
Sponsored through Framework Programme Sixth (Call 5) by

Document Information

Version: 1.0
Date : Oct 16, 08
Pages : 14

Owning Partner:
CETIC

Author(s):
Frédéric Fleurial Monfils

Reviewer(s):

Flora Kamseu

To:
European Commission

Purpose of distribution:
Distribution of an intermediate
version of the verification and
validation of the QualOSS platform
deliverable D2.3

The QualOSS Consortium consists of: CETIC (BE), Facultés
Notre Dame de la Paix à Namur (BE), Universidad Rey Juan
Carlos (ES), Fraunhofer IESE (DE), ZEA Partners (BE),
MERIT (NL), AdaCore (FR), PEPITe (BE)

Printed
on 10/02/2008

Status: Confidentiality:

[
[
[
[

 X

]
]
]
]

 Draft
 To be reviewed
 Proposal
 Final/Released

[
[
[

X]
]
]

 Public
 Restricted
 Confidential

- Intended for public use
- Intended for QualOSS consortium
only
- Intended for individual partner only

Deliverable ID: D2.3

Title:

QualOSS - Verification and Validation of the QualOSS Platform

Disclaimer:
The information in this document is provided as is and no guarantee or warranty is given that the
information is fit for any particular purpose. The user thereof uses the information at its sole risk and
liability.

 Copyright 2006-2008, Frédéric F. Monfils (CETIC)

QualOSS - Verification and Validation of the
QualOSS Platform

Deliverable ID: D2.3

Page : 2 of 14

Version: 1.0
Date: 16/10/2008

Status : Final
Confid : Public

Deliverable: D2.3
Title: QualOSS - Verification and Validation of the QualOSS Platform
Executive Summary:

This document presents the verification and validation that have been conducted on the QualOSS Platform.

As described in the description of work, the QualOSS platform has to be validated in accordance to the
requirements elaborated during Task 2.1, which includes the specification of acceptance tests (see
Deliverable 2.1 QualOSS Platform Requirements Specifications). The verification and validation of the
QualOSS Platform will be done in 3 phases:

First : set of metrics, tools and user interface
 First, the validation focuses on the metrics and their corresponding measuring tools has been made. The
validity of the new metrics has not been started yet. Only the implementation and definition of the measures
has been started. The verification that a recognized method from measurement theory was well applied
when designing these metrics needs to be done based on the Task 4.2. Second, we have verified that the
measuring tools, that we have selected and or developed, implemented correctly the metrics requirements.
Finally, we have verified that the requirements for the user interface matched the users’ expectations
thanks to the validation of command line options and configuration files. Reviews of the user interface
requirements from AdaCore has still to be sought and eventually, from SIG members or other SMEs.

Second : set of metrics, their implementation and integration on the platform
 In this second phase, we continued to validate new metrics and their implementation. We tested the first
fully integrated version of the QualOSS Platform based on the acceptance test specified during the first
iteration of Task 2.1.

Third : set of metrics and their implementation
 In this third phase, we will validate the last set of the metrics and their implementation. The calibrations of
quality models were already partly validated in Task 1.6 so we will only test the code developed for the
QualOSS Platform. This code computes the designed standard QualOSS Quality Model. An example of
such a quality model is given in appendix A of the Deliverable 4.1. Next, we test the user interface that was
adjusted to answer potential users’ reviews. Finally, the integrated QualOSS platform goes through the
complete acceptance test procedure described during the first iteration of Task 2.1.

This version of the Deliverable 2.3 will evolve iteratively. This first version present earlier Verification and
Validation activities. The next version of Deliverable 2.3, Verification and Validation of the QualOSS
platform. will include the full validation of the new metrics, the validation activities performed to verify the
user interface, the outcome of the acceptance tests used to validate the QualOSS platform as well as the
test used to validate the measurement tools we developed.

The sections of this document presents the different validations that have been made so far on the current
release of the QualOSS Platform according to the planned activities and purposes for this task:
– Validate the new metrics : these metrics should have been designed during WP1 but the list of metrics

was too long. It was then decided to focus on the definition of the metrics and their concrete
implementation on the platform. This is explained in Section 1;

– Validate the tools implementing all metrics : Some tools were selected to provide the metrics, such
as SiSSy or Checkstyle. The integration of these tools on the platform was validated. This is described
in Section 2;

– Validate requirements related to the user interface : as decided in WP2.1 there is no user interface
on the QualOSS Platform. The platform consists in a set of tools that perform part of the work. The
implementation and validation of the QualOSS Platform focused on the correctness of the measures
and their collect because as designed, the implemented tools could easily be integrated in a user-

2

QualOSS - Verification and Validation of the
QualOSS Platform

Deliverable ID: D2.3

Page : 3 of 14

Version: 1.0
Date: 16/10/2008

Status : Final
Confid : Public

Deliverable: D2.3
friendly user interface. This is described in Section 3;

– Validate the implementation of the user interface : this validation consisted in the validation of the
options and configuration of the tools available on the platform (because of the choice made and
explained in the previous point). This is finally described in Section 4.

The QualOSS Platform is part of the Assessment Method of the QualOSS Methodology. The validation of
the platform according to the initial version of the QualOSS Platform Requirements Specifications
(Deliverable 2.1) was not possible because of the QualOSS Model was still ongoing.

The implementation of the QualOSS Platform follows the description of the QualOSS Methodology
described in Deliverable 4.1. This version of the document is also based on this document except for the
metrics that are to be detailed in Deliverable 4.2.

There are still room for improvement and a second iteration for the Verification and Validation is needed.
This document will be updated when the final version of the metrics will be available.

75% of the QualOSS Platform has been validated (except the metrics). The platform showed a good
response time, a good accuracy of the computed metrics and a good respect of the declared functionalities.
There is however a lack of user-interface that can combine the various tools and ease the job of collecting
and interpreting the results.

The next version of this document will take into account the metrics and a textual user-interface.

3

QualOSS - Verification and Validation of the
QualOSS Platform

Deliverable ID: D2.3

Page : 4 of 14

Version: 1.0
Date: 16/10/2008

Status : Final
Confid : Public

CHANGE LOG
Ver. Date Author Description
0.1 19/09/2008 Frédéric F. MONFILS Initial version
0.2 07/10/2008 Frédéric F. MONFILS Adaptations for the version v0.2

of the QualOSS Platform
0.3 14/10/2008 Flora Kamseu Review of this deliverable
1.0 15/10/2008 Jean-Christophe Deprez Sanity Check

GLOSSARY

Term Definition

Artefact Element of interest on which measurements are performed

Datasource Location where artefacts are located

Endeavor Set of tools, people, rules and workproducts

RDBMS Relational Database Management System

GQM Goal-Question-Metric (paradigm for the measurement of data of interest)

SIG Special Interest Group

SME Small and Medium Enterprise

4

QualOSS - Verification and Validation of the
QualOSS Platform

Deliverable ID: D2.3

Page : 5 of 14

Version: 1.0
Date: 16/10/2008

Status : Final
Confid : Public

TABLE OF CONTENTS
 1 Validation of the metrics...5
 2 Validation of the tools implementing the metrics.. 6

 2.1 SISSy (for Java).. 6
 2.2 Checkstyle...8
 2.3 CVSAnalY... 10

 3 Validation of requirements concerning the user-interface... 11
 4 Validation of the implementation of the user-interface... 11

 1 VALIDATION OF THE METRICS
The QualOSS Methodology is based on the Goal-Question-Metric (GQM) paradigm. The metrics play then a
major role. Measurements should be taken and, the QualOSS Platform provides a mean to automate them
and store them in a central repository.

The QualOSS Methodology is designed to provide answers related to the Robustness and the Evolvability of
an FlOSS Endeavor. A FlOSS Endeavor is composed of:
– People: the set of persons that participate to the endeavor (the community)
– (Work)Products: the set of workproducts that are the result of the activities performed by these people.
– Processes: the processes followed by these people to conduct the activities
– Tools: the tools used by the people to produce the workproducts or to allow people outside the endeavor

to access them (these workproducts are placed in datasources).
Note: The QualOSS Methodology is described in Deliverable 4.1. It defines the terms Robustness,
Evolvability and FlOSS Endeavor in more details.

The metrics that are used to answer the questions from the Goal-Question-Metric are computed by
accessing the data present in the data sources put in place by the community. Examples of such data
sources are a version control repository (cvs, svn, bzr, etc.) or an issue tracking repository (mantis, bugzilla,
etc.).

The Deliverable 1.3 listed a set of such metrics.
– Some of these metrics were easy to compute, these ones mainly concerned the count of the number of

artefacts because they only require the access to these data sources.
– Some others were not easy to compute and they were labelled as 'Advanced' metrics.

The current validation of the metrics was performed on metrics related to the evolvability of the workproduct.
This work was done by taking a number of metrics related to workproduct (mainly code, as of this writing) as
described in Deliverable 1.3 and by validating the interest of each metric for the QualOSS Quality Model.
This lead to some renaming in order to be in line with the current QualOSS Model.

In this first version of the Verification & Validation of the QualOSS Platform, we focused on ease to compute
metrics and their interaction inside meaningful indicators for the QualOSS Quality Model. The set of validated
metrics is detailed below:
– java_files: total number of java files
– java_classes: total number of classes (also counting anonymous classes, interfaces)
– java_methods: total number of methods
– java_cyclomatic: sum of the cyclomatic complexity for all methods in java files
– java_linesofcode: total number of code lines in java files (counting blank lines and comment lines)
– java_linesofcomments: total number of comment lines in java files
– java_calls: sum of the distinct calls for all methods defined in the java files

5

QualOSS - Verification and Validation of the
QualOSS Platform

Deliverable ID: D2.3

Page : 6 of 14

Version: 1.0
Date: 16/10/2008

Status : Final
Confid : Public

– java_called_classes: sum of the fanout (count of distinct called classes) for all methods defined in the
java files

– java_errors: total number of errors in java files
– java_committers: total number of accounts that have committed files
– java_commits: total number of commits

Although this first set of validated metrics is small, it is sufficient to use a Quality Model taking into account
different aspects of an FlOSS Endeavor. This set includes the workproduct (whith metrics related to the code
such as java_files, or java_linesofcode) but also people (with metrics such as java_committers). It also
considers 2 datasources, the packaged distribution and the version control system. Finally it uses 3 different
tools on the platform: SISSy, Checkstyle and CVSAnalY.

Because the current version of the QualOSS Methodology is only using classical metrics, the validation of
those metrics was straightforward. The issue was to find appropriate names so that the name was not
misleading. In the next version, if new metrics are introduced, they will be validated via questionnaires and
interviews.

 2 VALIDATION OF THE TOOLS IMPLEMENTING THE METRICS
The metrics listed above are metrics computed directly by the selected QualOSS Tools. The tools that were
selected so far are described in detail in Deliverable 1.1 and reproduced here. The description has been
updated to reflect the changes occurred in the respective projects since the production of this Deliverable.

From the description of work, QualOSS focuses on Java, C++ and Python FlOSS. The first version of the
QualOSS Platform only deals with Java. The validation of the tools implementing the metrics is done for the
Java language only.

 2.1 SISSY (FOR JAVA)

SISSy (for Java)
General Information

Version: 0.45 (released: 30/05/2007) Licenses: LGPL

Authors: Adrian Trifu, Mircea Trifu,
Olaf Seng, and Peter
Sulzman

Maturity: Stable

URL: http://sissy.fzi.de/SISSy/CM
S/index_html

Dependencies: ANTLR, JArgs, jTDS, PostgreSQL-
jdbc, Recoder (The required libraries
are distributed with SISSy)

Description: (taken from the documentation of the SISSy distribution)
The tool for structural investigation of software systems (SISSy) is an open-source
platform for the automated detection of structural flaws. It was designed to be integrated
in the build process in order to regularly provide reports on the internal quality of the
developed system. If in the course of development, problems arise in the structure, they
are immediately identified and reported, giving developers the opportunity to fix them
before they get unmanageable.

Constraints: SISSy works out of the box on MS Windows systems but small changes to the code had
to be performed so it ran on Linux.
Note: QualOSS contributed to the correction of a few bugs mentioned below.

Input/Output Information

Language
Analyzed:

C and C++, Java, and Delphi

6

http://sissy.fzi.de/SISSy/CMS/index_html
http://sissy.fzi.de/SISSy/CMS/index_html

QualOSS - Verification and Validation of the
QualOSS Platform

Deliverable ID: D2.3

Page : 7 of 14

Version: 1.0
Date: 16/10/2008

Status : Final
Confid : Public

Input Types Source Input Formats root directory containing source files

Output Types Text, Database (MS SQL,
PostgreSQL, MySQL).
PostgreSQL and MySQL
have been tested
successfully

Output Formats database records for miscellaneous
source code elements, problematic
partner in text files, clone analysis in
text files

Other I/O
comments

SISSY analyses source code in C++, Java (even Java 1.5) and Delphi. Clone Analysis
is run separately from the other analyses. SISSy performs clone analysis as well as a
range of pattern analyses looking for bad programming patterns in the code. Bad
patterns analysis can be requested via the command line option -queries or the actual
SQL queries may also be run on the exported database records.

Technical Information

Devel. Lang: Java Documentation: Reference manual

Information
Computed:

SISSy performs Clone analysis and Pattern Analysis for 52 poor programming styles.
Additional queries to compute traditional metrics could easily be implemented in SQL
queries and run against the database of code elements created by SISSy.
In the context of QualOSS, the metrics like java_files, java_linesofcode etc have been
created based on the provided schema.

Extensibility: Additional analysis can easily be implemented by accessing SISSy's result stored in a
database. It is also possible to modify SISSy's source code so it performs additional
analyses

Technical
Constraints:

In the current version, SISSy has to be run from its installation path because of the hard-
coding of resource files.

Test Performed

Reliability: Tests performed on C++ source code: SISSy was tested on four C++ systems. SISSy is
based on a CDT parser. Our test shows that it handles C++ for gcc and for MS C++.

Tests performed on Java source code: SISSy was tested on 5 Java systems. SISSy for
Java is based on ANTLR, a parser generator. Our tests showed that it handles Java 1.4
and also functionalities of Java 1.5.

Queries for the java metrics were designed based on the SISSy schema. The Schema
allows both PostgreSQL and MySQL databases to be used.

Performance: SISSy took from a few seconds to 3 hours to analyze the projects and insert all the data
in the database when provided a long list of header files in include.txt. This analysis was
performed on a laptop and on the CETIC's cluster. Some of the designed SQL queries
for the metrics took a long time on the CETIC's cluster but only a few seconds on the
laptop. This issue has been investigated and new versions of Postgresql server and
client were installed. This solved the issue.

As described above, SISSy exports the Java Code Model into a database using JDBC. By default SISSy
provides a configuration for PostgreSQL (jdbc.cfg)
JDBC_DRIVER="org.postgresql.Driver"
JDBC_URL="jdbc:postgresql://localhost:5432/qualoss"

We provided a MySQL configuration
JDBC_DRIVER="com.mysql.jdbc.Driver"
JDBC_URL="jdbc:mysql://localhost:3306/qualoss"

This creates a connection to the 'qualoss' schema on these two database management systems.

7

QualOSS - Verification and Validation of the
QualOSS Platform

Deliverable ID: D2.3

Page : 8 of 14

Version: 1.0
Date: 16/10/2008

Status : Final
Confid : Public

SISSy is responsible for the computation of the following metrics:
– java_files
– java_classes
– java_methods
– java_cyclomatic
– java_linesofcode
– java_linesofcomments
– java_calls
– java_calledclasses

These metrics were used and must still be validated (by hand) on small projects to check the correctness of
the coupling metrics (java_calls and java_calledclasses).

SISSy has been tested on JAVA and C++ projects (no tests have been performed on Delphi as this language
is out of scope for QualOSS). For JAVA projects the parameters are:
• the name of the directory containing the sources of the project and
• the name of a configuration file allowing connection to the target DB.

For C++, SISSy expects the same parameters and these two additional parameters:
• the parameter -cpponly (meaning that only C and CPP sources are analysed, no header file) and
• a reference to an include file that contains a list of directories used for searching included file.

For C++ projects

We analysed, sources and headers file are mixed in several subdirectories of the source "root". We
then had to create the include file using the name of the source directory as single line, all sources
and *referenced* headers pertaining to the project are auto-magically analysed by SISSy.

Attempts have been made to add more references in the include file in order to find standard header
files delivered with the compilers. However, the impact on the resulting metrics is rather low, and as
this process is tedious and depends on the production environment, we proposed to use only header
files defined in the project sources.

Moreover, tests have been made with the -def parameter that contains the macro configuration
used in the analysis. Again, defining the used macros cannot be automatic and the impact on the
resulting metrics is rather low; so we proposed not use it.

Several features offered by SISSy have not been tested yet (e.g. clone analysis, comment
extraction).

During the tests, several bugs have been detected by the QualOSS members and they were solved by the
members of the SISSy project:
• References to some hard-coded file pathes with Ms Windows syntax
• Problem in the CPP fact extractor due some source code specificities (w.r.t. spaces ans new lines) and

the SQL server
• Java StackOverflowError during the analysis of a specific piece of CPP code
• Bug in the ANT buid file w.r.t. dependencies

The following detected issues are still open :
• No correct support of typedef (under investigation by the SISSy project team)
• One erroneous SQL insert statement for a test project (under investigation by the SISSy project team)
• SISSY cannot be launched from "outside" its installation path

The QualOSS Project have then contributed to the correction of bugs present in the SISSy system.

8

QualOSS - Verification and Validation of the
QualOSS Platform

Deliverable ID: D2.3

Page : 9 of 14

Version: 1.0
Date: 16/10/2008

Status : Final
Confid : Public

Conclusion : SISSy is a quite stable and mature source code analyzer that parses the source code and
exports it in a generic database schema allowing similar checks on the Java, C/C++ and Delphi languages.
There are no real metrics provided with this analyzer but the generic schema for representing the source
code of a given system allows the writing of measures as SQL queries.

 2.2 CHECKSTYLE

Checkstyle
General Information

Version: 4.4 (released:) Licenses: GNU Library or Lesser General Public
License (LGPL)

Authors: Oliver Burn Maturity: Mature

URL: http://checkstyle.sourceforge
.net

Dependencies: None (beside JVM install)

Description: Checkstyle is a development tool to help programmers write Java code that adheres to a
coding standard. It automates the process of checking Java code to spare humans this
boring (but important) task. This makes it ideal for projects that want to enforce a coding
standard.
Checkstyle is highly configurable and can be made to support almost any coding
standard. An example configuration file is supplied supporting the Sun Code
Conventions. Other sample configuration files are supplied for other well known
conventions.

Constraints:

Input/Output Information

Language
Analyzed:

Java (including Java 5)

Input Types Source Code Input Formats The command line accepts access
paths to a file or to a directory (using
the -r option)

Output Types Files Output Formats Text and XML

Other I/O
comments

Checkstyle can also be invoke from Ant scripts

Output files can become quite large, for example, the size of the XML” file generated by
Checkstyle when analyzing the source code of Azureus (500 KLOC) is about
100MBytes.

Technical Information

Devel. Lang: Java Documentation: User manual available at the URL
above

Information
Computed:

The checks made by checkstyle are dealing with Javadoc Comments, Naming
Conventions, Headers, Imports, Size Violations, Whitespace, Modifiers, Block Checks,
Coding, Class Design, Duplicate Code, Metrics, Miscellaneous, J2EE Checks.

Extensibility: It is possible to write checks and configuration files. The existing checks can also be
modified.

Technical
Constraints:

Checkstyle only performs pattern matching, it does not perform type resolution hence
rules cannot check for type information.

9

http://checkstyle.sourceforge.net/
http://checkstyle.sourceforge.net/

QualOSS - Verification and Validation of the
QualOSS Platform

Deliverable ID: D2.3

Page : 10 of 14

Version: 1.0
Date: 16/10/2008

Status : Final
Confid : Public

Test Performed

Reliability: Currently no bugs are found.

Performance: For example the Azureus project (about 500 kloc) takes 5 minutes to produce 100MByte
size output. The test has been conducted on a Pentium 4 1.5GHz.

As described above, Checkstyle is able to produce its output as XML. The format of this XML document is
rather simple: for each file analyzed there is a <file> element, and each error reported for this file is a child
element <error>.

Checkstyle is responsible for the computation of the following metric.
– java_errors

The checks and validations that have been performed concern Checkstyle version 4.4. This version is the
stable one.
Note: A new version of Checkstyle (v5) is in beta state and better designed for Java 1.5 source code.

The installation and execution of Checkstyle was straightforward. The checks performed concern the
modification of severity levels for a number of rules. The complete tests of the tool was not possible because
of the high number of rules and configurations that is possible. However we used the test cases provided by
the Checkstyle distribution (available as ANT tasks “run.gui”, “run.checkstyle”, “compile.tests” and “run.tests”)
to check the application.

Conclusion: Checkstyle is easy to use and reports meaningful information about the coding errors found in
the Java source code. There is no real issue concerning its use. The reported and opened bugs (as of
september 1st, 2008) has been taken into account. The QualOSS project planned to use the new version
(version 5) of Checkstyle in the next iteration.

 2.3 CVSANALY
CVSAnalY

General Information

Version: 1.0.1 Licenses: GPL

Authors: Alvaro Navarro, Gregorio
Robles

Maturity: Stable

URL: https://forge.morfeo-
project.org/projects/libresoft-
tools/

Dependencies: cvs,mysql-server, python, python-
mysql, python-mysqldb, python-
imaging, gnuplot, ploticus.

Description: CVSAnalY is a tool that extracts statistical information out of CVS (and recently
Subversion) repository logs and transforms it in database SQL formats. It has a web
interface - called CVSAnalYweb - where the results can be retrieved and analyzed in an
easy way.

Constraints: Some features included for CVS are not included yet for SVN.

Input/Output Information

Language
Analyzed:

Not Applicable

Input Types URL (including path on disk) Input Formats CVS or Subversion repository

Output Types Database Output Formats SQL Queries

Other I/O
comments

CVSAnaly is executed as follows.
$ python cvsanaly [-d DBNAME] [CVS-Directory]

10

http://cvsanaly.tigris.org/
http://cvsanaly.tigris.org/
http://cvsanaly.tigris.org/

QualOSS - Verification and Validation of the
QualOSS Platform

Deliverable ID: D2.3

Page : 11 of 14

Version: 1.0
Date: 16/10/2008

Status : Final
Confid : Public

Technical Information

Devel. Lang: Python Documentation: Reference manual at
http://cvsanaly.tigris.org/servlets/Proje
ctDocumentList
and
https://forge.morfeo-
project.org/projects/libresoft-tools/

Information
Computed:

Code repository log data: commits, committers, files, modules.

Extensibility: Extension are implemented with plugins

Technical
Constraints:

Current version does not work on Windows platforms because paths to tools does not
take windows specificities in the search of commands available in the shell.
The version installed with the QualOSS Platform has fixed this issue.

Test Performed

Reliability: Stable

Performance: Good, it carries out the analysis quite fast

The current version of CVSAnalY has been tested by URJC. And it has been tested on Win32 platform by
CETIC. As described, CVSAnalY is storing its data in a database and is responsible for the following metrics
from the set presented above:
– java_committers
– java_commits

Conclusion: The checks on CVSAnalY have been light because it was a new version of the tool and
development was ongoing. The information provided by the tool was verified on a bunch of projects.

 3 VALIDATION OF REQUIREMENTS CONCERNING THE USER-INTERFACE
The user interface as described in Deliverable 2.1 is a command line loop that interprets the commands and
dispatch them to the appropriate tools.

The validation of the requirements according to end users needs has not yet been performed. The validation
will be done as follows: First, the Specification and Requirements for the QualOSS Platform will be validated
by AdaCore, responsible for the WP5 Case Study. Then eventually it will be presented to the SMEs forming
the Special Interest Group.

 4 VALIDATION OF THE IMPLEMENTATION OF THE USER-INTERFACE
As explained in section 3, the current implementation of the QualOSS Platform only provided disjoint tools
such as Configurator.py, Analyzer.py, Reporter.py and Evaluator.py. The functionalities of these scripts have
to be integrated to the Platform.py script that will provide the end-user with a command line loop (like the
shell prompt of the MS DOS interpreter, bash or Python interpreter). The validation of the user interface was
then not possible.

As of this writing the scripts Configurator.py, Analyzer.py and Reporter.py have been implemented. An
attempt to validate the user interface was done by testing the contract using the generated help available
with the tools (help is accessible via the -h option at command line).
The logging mechanism used by the QualOSS Platform was also used to check the appropriateness of the
reported information on the execution of a given analysis.

There are various roles available for the QualOSS Platform as explained in the Deliverable 2.1,
Specifications and Requirements for the QualOSS Platform.

11

http://cvsanaly.tigris.org/
http://cvsanaly.tigris.org/
http://cvsanaly.tigris.org/servlets/ProjectDocumentList
http://cvsanaly.tigris.org/servlets/ProjectDocumentList

QualOSS - Verification and Validation of the
QualOSS Platform

Deliverable ID: D2.3

Page : 12 of 14

Version: 1.0
Date: 16/10/2008

Status : Final
Confid : Public

The System Administrator is responsible for the installation of the QualOSS Platform on the machine.
Typically, this concerns the installation of the Python environment (at least Python 2.4), the installation of a
MySQL RDBMS, eventually the PostGresQL RDBMS, and the Sqlite client. There is so far no user interface
for the installation of the platform. This part of the validation has thus not been tested. However a document
describing the process that should be followed to ensure the correct installation of the QualOSS Platform is
provided as a part of the Deliverable 2.4 User Guide.

Verification and Validation performed: The different steps needed for the installation of the QualOSS
Platform has been validated. The installation process rely on the EasyInstall facility of Python. EasyInstall, as
its names let it suppose, eases the installation of non standard packages on a Python environment. The
System Administrator Guide lists the required non standard packages for Python 2.5 (pygresql, mysql-
python) and Python 2.4 (lxml, pysqlite, pygresql and mysql-python). The installation of the current version of
the QualOSS Platform (v0.2) did not pose any problem.

Tests: Check the reliability of the QualOSS Platform v0.2 by testing the pre-requisites by the QualOSS
Platform Administrator:

0. Download the platform
(svn co https://svn.cetic.be/devel/qualoss/tags/v02): passed

1. Unzip the platform on a directory (referred as $QUALOSS_HOME): passed
2. Run $QUALOSS_HOME/Checker.py, expect a critical error if Python is not installed: passed
3. Run $QUALOSS_HOME/Checker.py, expect a critical error if mysql-python is not installed: passed
4. Run $QUALOSS_HOME/Checker.py, expect a warning if pyslite is not installed with Python 2.4:

passed
5. Run $QUALOSS_HOME/Checker.py, expect a warning if pygresql is not installed: passed
6. Run $QUALOSS_HOME/Checker.py, expect a critical error if lxml is not installed: passed
7. Run $QUALOSS_HOME/Checker.py, expect a warning if psyco is not installed: passed

As explained in the Deliverable 2.4 'QualOSS User Guide', in the section for the Administration of the
platform, for security reason, the System Administrator has to create groups for the different roles. Here are
listed the groups:
– Group: QualOSS Administrator
– Group: QualOSS Platform Administrator
– Group: QualOSS Expert User
– Group: QualOSS Advanced User
– Group: QualOSS Basic User

Some of the files, should be available on specific groups only.

The QualOSS Platform Administrator is responsible for the correct configuration of the QualOSS Platform.
He is responsible for the configuration of the platform. This configuration is performed by using the
Configurator.py script.

As described in the QualOSS User Guide (Deliverable D2.4), the platform is driven by a set of configuration
files. The various configuration files needed by the QualOSS Platform Administrator are listed below:
– Databases.xml
– Datasources.xml
– Connectors.xml

As described in the Deliverable 2.4 QualOSS Platform User Guide, the QualOSS Platform Administrator is
also responsible for the access rights on various configuration and files. For example, the
config/default/databases.xml is not accessible except by accounts in the group QualOSS Platform
Administrator.

12

https://svn.cetic.be/devel/qualoss/tags/v02

QualOSS - Verification and Validation of the
QualOSS Platform

Deliverable ID: D2.3

Page : 13 of 14

Version: 1.0
Date: 16/10/2008

Status : Final
Confid : Public

Verification and Validation performed: The verification consisted on providing valid and invalid inputs to the
Configurator.py script. Meaningful error messages should be reported. In the next phase, the user interface
(the command loop) will be tested for every functionality described in the Specification and Requirements for
the QualOSS Platform.

Tests: Check that the script Configurator.py behaves as expected when faced to invalid or valid inputs at
command line. All the configuration files are XML documents.
– Run $QUALOSS_HOME/Configurator.py without providing a path to a Databases, Datasources or

Connectors XML document, expect no error (use of default configuration files respectively:
– $QUALOSS_HOME/config/default/databases.xml,
– $QUALOSS_HOME/config/default/datasources.xml,
– $QUALOSS_HOME/config/default/connectors.xml)

– Run $QUALOSS_HOME/Configurator.py with an invalid path to a Databases Datasources or
Connectors XML Document, expect an error

– Run $QUALOSS_HOME/Configurator.py with a path to a Databases XML Document that
corresponds to an existing directory, expect error

– Run $QUALOSS_HOME/Configurator.py with a path to non XML documents, or XML document that
is not respecting the respective DTD for Databases, Datasources or Connectors, expect error

Note: To ensure that the input is valid for the QualOSS Platform, DTDs have been used (see Deliverable 2.4
QualOSS User Guide)
– Databases.xml contains the connection strings to the QualOSS Internal Database. The validity of this

connection string is enforced by the $QUALOSS_HOME/config/default/databases.dtd.
– Datasources.xml describes the contents of datasources and artefacts. The designed DTD (located at

$QUALOSS_HOME/config/default/datasources.dtd), ensures the validity of the provided XML
document.

– Connectors.xml contains the needed information to launch and extract data thanks to the selected
analyzers and tools. The designed DTD partially ensures the validity of the provided information. Here
are the tests that should be performed:
– Check that the path to the tool exists
– Check that the provided cmd; input and output is sufficient to run the analysis
– Check that the declared format is respected for the output of the tool
– Check that the given connection string is valid for the connectors whose result is inserted to a

database

The QualOSS Expert User is an advanced user (see below) that can additionally (2) create new metrics on
the default connectors or (3) implement new connectors and requesting their installation on the platform to
the QualOSS Platform Administrator.

Verification and Validation performed: The QualOSS Expert User is often a Python developer because the
modification and implementation of both metrics and connectors requires the coding in Python.

Tests: The tests that should be performed on the current available scripts and the current user interface are
the same as the ones performed for the QualOSS Advanced User.

As described in the Deliverable 2.1, Specifications and Requirements for the QualOSS Platform, the user
interface for this user has to make additional checks, such as:
– The interface should allow the listing of the available metrics
– The interface should allow the listing of the installed connectors
– The interface should provide a description for all the installed connectors (name, tool, version, defined

metrics, etc.)
– The interface should allow the creation of new simple metrics (if possible)
– The interface should allow the creation of new simple connectors (if possible)

13

QualOSS - Verification and Validation of the
QualOSS Platform

Deliverable ID: D2.3

Page : 14 of 14

Version: 1.0
Date: 16/10/2008

Status : Final
Confid : Public

The QualOSS Advanced User can customize the default QualOSS Quality Model by adapting or modifying
the quality model used to report the assessment. It has also the permission to run analyses by providing the
needed information about a given FlOSS Endeavor.

Verification and Validation performed: The QualOSS Advanced User is using the Reporter.py script that
receives the QualityModel file as input. He is also using the Analyzer.py script that requires the Analysis XML
document (with the information related to the FlOSS Endeavor to analyse).

Tests: Here are the tests that should be performed for the reporting:
– Run $QUALOSS_HOME/Reporter.py without providing a path to a Quality Model, expect no error (use

of default configuration: $QUALOSS_HOME/config/default/qualitymodel.qm)
– Run $QUALOSS_HOME/Reporter.py with a path to a Quality Model that does not follow the correct

syntax, expect an error
– Run $QUALOSS_HOME/Reporter.py with an invalid path to a Quality Model (i.e., path to a file that

does not exists), expect an error
– Run $QUALOSS_HOME/Reporter.py with a path to directory instead of a file containing the Quality

Model, expect an error

Here are the tests that should be performed for the analysis:
– Run $QUALOSS_HOME/Analyzer.py without providing a path to an Analysis XML document, expect an

error
– Run $QUALOSS_HOME/Analyzer.py with a path to an Analysis XML document that does not follow the

correct syntax, expect an error
– Run $QUALOSS_HOME/Analyzer.py with an invalid path to an Analysis XML document (i.e., path to a

file that does not exists), expect an error
– Run $QUALOSS_HOME/Analyzer.py with a path to directory instead of a file containing the Analysis

information, expect an error
– Run $QUALOSS_HOME/Analyzer.py with a path to an Analysis XML document with unreachable

datasource location linked to a metric required by the provided Quality Model, expect an error

There are additional checks that have to be made on the provided user interface for a QualOSS Advanced
User. These checks are the same as the checks for a QualOSS Basic User (see below) with additional
checks such as:
– The interface allows the user to provide a custom Quality Model
– The interface allows the user to create the configuration for launching a new analysis

The QualOSS Basic User is allowed to access the result of analyses that have been already performed. Its
user interface is the QualOSS Platform command loop where he can list the endeavours that have been
analysed and that are present on the platform. The basic user can also get the result of applied quality
models on a given endeavor. The QualOSS Basic User has also the ability to alter the default QualOSS
Quality Model by removing the characteristics that he is not interested in.

Verification and Validation performed: The verification of the user interface will consist in the validation of the
functionalities listed above.

Tests: The following tests have to be performed on the user interface designed for the QualOSS Basic User:
– The interface is not accessible without requiring a login/password
– The interface allows the listing of analyses performed
– The interface allows the retrieval of the applied quality model for a given analysis
– The interface allows the retrieval of all the measures computed for a given analysis, as well as all the

assessment data (list of analysed datasources, artefacts, scope of the analysis, etc.)

14

	 1 Validation of the metrics
	 2 Validation of the tools implementing the metrics
	 2.1 SISSy (for Java)
	 2.2 Checkstyle
	 2.3 CVSAnalY

	 3 Validation of requirements concerning the user-interface
	 4 Validation of the implementation of the user-interface

