks. (e. g. design document, source code).
Artefact: information, which is not listed in ISO/IEC 29110 Part 5, but can help a VSE during the execution of a project.
Specific Terms

Component: Set of functional services in the software, which, when implemented, represents a well-defined set of functions and is distinguishable by a unique name [ISO/IEC 29881:2008]

Defect: A problem which, if not corrected, could cause an application to either fail or to produce incorrect results [ISO/IEC 20926].
Rework: Action taken to bring a defective or nonconforming component into compliance with requirements or specifications [PMBOK].

Traceability: Degree to which a relationship can be established between two or more products of the development process, especially products having a predecessor-successor or master-subordinate relationship to one another [IEEE 1233-1998]
Unit test: Testing of individual routines and modules by the developer or an independent tester [ISO/IEC 24765]
3. Relationships with ISO/IEC 29110

This deployment package covers the activities related to Construction and Unit Test of the ISO Technical Report ISO/IEC 29110 Part 5-1-2 for Very Small Entities (VSEs) – Basic Profile [ISO/IEC29110].

The construction activities should have been planned during the Project planning activity of the project. The construction activities should be described in the project plan. If this is not the case, the project manager should perform this activity before beginning construction. (see the Project Management Deployment Package)

In this section, the reader will find a list of Software Implementation (SI) process, activities, tasks and roles from Part 5 that are directly related to this topic. This topic is described in details in the next section.

· Process: 7
 Software Implementation
· Activity: 7.7.7.2 Software Requirement Analysis
· Tasks and Roles:
	Tasks
	Roles

	SI.2.2 Document or update the Requirements Specification.

Identify and consult information sources (customer, users, previous systems, documents, etc.) in order to get new requirements.
Analyze the identified requirements to determinate the scope and feasibility.

Generate or update the Requirements Specification.
	AN,
CUS

· Activity: 7.7.1.4 Software Construction
· Tasks and Roles:
	Tasks
	Roles

	SI.4.1 Assign tasks to the Work Team members related to their role, according to the current Project Plan
	TL,
PR

	SI.4.3 Construct or update Software Components based on the detailed part of the Software Design.
	PR

	SI.4.4 Design or update unit test cases and apply them to verify that the Software Components implements the detailed part of the Software Design.
	PR

	SI.4.5 Correct the defects found until successful unit test (reaching exit criteria) is achieved.
	PR

	SI.4.6 Update the Traceability Record incorporating Software Components constructed or modified.
	PR

4. Description of Processes, Activities, Tasks, Steps, Roles and Products

Process: 7 Software Implementation
Activity: 7.7.7.2 Software Requirements Analysis
	Tasks
	Roles

	SI.2.2 Document or update the Requirements Specification.

Identify and consult information sources (customer, users, previous systems, documents, etc.) in order to get new requirements.
Analyze the identified requirements to determinate the scope and feasibility.

Generate or update the Requirements Specification.
	AN ,
CUS

This task is related with the following sub-tasks:

· Select the User Interface standard

· Define Construction Standards
Sub-task: Select the User Interface standard

Note: The objective of this sub-task may have already been achieved, therefore it may not be needed.
	

	Objective:
	Select a standardized interface for the end user.

	Rationale:
	Usability requirements are directly addressed by this sub-task. These requirements should have been agreed as part of the Requirements Specification, however most of the times they are not explicitly stated, but they are always expected.

User Interface (UI) standards should be used in all components that have UI. They are expected even if they were not specified; if the team decides not to use them it will be visible for the end users; they will perceive a lack of coordination among the project team and will qualify the software as low quality even if the functionality is properly implemented. The usage of a standard could be demanded and a lot of rework could be saved.

As stated by 29110-5, Interfaces (including UI) should have been designed in Software Architectural and Detailed Design, however it is often skipped, if that is the case, you have to solve this issue performing this sub-task.

	Roles:
	Project Manager

	
	Technical Leader

	Artefacts:
	User Interface Specification

	Steps:
	1. Plan the sub-task.

	
	2. Obtain available interface standards.

	
	3. Select the interface standard.

	
	4. Obtain approval from customer.

	
	5. Adopt the standards.

	
	6. Verify the adoption of the standards.

	Step Description:
	Step 1. Plan the sub-task

According to the project progress, the Project Manager includes these steps in the plan.

Restricting effort is very important because defining standards may be endless, and if standards are not adopted, then also will be effort wasted.

Regarding the schedule, it is desirable to have standards ready before start the construction of components with UI.

Step 2. Obtain available interface standards

· Find out if your customer has standards.

· Obtain standards from existing products.

Avoid defining them from the scratch, in most of the projects it is outside of the scope, creating them can take a lot of effort and time and requires competencies that you may not have inside the team.

Step 3. Select the interface standard.

If the customer has no interface standard then ask the programmers to select one of those that were found or a combination of them.

Regarding the documentation of the standard, the easiest way is to do it through the construction of prototypes, and if you have enough time then create a user interface specification, there is a good template in the link provided in section 5.

Step 4. Obtain approval from customer.

If the customer didn’t ask the usage of an UI standard then you can obtain its approval, through the early approval of the components prototypes. Avoid asking the approval of the standard itself, because it increases the scope of the project.

If the customer ask for the creation of a standard that was not included in the initial requirements then a change request should be issued.

Step 5. Adopt the standards.

Ask the programmers to adopt the standards from now on, in those components that have UI, encourage re-use of code.

Step 6. Verify the adoption of the standards.

Make some components verified regarding the adoption of UI standards by another programmer.

Sub-task: Define Construction Standards

	

	Objectives:
	Provide guidance on the software coding to produce software easy to maintain inside or outside of the project.

	Rationale:
	Maintainability requirements are directly addressed by this sub-task. These requirements should have been agreed as part of the Requirements Specification, however most of the times they are not explicitly stated, but they are always expected.

The lack of coding standards will be perceived by colleagues when trying to modify code, inside the team and out of it. Some Components could be replaced by new ones due the inability of understand them, if maintenance is performed by the development team, the cost of the project will increase, if it is performed by the client then they will absorb this cost.

Coding Standards should be used in at least in those components that perform key functionality.

Coding Standards are not directly address by 29110-5, however investing some effort can help increment the productivity of the project and the quality of the product.

Useful links to construction standards templates are provided in section 5.

	Roles:
	Project Manager

	
	Technical Leader

	
	Programmer

	Artefacts:
	Construction Standards

	Steps:
	1. Plan the sub-task.

	
	2. Obtain available standards.

	
	3. Select the standards.

	
	4. Adopt the standards.

	
	5. Verify the adoption of the standards.

	Step Description:
	Step 1. Plan the sub-task

According to the project progress, the Project Manager includes in the plan these steps.

Assigning effort is very important because defining standards may be endless, and if standards are not adopted, then also will be useless.

Regarding the schedule, it is desirable to have the standards ready before start the construction however it is not always possible.

Step 2. Obtain available standards.

Find out if your customer has construction standards, if not look for them in the internet or any other available source.

Avoid defining them from the scratch, in most of the projects it is outside of the scope, creating them can take a lot of effort and time.

Step 3. Select the standards.

If your costumer has not standards then ask the programmers to select one of those that were found or a combination of them.

Regarding the documentation of the standard, the easiest way is to implement some components and use them as examples, if you have enough time, then create the construction standards.

Section 5 contains a link to a template of general coding standard, and some standards for languages.

Step 4. Adopt the standards.

Ask the programmers to adopt the standards from now on, especially in those components that perform key functionality.

Step 5. Verify the adoption of the standards.

Make the components that perform key functionality to be verified regarding the adoption of construction standards by another programmer.

Activity: 7.7.7.4 Software Construction
	Tasks
	Roles

	SI.4.1 Assign tasks to the Work Team members related to their role, according to the current Project Plan
	TL,
PR

	SI.4.3 Construct or update Software Components based on the detailed part of the Software Design.
	PR

	SI.4.4 Design or update unit test cases and apply them to verify that the Software Components implements the detailed part of the Software Design.
	PR

	SI.4.5 Correct the defects found until successful unit test (reaching exit criteria) is achieved.
	PR

	SI.4.6 Update the Traceability Record incorporating Software Components constructed or modified.
	PR

Assign Tasks to the Members of the Work Team

Note: The tasks are related to their role, according to the Project Plan.
	

	Objective:
	Define construction sequence and assign tasks to the members of the Work Team

	Rationale:
	Most of the times the first version of the Project Plan has identified the most of the components to be constructed, however at this stage of the project, when the Software Architectural and Detailed Design has been completed, the Project Plan should be updated to include the construction, in detail or in general manner, of all the components that have to be produced.
The sequence of the construction of the components should be coordinated with the integration sequence to have the components ready to be integrated at the right time. Defining the construction sequence is not included in 29110-5, however investing some effort to define the construction sequence can help optimize the construction calendar.

	Roles:
	Technical Leader

	Products:
	Project Plan

	Steps:
	1. Obtain Software Design documentation.

	
	2. Select the integration sequence strategy.

	
	3. Detail the Project Schedule.

	
	4. Allocate tasks to members of work team.

	Step Description:
	Step 1. Obtain Software Design documentation
· Obtain the software design documentation from the project repository, Detailed Low Level Software Design includes details of the software components to be constructed.
· Obtain the Traceability Record from repository

Step 2. Select the integration sequence strategy
There are several strategies to determine the integration sequence and most of them can be divided in non incremental and incremental, some of them are:
Non incremental

- Big bang: integrate all parts at once, in which the entire software is assembled and tested in one step

Incremental

- Top-down: Modules are integrated by moving downward through the control structure.

- Bottom-up: Modules at the lowest levels are integrated at first, then by moving upward through the control structure.

- Class Test Order: It is a directed graph indicating in which order classes have to be tested, or which classes can be tested in parallel.

Select Big bang integration if your product is small enough to deal with it, if not Class Test Order gives a logical way of assembly the code, you can also chose Top-down or Bottom-up according to your project needs.
Step 3. Detail the Project Schedule
Detail the project schedule including the activities to develop or modify all the identified components according with the selected strategy.
Do your best to keep time and cost project’s agreements, if it is necessary to modify them, then a change control request should be raised. For further details of project schedule go to the Project Management Deployment Package.
Step 4. Allocate tasks to members of work team

· Allocate tasks to members of work team

· Allocate tasks to code software components

· Allocate tasks to develop test cases and test software components

· Inform members of their tasks

Construct or Update Software Components

Note: Components are based on the detailed part of the Software Design.

	

	Objective:
	Produce the Software Components as designed.

	Rationale:
	Programmers may feel confidence enough to produce components without a systematic approach, however some of them can find it useful for constructing complex components.
There are several approaches to produce components, here we use the Pseudocode approach which is one of the most widespread accepted. Steps were adapted from Code Complete (see reference).

	Roles:
	Programmer

	Products:
	Software Components

	Steps:
	1. Design the Component

	
	2. Code the Component

	
	3. Verify the Component

	Step Description:
	Step 1. Design the Component
a) Verify the contribution of the Component. Refer to the Traceability Record and the Software Design to understand the contribution of the Component to the final product.
b) Define the problem the Component will solve State the problem the component will solve in enough detail to allow its creation. If Detailed Low Level Software Design is not enough the programmer should complete it with the support of the Designer.

c) Research functionality available in the standard libraries. Find out whether some or all of the component’s functionality might already be available in the library code of the language, platform, or tools you're using.
d) Write the pseudocode. Start with the general and work toward something more specific. The most general part of a Component is a header comment describing what the component is supposed to do, so first write a concise statement of the purpose of the Component, after that decompose the statements in several low level statements, always taking care of completeness. After creating the mainstream of the Component include error handling, managing all the things that could possibly go wrong in the component, like: bad input values, invalid values returned from other routines, and so on.
e) Design the component’s data
Define key data types
f) Check the pseudocode
Review the pseudocode, if you are not very confident about it, explain it to someone else (could be the Designer), this explanation will help to clarify your ideas and may improve the pseudocode.
Step 2. Code the component
Code the components using the selected coding standard

a) Write the component declaration and turn the original header comment into a programming-language comment.
b) Turn the pseudocode into high-level comments
c) Fill in the code below each comment
Fill in the code below each line of pseudocode comment. Each pseudocode comment describes a block or paragraph of code.
d) Check whether code should be further factored
In some cases, you'll have lot of code below one of the initial lines of pseudocode. In this case, you should consider creating a subcomponent.
Step 3. Verify the component
This step consists of a code review performed by the programmer, a compilation and debugging.

a) Code Review
· Check the program against the detailed design to ensure that all required program functions are implemented.
· Follow the code review checklist, provided in section 7, to find all the defects in the program.
· In doing the review, mark the defects on the source code

· Following the code review, correct all the defects.

· After completing the corrections, produce a source program listing for the corrected program.

· Review all the corrections to ensure that they are correct.

· Correct any remaining defects.
b) Compile the code

Let the computer check for undeclared variables, naming conflicts, and so on, you may have done this before the Code Review also.
c) Step through the code in the debugger
Once the routine compiles, put it into the debugger and step through each line of code. Make sure each line executes as you expect it to. You may do this after unit test focusing in finding the source of a defect.

Design or update unit test cases and apply them
	

	Objective:
	Find defects injected when coding using test cases.

	Rationale:
	Testing the component separated from the rest of the product is the easiest way to assign the defects to a component. Defects which are found at integration test are more difficult and expensive to trace and assign to the corresponding components.

There are several techniques that help define Test Cases, however here is included the Structured Basis Testing. Other techniques like data flow, combinations of data states, equivalence partitioning, boundary analysis, are also recommended.
The following steps were adapted from Code Complete (see reference).

	Roles:
	Programmer

	Products:
	Software Components [unit tested]

	Artefacts:
	Test Cases

	Steps:
	1. Define the number of test cases you need

	
	2. Define the test cases

	
	3. Apply test cases

	Step Description
	Step 1. Define the number of test cases you need
The idea is that you need to test each statement in a program at least once. If the statement is a logical statement—an “if” or a “while”, for example—you need to vary the testing according to how complicated the expression inside the “if” or “while” is, to make sure that the statement is fully tested. The easiest way to make sure that you’ve gotten all the bases covered is to calculate the number of paths through the program and then develop the minimum number of test cases that will exercise every path through the program.

You can compute the minimum number of cases needed for basis testing in this straightforward way:

a) Start with 1 for the straight path through the routine.

b) Add 1 for each of the following keywords, or their equivalents: if, while, repeat, for, and, and or.

c) Add 1 for each case in a case statement. If the case statement doesn’t have a default case, add 1 more.

Step 2. Define the test cases
For each case write a description of the conditions and variable values that makes the execution go through it. An example is provided in the second part of section 8.
Step 3. Apply the test cases

Apply each test case and record the values used.

Correct the Defects
Note: Defects are corrected until successful unit test (e.g. reaching exit criteria) is achieved.

	

	Objective:
	Correct the defects found by the Unit Tests

	Rationale:
	Correct the defects just found by the Unit Test by the person in charge of the Component construction, is the fastest and cheapest way of correcting the defect.

	Roles:
	Programmer

	Products:
	Software Components [corrected]

	Steps:
	1. Confirm the defect

	
	2. Correct the defect

	
	3. Apply Test Cases (regression test)

	Step Description:
	Step 1. Confirm the defect
Verify the test case correctness.

Step 2. Correct the defect.
a) Identify the source of the defect. Perform Step 3. Verify the component of the sub-task “Construct Software Components” focusing in the defect to be solved.
b) Once you have found the source of the defect, save the original source code and then modify it.
c) Apply the corresponding test case to verify that it was solved.
Step 3. Apply Test Cases

Use the test cases you defined in the Apply Unit Test Cases tasks to verify that the corrections you made did not injected a new defect.

Update the Traceability Record

Note: Incorporating Software Components constructed or modified.
	

	Objective:
	Ensure that all software components can be traced to a design element and that all design elements have been constructed.

	Rationale:
	The traceability record should have been developed in the previous phases of the project to ensure traceability from requirements to design elements. This task is devoted to ensure traceability between design and construction elements.

	Roles:
	Programmer

	Products:
	Traceability Record [updated]

	Steps:
	1. Update the Traceability Record

	
	Step 1. Update the Traceability Record

This record should be updated with the following information:

- Identification of software components

- Identification of test cases (optional)

- Verification date (i.e. date the software component had been tested and no defect is left)

Role Description

This is an alphabetical list of the roles, abbreviations and list of competencies as defined in ISO 29110 Part 5-1-2.

	
	Role
	Abbreviation
	Competency

	1.
	Analyst
	AN
	Knowledge and experience eliciting, specifying and analyzing the requirements.

Knowledge in designing user interfaces and ergonomic criteria.

Knowledge of the revision techniques.

Knowledge of the editing techniques.

Experience on the software development and maintenance.

	2.
	Customer
	CUS
	Knowledge of the Customer processes and ability to explain the Customer requirements.

The Customer (representative) must have the authority to approve the requirements and their changes.

The Customer includes user representatives in order to ensure that the operational environment is addressed.
Knowledge and experience in the application domain.

	3.
	Programmer
	PR
	Knowledge and/or experience in programming, integration and unit tests.

Knowledge of the revision techniques.

Knowledge of the editing techniques.

Experience on the software development and maintenance.

	4.
	Technical Leader
	TL
	Knowledge and experience in the software process domain.

Product Description

This is an alphabetical list of the input, output and internal process products, its descriptions, possible states and the source of the product.

	
	Name
	Description
	Source

	1.
	Project Plan
	Presents how the project processes and activities will be executed to assure the project’s successful completion, and the quality of the deliverable products. It Includes the following elements which may have the characteristics as follows:

· Product Description

· Purpose

· General Customer requirements

· Scope description of what is included and what is not
· Objectives of the project
· Deliverables - list of products to be delivered to Customer

· Tasks, including verification, validation and reviews with Customer and Work Team, to assure the quality of work products. Tasks may be represented as a Work Breakdown Structure (WBS).

· Relationship and Dependence of the Tasks
· Estimated Duration of tasks

· Resources (humans, materials, equipment and tools) including the required training, and the schedule when the resources are needed.
· Composition of Work Team

· Schedule of the Project Tasks, the expected start and completion date, for each task.
· Estimated Effort and Cost

· Identification of Project Risks

· Version Control Strategy

· Product repository tools or mechanism identified

· Location and access mechanisms for the repository specified

· Version identification and control defined

· Backup and recovery mechanisms defined

· Storage, handling and delivery (including archival and retrieval) mechanisms specified

· Delivery Instructions

· Elements required for product release identified (i.e., hardware, software, documentation etc.)

· Delivery requirements

· Sequential ordering of tasks to be performed

· Applicable releases identified

· Identifies all delivered software components with version information

· Identifies any necessary backup and recovery procedures

The applicable statuses are: verified, validated, changed and reviewed.

	Project Management

	2.
	Software Component
	A set of related code units.

The applicable statuses are: unit tested, corrected and baselined.
	Software Implementation

	3.
	Software Design
	This document includes textual and graphical information on the software structure. This structure may includes the following parts:

Architectural High Level Software Design – Describes the overall Software structure:

· Identifies the required software Components
· Identifies the relationship between software Components
· Consideration is given to any required:

· software performance characteristics

· hardware, software and human interfaces

· security characteristics

· database design requirements

· error handling and recovery attributes

Detailed Low Level Software Design – includes details of the Software Components to facilitate its construction and test within the programming environment;

· Provides detailed design (could be represented as a prototype, flow chart, entity relationship diagram, pseudo code, etc.)

· Provides format of input / output data

· Provides specification of data storage needs

· Establishes required data naming conventions

· Defines the format of required data structures

· Defines the data fields and purpose of each required data element

· Provides the specifications of the program structure

The applicable statuses are: verified and baselined.

	Software Implementation

	4.
	Traceability Record
	Documents the relationship among the requirements included in the Requirements Specification, Software Design elements, Software Components, Test Cases and Test Procedures. It may include:
· Identifies requirements of Requirements Specification to be traced

· Provides forward and backwards mapping of requirements to Software Design elements, Software Components, Test Cases and Test Procedures.

The applicable statuses are: verified, baselined and updated
	Software Implementation

Artefact Description

This is an alphabetical list of the artefacts that could be produced to facilitate the documentation of a project. The artefacts are not required by Part 5, they are optional.

	
	Name
	Description

	1.
	Construction Standards
	Provides conventions, rules, idioms, and styles for:
· Source code organization (into statements, routines, classes, packages, or other structures)

· Code documentation

· Modules and files

· Variables and constants

· Expressions

· Control structures

· Functions
· Handling of error conditions—both planned errors and exceptions (input of bad data, for example)

among others.

	2.
	Test Cases
	A set of test inputs, execution conditions, and expected results developed for a particular objective, such as to exercise a particular program path or to verify compliance with a specific requirement. [IEEE 1012-2004]

	3.
	User Interface Specification
	Provides specification for:

· Windows

· Menu Bar

· Dialogs

· Messages

· Business Rules
among others.

5. Template

Links to coding standards templates
	Template
	Source

	General coding Standard template
	http://www.construx.com

	Source Code Template C / C++
	http://www.construx.com

	Source Code template Java
	http://www.construx.com

	Coding Standards Java
	http://www.ontko.com/java/java_coding_standards.html

	Source Code template Visual Basic
	http://www.construx.com

	Source Code template XML
	http://www.construx.com

Links to a User Interface Specification template

	Template
	Source

	User Interface Specification
	http://www.hcirn.com/tutor/docs/uitempl.php

6. Example
This section provides, for this topic, a graphical representation of a lifecycle. The example is provided to help the reader implement his own lifecycle fitting his IT project’s context and constraints.
To be completed.
7. Checklist

Code Review Checklist

Note: This checklist can be adapted to apply to the language you are programming in.

A tag is added in front of each item of the checklist to help accelerate the recording anomalies when performing peer-reviews,

	TAG - Subject
	Description

	CR1 Complete
	· Verify that all functions in the design are coded and that all necessary functions and procedures have been implemented.

	CR2 Logic
	· Verify that the program flow and all procedure and function logic is consistent with the detailed design.

	CR3 Loops
	· Do a hand simulation of all loops and recursive procedures that were not simulated in the detailed design review or inspection.

· Ensure that every loop is properly initiated and terminated.

· Check that every loop is executed the correct number of times.

	CR4 Calls
	· Check every function and procedure call to insure that it exactly matches the definition for formats and types.

	CR5 Declarations
	Verify that each variable and parameter:

· has exactly one declaration

· is only used within its declared scope

· is spelled correctly wherever used

	CR6 Initialization
	· Check that every variable is initialized.

	CR7 Limits
	· Check all variables, arrays, and indexes to ensure that their use does not exceed declared limits.

	CR8 Begin-end
	· Check all begin-end pairs or equivalents, including cases where nested ifs could be misinterpreted.

	CR9 Boolean
	· Check Boolean conditions

	CR10 Format
	· Check every program line for instruction format, spelling, and punctuation.

	CR11 Pointers
	· Check that all pointers are properly used.

	CR12 Input-output
	· Check all input-output formats.

	CR13 Spelling
	· Check that every variable, parameter, and key work is properly spelled.

	CR14 Comments
	· Ensure that all commenting is accurate and according to standard.

8. Tool

Traceability Matrix
· Objectives:

· To maintain the linkage from the source of each requirement through its decomposition to implementation and test (verification).

· To ensure that all requirements are addressed and that only what is required is developed.

· Useful when conducting impact assessments of requirements, design or other configured item changes.
Note: A Traceability Matrix is a widespread used tool to implement the Traceability Record.

[image: image2.emf]Verified by:

Identification

Number

 Text of the

need

Text of the

requirement

Verification

method

Title or ID of

Use Case

Title or ID of

Code Module

Title or ID of

test

Procedure

Verification

Date

Name of person who

performed the

verification

Result of

verification

Traceability Matrix

Date (yy-mm-dd): _______________

Title of project:__

___________________________________ ________________________________ ___________________

 Name (Print) Signature Date (yy-mm-dd)

Approved by: ___________________________________ ________________________________ __________________

	Instructions

	The above table should be created in a spreadsheet or database such that it may be easily sorted by each column to achieve bi-directional traceability between columns. The unique identifiers for items should be assigned in a hierarchical outline form such that the lower level (i.e. more detailed) items can be traced to higher items.

	Unique Requirement Identification (ID)
	The Unique Requirement ID / System Requirement Statement where the requirement is referenced, and/or the unique identification (ID) for decomposed requirements

	Requirement Description
	Enter the description of the requirement (e.g., Change Request description).

	Design Reference
	Enter the paragraph number where the CR is referenced in the design documentation

	Module / Configured Item Reference
	Enter the unique identifier of the software module or configured item where the design is realized.

	Release Reference
	Enter the release/build version number where the requirement is fulfilled

	Test Script Name/Step Number Reference
	Enter the test script name/step number where the requirement is referenced (e.g., Step 1)

	Guideline
	Requirements traceability should:

· Ensure traceability for each level of decomposition performed on the project. In particular:

· Ensure that every lower level requirement can be traced to a higher level requirement or original source

· Ensure that every design, implementation, and test element can be traced to a requirement

· Ensure that every requirement is represented in design and implementation

· Ensure that every requirement is represented in testing/verification

· Ensure that traceability is used in conducting impact assessments of requirements changes on project plans, activities and work products

· Be maintained and updated as changes occur.

· Be consulted during the preparation of Impact Assessments for every proposed change to the project

· Be planned for, since maintaining the links/references is a labor intensive process that should be tracked/monitored and should be assigned to a project team member

· Be maintained as an electronic document

Example of developing Test Cases using Structured Basis Testing for a Java Program, an extract of Test Complete.
1 // Compute Net Pay <-- 1
2 totalWithholdings = 0;

3

4 for (id = 0; id < numEmployees; id++) { <-- 2
5

6 // compute social security withholding, if below the maximum

7 if (m_employee[id].governmentRetirementWithheld < MAX_GOVT_RETIREMENT) { <-- 3
8 governmentRetirement = ComputeGovernmentRetirement(m_employee[id]);

9 }

10

11 // set default to no retirement contribution

12 companyRetirement = 0;

13

14 // determine discretionary employee retirement contribution

15 if (m_employee[id].WantsRetirement && <-- 4
16 EligibleForRetirement(m_employee[id])) {

17 companyRetirement = GetRetirement(m_employee[id]);

18 }

19

20 grossPay = ComputeGrossPay (m_employee[id]);

21

22 // determine IRA contribution

23 personalRetirement = 0;

24 if (EligibleForPersonalRetirement(m_employee[id])) { <-- 5
25 personalRetirement = PersonalRetirementContribution(m_employee[id],

26 companyRetirement, grossPay);

27 }

28

29 // make weekly paycheck

30 withholding = ComputeWithholding(m_employee[id]);

31 netPay = grossPay - withholding - companyRetirement - governmentRetirement -

32 personalRetirement;

33 PayEmployee(m_employee[id], netPay);

34

35 // add this employee's paycheck to total for accounting

36 totalWithholdings = totalWithholdings + withholding;

37 totalGovernmentRetirement = totalGovernmentRetirement + governmentRetirement;

38 totalRetirement = totalRetirement + companyRetirement;

39 }

40

41 SavePayRecords(totalWithholdings, totalGovernmentRetirement, totalRetirement);

(1)Count "1" for the routine itself.

(2)Count "2" for the for.

(3)Count "3" for the if.

(4)Count "4" for the if and "5" for the &&.

(5)Count "6" for the if.

In this example, you'll need one initial test case plus one for each of the five keywords, for a total of six. That doesn't mean that any six test cases will cover all the bases. It means that, at a minimum, six cases are required. Unless the cases are constructed carefully, they almost surely won't cover all the bases. The trick is to pay attention to the same keywords you used when counting the number of cases needed. Each keyword in the code represents something that can be either true or false; make sure you have at least one test case for each true and at least one for each false.

Here is a set of test cases that covers all the bases in this example:

	Case
	Test Description
	Test Data

	1
	Nominal case
	All boolean conditions are true

	2
	The initial for condition is false
	numEmployees < 1

	3
	The first if is false
	m_employee[id].governmentRetirementWith-held >=MAX_GOVT_RETIREMENT

	4
	The second if is false because the first part of the and is false
	not m_employee[id].WantsRetirement

	5
	The second if is false because the second part of the and is false
	not EligibleForRetirement (m_employee[id])

	6
	The third if is false
	not EligibleForPersonalRetirement (m_employee[id])

9. Reference to Other Standards and Models

This section provides references of this deployment package to selected ISO and ISO/IEC Standards and to the Capability Maturity Model IntegrationSM version 1.2 of the Software Engineering Institute (CMMI®
).

Notes:

· This section is provided for information purpose only.

· Only tasks covered by this Deployment Package are listed in each table.

· The tables use the following convention:

· Full Coverage = F

· Partial Coverage = P

· No Coverage = N

ISO 9001 Reference Matrix

	Title of the Task and Step
	Coverage

F/P/N
	Clause of ISO 9001
	Comments

	SI.2.2 Document or update Requirements Specification.
	P
	7.3.2 Design and development inputs
d) other requirements essential for design and development.
	

	Sub-task: Select the User Interface standard.
	
	
	They could have been specified by customer in which case they are related also with 7.2.1.

	Sub-task: Define Construction Standards.
	
	
	Most of the cases they are not specified by customers, but are essential for some components.

	SI.4.1 Assign tasks to the Work Team members related to their role, according to the current Project Plan.
	P
	7.3.1 Design and development planning

	It only includes communicating tasks.

	SI.4.3 Construct or update Software Components based on the detailed part of the Software Design.
	P
	7.3.3 Design and development outputs.
a) meet the input requirements for design and development.
	

	SI.4.4 Design or update unit test cases and apply them to verify that the Software Components implements the detailed part of the Software Design.
	P
	7.3.4 Design and development review

a) to evaluate the ability of the results of design and development to meet requirements, and

b) to identify any problems and propose necessary actions.
	

	SI.4.5 Correct the defects found until successful unit test (reaching exit criteria) is achieved.
	P
	7.3.4 Design and development review

a) to evaluate the ability of the results of design and development to meet requirements, and

b) to identify any problems and propose necessary actions.
	

	SI.4.6 Update the Traceability Record incorporating Software Components constructed or modified.
	P
	7.3.7 Manage design and development changes.
	

ISO/IEC 12207 Reference Matrix

	Title of the Task and Step
	Coverage

F/P/N
	Clause of ISO/IEC 12207
	Comments

	SI.2.2 Document or update Requirements Specification.
	P
	7.1.2.3.1 Software requirements analysis.
7.1.2.3.1.1 The implementer shall establish and document software requirements (including the quality

characteristics specifications) described below.
b) Interfaces external to the software item.

k) User maintenance requirements.

	a) Only covers requirements that affect the Construction phase.
b) Is related with UI, and k) with Construction Standards.

	Sub-task: Select the User Interface standard.
	
	7.1.4.3.1 Software detailed design.

7.1.4.3.1.2 The implementer shall develop and document a detailed design for the interfaces external to the software item, between the software components, and between the software units. The detailed design of the interfaces shall permit coding without the need for further information.
	The UI standard will be useful when performing 7.1.4.3.1.2

	Sub-task: Define Construction Standards.
	
	7.1.5.3.1 Software construction.
7.1.5.3.1.5 The implementer shall evaluate software code and test results considering the criteria listed below. The results of the evaluations shall be documented.

e) Appropriateness of coding methods and standards used.
	Construction Standards will be useful when performing 7.1.5.3.1.5

	SI.4.1 Assign tasks to the Work Team members related to their role, according to the current Project Plan.
	P
	6.3.1.3.3 Project activation.
6.3.1.3.3.3 The manager shall initiate the implementation and criteria set, exercising control over the project.

	This task only activates the Construction phase.

	SI.4.3 Construct or update Software Components based on the detailed part of the Software Design.
	P
	7.1.5.3.1 Software construction.
7.1.5.3.1.1 The implementer shall develop and document the following:

a) Each software unit and database.

	

	SI.4.4 Design or update unit test cases and apply them to verify that the Software Components implements the detailed part of the Software Design.
	P
	7.1.5.3.1 Software construction.
7.1.5.3.1.1 The implementer shall develop and document the following:

b) Test procedures and data for testing each software unit and database.

	

	SI.4.5 Correct the defects found until successful unit test (reaching exit criteria) is achieved.
	P
	7.1.5.3.1 Software construction.
7.1.5.3.1.2 The implementer shall test each software unit and database ensuring that it satisfies its requirements. The test results shall be documented.

	

	SI.4.6 Update the Traceability Record incorporating Software Components constructed or modified.
	P
	7.1.5.3.1 Software construction.

7.1.5.3.1.5 The implementer shall evaluate software code and test results considering the criteria listed below. The results of the evaluations shall be documented.

a) Traceability to the requirements and design of the software item.

	

CMMI Reference Matrix

	Title of the Task and Step
	Coverage

F/P/N
	PA/Objective/ Practice of CMMI V1.2
	Comments

	SI.2.2 Document or update Requirements Specification.
	P
	Requirements Development (RD)
SG 1 Develop Customer Requirements

SP 1.2 Develop the Customer Requirements
	Constraints for verification and validation are not covered.

	Sub-task: Select the User Interface standard.
	
	
	Stakeholders of the Construction phase may provide them

	Sub-task: Define Construction Standards.
	
	
	Stakeholders of the Construction phase may provide them

	SI.4.1 Assign tasks to the Work Team members related to their role, according to the current Project Plan.
	P
	Technical Solution(TS)

SG 3 Implement the Product Design

GP 2.8 Monitor and Control the Process
	It only activates the plan execution.

	SI.4.3 Construct or update Software Components based on the detailed part of the Software Design.
	P
	Technical Solution(TS)

SG 3 Implement the Product Design

SP 3.1 Implement the Design
	Covers subpractices 1. Use effective methods to implement the product components.

and
2. Adhere to applicable standards and criteria.

	SI.4.4 Design or update unit test cases and apply them to verify that the Software Components implements the detailed part of the Software Design.
	P
	Technical Solution(TS)

SG 3 Implement the Product Design

SP 3.1 Implement the Design.
	Covers subpractice

4. Perform unit testing of the product component as appropriate.

	SI.4.5 Correct the defects found until successful unit test (reaching exit criteria) is achieved.
	P
	Technical Solution(TS)

SG 3 Implement the Product Design

SP 3.1 Implement the Design.
	Covers subpractice

4. Perform unit testing of the product component as appropriate.

	SI.4.6 Update the Traceability Record incorporating Software Components constructed or modified.
	P
	Requirements Management (REQM)

SG 1 Manage Requirements

SP 1.4 Maintain Bidirectional Traceability of Requirements

	It only covers the traceability of Components constructed.

10. References

	Key
	Reference

	[Code Complete]
	Steve McConnell, Code Complete, Second Edition, Redmond, Washington, Microsoft Press, 2004.

	[PMBOK]
	A Guide to the Project Management Body of Knowledge (PMBOK® Guide), Fourth Edition, Project Management Institute, 2008

	[IEEE 1012-2004]
	IEEE 1012-2004 IEEE Standard for Software Verification and Validation, IEEE Computer Society

	[ISO/IEC 12207]

	ISO/IEC 12207:2008 Systems and software engineering – Software life cycle processes.

	[ISO/IEC 29110-5-1-2]
	ISO/IEC TR 29110-5-1-2:2011, Software Engineering—Lifecycle Profiles for Very Small Entities (VSEs) – Part 5-1-2: Management and Engineering Guide – Basic VSE Profile

	[ISO/IEC 24765]
	ISO/IEC 24765:2011 Systems and software engineering vocabulary

	[ISO/IEC 20926]
	ISO/IEC 20926:2003 Software engineering -- IFPUG 4.1 Unadjusted functional size measurement method -- Counting practices manual

	[ISO/IEC 29881:2008]
	ISO/IEC 29881:2008 Information technology--Software and systems engineering--FiSMA 1.1 functional size measurement method,

	[IEEE 1233-1998]
	IEEE Guide for Developing System Requirements Specifications

11. Evaluation Form

	Deployment Package Construction and Unit Test Version 0.4
Your feedback will allow us to improve this Deployment Package, your comments and suggestions are welcomed.

	1. How satisfied are you with the CONTENT of this deployment package?

 Very Satisfied  Satisfied  Neither Satisfied nor Dissatisfied  Dissatisfied  Very Dissatisfied

	 2. The sequence in which the topics are discussed, are logical and easy to follow?

  Very Satisfied  Satisfied  Neither Satisfied nor Dissatisfied  Dissatisfied  Very Dissatisfied

	 3. How satisfied were you with the APPEARANCE/FORMAT of this deployment package?

  Very Satisfied  Satisfied  Neither Satisfied nor Dissatisfied  Dissatisfied  Very Dissatisfied

	 4. Have any unnecessary topics been included? (please describe)

	 5. What missing topic would you like to see in this package? (please describe)
· Proposed topic:

· Rationale for new topic

	 6. Any error in this deployment package?

· Please indicate:

· Description of error :

· Location of error (section #, figure #, table #) :

·

	 7. Other feedback or comments:

	 8. Would you recommend this Deployment package to a colleague from another VSE?

 Definitely  Probably  Not Sure  Probably Not  Definitely Not

Optional

· Name:

· e-mail address : __________________________________

Email this form to: claude.y.laporte@etsmtl.ca or Avumex2003@yahoo.com.mx
� Selby, P., Selby, R.W., Measurement-Driven Systems Engineering Using Six Sigma Techniques to Improve Software Defect Detection, Proceedings of 17th International Symposium, INCOSE, June 2007, San Diego.

� These numbers refer to processes, activities, tasks of ISO/IEC 29110 Part 5-1-2

� Roles are defined in a next section. Roles are also defined in ISO/IEC 29110 Part 5-1-2

� Roles are defined in a next section. Roles are also defined in ISO/IEC 29110-5.1

� Roles are defined in a next section. Roles are also defined in ISO/IEC 29110-5.1

SM CMM Integration is a service mark of Carnegie Mellon University.

® Capability Maturity Model, CMMI are registered in the U.S. Patent and Trademark Office by Carnegie Mellon University.

_1333217466.xls
Feuil1

		

						Traceability Matrix

						Date (yy-mm-dd): _______________

						Title of project:__

						Name (Print) Signature Date (yy-mm-dd)

						Verified by:		___________________________________ ________________________________ ___________________

						Approved by: ___________________________________ ________________________________ __________________

						Identification Number		Text of the need		Text of the requirement		Verification method		Title or ID of Use Case		Title or ID of Code Module		Title or ID of test Procedure		Verification Date		Name of person who performed the verification		Result of verification

						Legend:		Verification Methods: Test (T), Demonstration (D), Analysis (A), Simulation (S), Inspection (I)

								Verification Date: Year-Month_Day (YYYY-MM-DD)

								Result of Verification: Success (S), Failure (F)

