
Sponsored through Framework Programme Sixth (Call 5) by

Document Information

Version: 1.0
Date : Jun 22, 07
Pages : 121

Owning Partner:
IESE

Author(s):
Marcus Ciolkowski, Martín Soto, Jean-
Christophe Deprez, Frédéric Fleurial
Monfils, Flora Kamseu, Jose Ruiz,
Alvaro del Castillo, Daniel Izquierdo

Reviewer(s):
Flora Kamseu
Jean-Christophe Deprez

To:
CONSORTIUM

Purpose of distribution:

The QUALOSS Consortium consists of: CETIC (BE), Facultés
Universitaires Notre Dame de la Paix à Namur (BE), Universidad Rey
Juan Carlos (ES), Fraunhofer IESE (DE), ZEA Partners (BE), MERIT
(NL), AdaCore (FR), PEPITe (BE)

Printed
on 06/22/07 at 06:12:36 PM

Status: Confidentiality:

[
[
[
[X

]
]
]
]

 Draft
 To be reviewed
 Proposal
 Final/Released

[
[
[

X]
]
]

 Public
 Restricted
 Confidential

- Intended for public use
- Intended for QUALOSS consortium only
- Intended for individual partner only

Deliverable ID: D1.3

Title:

QualOSS D1.3

Metrics System and Prototype QualOSS Models

A deliverable of Task 1.3

 Copyright Marcus Ciolkowski, Martín Soto, Jean-Christophe Deprez, Frédéric Fleurial Monfils, Flora Kamseu,
Jose Ruiz, Alvaro del Castillo, and Daniel Izquierdo

QualOSS D1.3

Deliverable ID: D1.3

Page : 2 of 121

Version: 1.0
Date: Jun 22, 07

Deliverable: D1.3

Title: QualOSS D1.3

Executive Summary:
This document describes the work done and results obtained in task 1.3 (“Definition of Metrics Systems and
Prototype Quality Models”) of the QualOSS project.

This document describes the work done and results obtained in task 1.2 (“Goal of measurements”) of the
QualOSS project. We review relevant definitions of robustness and evolvability in F/OSS assessment
approaches and in the state of the art and practice of quality models. Additionally, we take into account
stakeholders' perceptions and requirements through a series of interviews.
Goals and requirements for the QualOSS model are defined in terms of (a) business and measurement goals,
and (b) a consolidated definition of quality characteristics for evolvability and robustness from related work
and from stakehoders' views, and (c) an initial plan for validation of the QualOSS model.

Further work is still required. In particular, the QualOSS model needs to be further refined into metrics; this is
part of task 1.3. We foresee that part of task 1.3 will be to develop an assessment method for evaluating the
community maturity, as approaches to evaluate associated processes have so far not been considered in
F/OSS assessment methods.

Section 1 presents the motivation of task 1.3, and explains how the tasks in workpackage 1 collaborate to
produce the initial QualOSS model.

Section 2 presents the revised definitions of evolvability and robustness characteristic, based on D1.2 and
the insights gained during task 1.3

Sections 3 to 6 present the initial version of the prototype QualOSS model; that is, they describe how we
intend to measure the quality characteristics defined in Section 2. Thereby, Sections 3 and 4 focus on the
product and community aspects of robustness, respectively. Sections 5 and 6 describes product and
community aspects of evolvability, respectively.

Section 7 presents the initial version of a process assessment framework for F/OSS projects. During task 1.2,
we identified the need to better understand an F/OSS project's processes to assess its maturity. Process
assessment aspects impact both evolvability (e.g., in terms of how a project deals with sustaining its
community) as well as robustness (e.g., in terms of how a project deals with resolving reliability problems).

Section 8 presents the initial version of a documentation assessment framework. As identified during task 1.2,
there are no readily available metrics to assess the quality of documentation available for an F/OSS product.

Section 9 lists issues identified so far that need to be addressed by the advanced models.

Section 10 contains the interpretation model that will allow to interpret metric values with respect to the quality
characteristic they intend to measure. This also includes aggregation issues.

Finally, Section 11 presents conclusions and future steps.

The Appendix contains the detailed tables of identified metrics.

2

QualOSS D1.3

Deliverable ID: D1.3

Page : 3 of 121

Version: 1.0
Date: Jun 22, 07

CHANGE LOG

Ver. Date Author Description
0.1 09/15/06 Marcus Ciolkowski Initial proposal for structure
0.2 06.06.07 Marcus Ciolkowski Draft Deliverable, containing input

from all partners
0.3 07/06/07 Flora Kamseu First review of the deliverable;

correction of few typos apart from
Naji' comments

0.4 11/06/07 Jose Ruiz Update tools to analyze Ada, C,
and C++ code as well as some
metrics

0.5 13/06/07 Martín Soto Integration of contributions from
all partners. Formatting.

0.6 15/06/07 Jean-Christophe Deprez Review Section 8
0.7 20/06/07 Alvaro del Castillo Update and rework of sections 4

and 6
0.8 20/06/07 Marcus Ciolkowski Update of Sections 1, 3, 10 and

integrationof contributions
0.9 21/06/07 Jean-Christophe Review of all doc
0.10 21/06/07 Flora Kamseu Second review of all D1.3
0.11 22/06/07 Marcus Ciolkowski Rework of D1.3 according to

review
0.12 22/06/07 Jean-Christophe Deprez Sanity Check
1.0 22/06/07 -- Submission to EC

APPLICABLE DOCUMENT LIST

Ref. Title, author, source, date, status Deliverable
Identification

3

QualOSS D1.3

Deliverable ID: D1.3

Page : 4 of 121

Version: 1.0
Date: Jun 22, 07

TABLE OF CONTENTS

1. Introduction ..7
1.1 Motivation..7
1.2 Goal...7
1.3 Strategy For Workpackage 1..8
1.4 Approach ..9
1.5 Structure of the Deliverable..10

2. QualOSS Prototype Model ...11
2.1 Evolvability...11
2.2 Robustness...14

3. Evolvability: Product Quality Model ..17
3.1 Usefulness of Code Documentation ..17

3.1.1 Actuality..17
3.1.2 Coverage..18
3.1.3 Code Documentation Standard Compliance...19

3.2 Usefulness of User Documentation ...20
3.2.1 Actuality..20
3.2.2 Coverage..20
3.2.3 Internationalization...21
3.2.4 User Documentation Standard Compliance..21

3.3 Maintainability ..21
3.3.1 Product Complexity..21
3.3.2 Architecture Flexibility...23
3.3.3 Fixability..26
3.3.4 Maintainability Standard compliance...27

3.4 Interoperability...27
3.4.1 Runtime Interoperability...27
3.4.2 Passive Interoperability..28

3.5 Portability ...30
3.5.1 Platform Specificity...30
3.5.2 Portability Standard compliance...30

4. Evolvability: Community Quality Model ...32
4.1 Product Adoption...32

4.1.1 User Community Size...32
4.1.2 Mission Criticality..32
4.1.3 License permissiveness...32

4.2 Developer Community Liveliness...33
4.2.1 Developer Community Size..33
4.2.2 Developer Community Activity...34
4.2.3 Developer Community Heterogeneity..35
4.2.4 Developer Community Fluctuation...36

4.3 Process Maturity...36
4.3.1 Established Process Coverage..36
4.3.2 Process Automation..37
4.3.3 Popularization...37

4.4 Support Availabilty..37
4.4.1 Modification Support Availability...37
4.4.2 Deployment Support Availability...38
4.4.3 Backward Support..39

4

QualOSS D1.3

Deliverable ID: D1.3

Page : 5 of 121

Version: 1.0
Date: Jun 22, 07

5. Robustness: Product Quality Model ...40
5.1 Reliability...40

5.1.1 Failure Tolerance..40
5.1.2 Fault / Error Tolerance..44
5.1.3 Recoverability...45
5.1.4 Availability...46

5.2 Maturity..47
5.2.1 Age..47
5.2.2 Continuity..48
5.2.3 Activity on stable development branch..50

5.3 Security...52
5.3.1 Confidentiality...52
5.3.2 Integrity...54
5.3.3 Security Standard compliance...56

6. Robustness: Community Quality Model ..57
6.1 Maturity of Security Processes...57

6.1.1 Compliance ..57
6.1.2 Reaction Time...58
6.1.3 Inclusion of Preventive/Reactive Actions...58

6.2 Maturity of Reliability Processes...59
6.2.1 Compliance ..59
6.2.2 Reaction Time...60
6.2.3 Inclusion of Preventive/Reactive Actions...60

7. Process Assessment Aspects..61
7.1 Status and Next Steps..61
7.2 A Model for Process Maturity: CMMI..61
7.3 Evidence of Process Maturity in F/OSS Projects...62

7.3.1 Configuration Management..62
7.3.2 Requirements Management...64
7.3.3 Project Planning...66
7.3.4 Validation..69
7.3.5 Technical Solution...69

7.4 Sample Analysis..71

8. Evaluation of documentation in Open Source Software...75
8.1 Different Type of Documentation: Documentation Completeness ..76

8.1.1 Design Documentation...76
8.1.2 Product Documentation ...76
8.1.3 Manual Users documentation / Online Help or online documentation..............................77

8.2 Document quality..77
8.2.1 Document Structure..78
8.2.2 Documentation Standards ..78

8.3 Study for the case of Functional Description Documentation..79

9. Issues for the QualOSS Advanced Quality Model ...83

10. Interpretation Guide / QualOSS User Manual ..84

11. Summary and Conclusions ..85

12. Appendix A: Product Metrics Tables...86
12.1 Metrics...87

12.1.1 Simple Analysis ...87
12.1.2 Advanced Analysis...87

13. Appendix B: Product Robustness ..88
13.1 Reliability – Fault Tolerance – Failure Tolerance..88

5

QualOSS D1.3

Deliverable ID: D1.3

Page : 6 of 121

Version: 1.0
Date: Jun 22, 07

13.2 Mapping Data sources to Metrics of interest..88
13.3 Details on Metrics...90

13.3.1 Basic Metrics..90
13.3.2 Advanced Metrics...91

13.4 Product Robustness – Reliability – Fault Tolerance – Error Tolerance..................................91
13.5 Product Robustness – Reliability – Recoverability ..93

13.5.1 Basic Metrics..95
13.5.2 Advanced Metrics...95

13.6 Product Robustness – Reliability – Availability...95
13.6.1 Basic Metrics..97
13.6.2 Advanced Metrics...97

13.7 Product Robustness – Security – Confidentiality...98
13.7.1 Basic Metrics..99
13.7.2 Advanced Metrics...100

13.8 Product Robustess – Security – Integrity...100
13.8.1 Basic Metrics..102
13.8.2 Advanced Metrics...102

13.9 Product Robustness – Security – Compliance to Standards...102
13.10 Mapping Data sources to Metrics of interest..102
13.11 Product Robustness – Maturity – Age..104

13.11.1 Basic Metrics...105
13.11.2 Advanced Metrics...105

13.12 Product Robustness – Maturity – Continuity..106
13.12.1 Interesting Question...107

13.13 Product Robustness – Maturity – Activity on Stable development branch........................107

14. Appendix C: Metric Collection Sheets...110
14.1 Product Complexity / Analyzability - URJC...110
14.2 Community Maturity - URJC..111
14.3 Standard Adherence - URJC..112
14.4 Continuity - URJC...113
14.5 Generic Metrics (Advanced issues) - URJC...113
14.6 Interoperability - URJC..114
14.7 Maintainability – Changeability - URJC..114
14.8 Performance - URJC...115
14.9 Performance- Resource behaviour - URJC..116
14.10 Performance – Time behaviour - URJC..116
14.11 Project Maturity - URJC..116
14.12 Safety/Security - URJC...117
14.13 Stability / Reliability - URJC..117
14.14 Suitability - URJC..118
14.15 Testability - URJC..118
14.16 Business structure and productivity model (BSPM) - MERIT..119

15. Appendix D: Glossary..120

6

QualOSS D1.3

Deliverable ID: D1.3

Page : 7 of 121

Version: 1.0
Date: Jun 22, 07

1. INTRODUCTION

1.1 MOTIVATION

The strategic objective of the QuaLOSS project is to enhance the competitive position of the European
software industry by providing methodologies and tools for improving their productivity and the quality of their
software products. To achieve this objective, QuaLOSS notes that many organizations integrate Free libre
Open Source Software (F/OSS) in their systems hence QuaLOSS aims at facilitating the selection of the most
adequate F/OSS . In particular, QuaLOSS focuses on assessing the evolvability and robustness of F/OSS.

This higher competitiveness is to be addressed by providing a reliable assessment method of open source
software in order to integrate them into industrial software. This will ease the integration of high quality level
open source components, and increase the productivity.

To achieve this goal, QualOSS proposes to build a high level methodology to benchmark the quality of open
source software in order to ease the strategic decision of integrating adequate F/OSS components into
software systems. Therefore, one of the main outcomes of the QuaLOSS project is to deliver an assessment
methodology for gauging the evolvability and robustness of open source software.

This first workpackage (WP1) performs requirements analysis through prototyping while the other scientific
workpackages (WP2-4) improve on the functional prototype build in WP1. The first three tasks of WP1 (T1.1,
T1.2 and T1.3) perform requirements analysis while the remaining three tasks (T1.4, T1.5, and T1.6) build the
functional prototype and validate the approach. The goal of the deliverable D1.2 was to define the goals and
requirements for this assessment method, the QUALOSS quality model. The goal of this deliverable, D1.3, is to
operationalize the definitions from D1.2; that is, to assign metrics to the quality characteristics defined in D1.2,
and to identify issues to be tackled in the advanced quality models.

1.2 GOAL

The key result of task 1.3 is the definition of concrete metrics for the quality model (i.e., the definition of quality
characteristics) in D1.2, and to identify issues that need to be resolved for the advanced quality models.

More specifically, the goals of task 1.3 are to:

• Identify metrics for the quality model in D1.2, taking into account findings from tasks 1.1 and 1.2., thus
relating metrics to measurement and business goals.

• Partition the metrics in two sets i.e., a first set of “basic” metrics to use for building prototype quality models
and a second set of “advanced” metrics to be used later during the second phase when augmenting our
prototype. The constraint for including a metric in the “basic” set is that raw data and tools needed to
measure the metrics should be available. Neither new research nor involved development need take place
to measure basic metrics.

• Identify the information needed to create new “advanced” metrics, and issues to be addressed when building
advanced quality models (e.g., constructed from advanced metrics)

Compared to the description of work (DoW), there are several changes to the structure of this document:

• The definition of underlying terms is moved to the appendix.
• We introduced a section that presents the refined definitions of the quality characteristics from D1.2
• According to the DoW, section 2 presents all metrics and catalogues them as either basic or advanced. We

have split this section across sections 3-6 to avoid deeply nested hierarchies. Also, currently, we have not
yet marked any metrics as “on hold” because they are too time consuming to be implemented in the
timeframe of the project. We expect that this identification will occur in tasks 1.4 and 1.5.

• So far, we have only identified simple formulae to aggregate metrics towards quality characteristics (referred
to as quality models in the DoW). For this reason, we have integrated their description into the user manual /
interpretation guide section. Consequently, we have not yet marked any formulae as authoritative or
alternative.

• Compared to the DoW, we have introduced two sections on process and documentation assessment, as
insight gained during D1.2 suggested that these aspects are important for the QualOSS approach.

• The first draft of the user manual/ interpretation guide is contained in Section 10

7

QualOSS D1.3

Deliverable ID: D1.3

Page : 8 of 121

Version: 1.0
Date: Jun 22, 07

• Issues for advanced quality models are described in Section 9.

1.3 STRATEGY FOR WORKPACKAGE 1

The main objective of WP1 is to perform requirement analysis through prototyping. Currently, there exists a set
of metrics and corresponding measuring tools.

The outcome of prototyping in WP1 serves in performing a thorough requirement analysis in order to well
formulate our requirements and eventually, it also helps identify promising metrics and tools to integrate in our
final QUALOSS platform. A first prototype schema for the QUALOSS repository also emanates from WP1, in
particular from task 1.4. If our prototype quality models constructed on basic metrics and the calibration
exercise yield interesting results directly usable and transferable to our QUALOSS platform then that is extra
benefit.

The tasks of workpackage 1 can be grouped as follows: (1) Definition of goals for the QualOSS method, (2)
definition of quality models that support these goals, and (3) evaluation and calibration of the quality models.

(1) Definition of goals to be supported by the QualOSS method is addressed in task 1.2. Thereby, the approach
is to first define and elicit usage scenarios for OSS components, and to define evolvability/ robustness based
on these scenarios and on related work in quality modelling and assessment of OSS projects.

(2) Definition of QualOSS quality models is addressed in task 1.3. The definition will be done top-down as well
as bottom-up. The top-down part is addressed by selecting and defining models suitable to meet the previously
defined goals, based on a survey on available models. This includes existing assessment methods for F/OSS
projects, relevant quality models (such as ISO 9126), and on insights from related projects on F/OSS
evaluation, such as FlOSSmetrics. In addition, the definition will also take into account available data and tools,
as elicited in task 1.1. shows the inputs for task 1.3. In particular, this implies that, compared to the description
of work, the definition of metrics for the QualOSS model will completely be shifted to task 1.3.

Figure 1: Input Sources for QualOSS model (D 1.3)

(3) Evaluation and calibration of the quality models are addressed in tasks 1.4 to 1.6. Thereby, task 1.4
implements a prototype and repository for data extraction, and uses this prototype to process a set of reference
projects. Workpackage 2 will build an advanced set of tools based on the experience gathered in task 1.4.
Calibration of the quality models is addressed in task 1.5. More precisely, task 1.5 examines the usefulness
and applicability of the quality models and tries to find patterns and dependencies in the data that can be used
as input to improve the quality models. Task 1.6 validates the quality models on additional projects. This
includes, for example, evaluating the definition and prioritization of quality characteristics from stakeholders'
viewpoints. Workpackages 4 and 5 pick up on the results of tasks 1,5 and 1.6 by creating advanced quality
models and extensively evaluating them.

8

QualOSS
Model

Partners‘
Models

(CETIC, URJC, IESE, …)

Usage Scenarios

RequirementsGoals

QM StoA

Other Projects
•FLOSSMETRICS
•QUALIPSO
•SQO-OSS
•FLOSSWORLD

(FLOSS) Assessment methods
(OpenBRR,QSOS, OSMM, …)

Data / Tool availability

QualOSS D1.3

Deliverable ID: D1.3

Page : 9 of 121

Version: 1.0
Date: Jun 22, 07

It is important to note that work in task 1.2 and 1.3 made it clear that we need to restrict D1.2 to definition of
robustness and evolvability characteristics. In terms of the goal-question-metric (GQM) paradigm's terminology,
these are the measurement goals and questions. The GQM metrics; that is, the definition of appropriate
metrics and identification of measurement tools, is part of D1.3. In addition, as product and community aspects
need to be considered, and as process maturity is intrinsic to assessing a community, we decided that part of
task 1.3 will be to develop an assessment method. The vision of the QualOSS quality model is that all
stakeholders use the same definition and metrics to measure robustness and evolvability. What may change
depending of the stakeholder's situation, however, is the priority of the quality characteristics. For example,
stability of a product is measured in the same way for all products; however, if it is to be used as desktop tool
or as part of an external service the company offers, the stability is of different importance to the stakeholder.
For this reason, we decided to elicit usage scenarios for F/OSS components. These usage scenarios will later
be used to define an initial weighting of the different quality characteristics. The definition of quality
characteristics will be independent of the scenario. The challenges that need to be addressed in the QualOSS
quality model are missing or inconsistent data; for example. Figure 1 illustrates the dependency between D 1.2
and D 1.3.

Figure 2: Relation between Deliverables 1.2 and 1.3: D 1.2 defines the quality characteristics that are relevant for
evolvability and robustness, while D 1.3 contributes the definition of metrics, and D1.4 and 1.5 will propose initial
weighting schemes to reflect different priorities between quality characteristics

1.4 APPROACH

This section describes the approach we took to achieve the goals of Deliverable 1.3.

The goals of D1.3 can be summarized as follows: Mapping metrics to the quality attributes defined in D1.2

The approach taken in task 1.3 is to identify metrics for the quality attributes defined in D1.2, and to update the
quality characteristics definition from D1.2, where necessary. To this end, we used collection sheets to
systematically collect and map input from the different partners (see Appendix C: Metric Collection Sheets). To
do this, we defined and collected specific collection sheets that the partners filled in (see Appendix). In addition,
we found that it is necessary to assess aspects of the processes that are used in the F/OSS projects, as well
as to assess the documentation quality. To this end, we developed assessment frameworks (see Section 7 and
Section 8) that enhance the metrics identified so far. Finally, task 1.3 defines issues for advanced models.

The next step in evolving the QualOSS quality model is to define indicators for the different quality
characteristics that combine and interpret the different metrics of a quality characteristic into a single metric
value, as well as derive initial weights for the characteristics; this will be done in the remainder of WP1 (see
Section 10).

9

Robustness Evolvability

Stability /
Reliability

Analyzability
Readability

Testability

Safety /
Security

Standard
Adherence

Maintainability
Changeability

Community

Maturity

D 1.2 D 1.3

Quality
Attributes

Metrics
Metric Metric Metric... ...

Static weights

Dynamic weights
Dependent on purpose

QualOSS D1.3

Deliverable ID: D1.3

Page : 10 of 121

Version: 1.0
Date: Jun 22, 07

1.5 STRUCTURE OF THE DELIVERABLE

This document presents initial quality models related to Evolvability and Robustness. First, we reiterate the
definition of each characteristic found in D1.2. Second, we present data sources and metrics that help assess
leaf characteristic in the two trees defining evolvability and robustness. Furthermore, we also propose
interpretations for aggregating several related measurements into a meaningful assessment of a characteristic.
For example, how to aggregate coupling and cyclomatic complexity to propose a meaningful information that
characterizes “Product Complexity”. At this moment, Aggregation methods are either based on intuition or on
information found in the scientific literature.

The rest of the deliverable is structured as follows:

Section 1 presents the motivation of task 1.3, and explains how the tasks in workpackage 1 collaborate to
produce the initial QualOSS model.

Section 2 presents the revised definitions of evolvability and robustness characteristic, based on D1.2 and the
insights gained during task 1.3

Sections 3 to 6 present the initial version of the prototype QualOSS model; that is, they describe how we intend
to measure the quality characteristics defined in Section 2. Thereby, Sections 3 and 4 focus on the product and
community aspects of robustness, respectively. Sections 5 and 6 describes product and community aspects of
evolvability, respectively.

Section 7 presents the initial version of a process assessment framework for F/OSS projects. During task 1.2,
we identified the need to better understand an F/OSS project's processes to assess its maturity. Process
assessment aspects impact both evolvability (e.g., in terms of how a project deals with sustaining its
community) as well as robustness (e.g., in terms of how a project deals with resolving reliability problems).

Section 8 presents the initial version of a documentation assessment framework. As identified during task 1.2,
there are no readily available metrics to assess the quality of documentation available for an F/OSS product.

Section 9 lists issues identified so far that need to be addressed by the advanced models.

Section 10 contains the interpretation model that will allow to interpret metric values with respect to the quality
characteristic they intend to measure. This also includes aggregation issues.

Finally, Section 11 presents conclusions and future steps.

The Appendix contains the detailed tables of identified metrics.

Keywords: Free / Open Source Software, quality modelling, process assessment, project assessment, product
assessment, evolvability, robustness

10

QualOSS D1.3

Deliverable ID: D1.3

Page : 11 of 121

Version: 1.0
Date: Jun 22, 07

2. QUALOSS PROTOTYPE MODEL

This section presents the refined definition of each the quality characteristics found in D1.2, based on the
insights we gained during task 1.3.

We note that compare to D1.2, the tree of characteristics slightly changed, for evolvability, the “Coverage”
characteristic under “Usefulness of User Documentation” would be too hard to measure reliability hence it is
replaced with “Understandability”. Understandability of Documentation influences the usability of a software
product and and can therefore influence the rate of adoption of the product.

Furthermore, also in the hierarchy defining evolvability, the quality “Popularization Support Availability” is added
under Support availability”. This new characteristic is less technical and includes the notion of having groups of
facilitators that promote the product, search for donation, etc. A F/OSS foundation is a type of group that helps
with popularization.

Beside pointing to interesting analyses on a single data occurrence such as source code analyses, it is also
possible to propose historical analyses of data found in the list of data sources inventoried in D1.1. Historical
analyses can be specified in relation to a single type of data, to several data types found in a single data
source, or to data types found in several data sources. Examples of historical analysis possible for each
Respective scenarios are lines of code evolution over several product distributions, the average time range and
number of comments taken to resolve an issue, the average number of exchange over issue tracking system,
mailing lists and version control to solve an issue.

In addition to product-centric metrics, we widened the scope of QualOSS due to our interactions with other
E.C. projects, namely, FLOSSMETRICS and SQO-OSS. In particular, we started development on an
assessment framework for software development processes of open source projects to better assess project
maturity. In addition, we are creating an extensive framework of development processes and best practices to
use in open source so as to have a broad framework against which to evaluate actual F/OSS projects.
Furthermore, we studied the possibility to development evaluation method for non-trivial data such as user
documentation. Initial results of these efforts are presented in Sections 7 and 8.

2.1 EVOLVABILITY

We define evolvability as the general ability of a F/OSS project to deliver useful products (or product updates)
over an extended period of time. Also the ability of such products to remain useful for an extended period of
time. In order to be able to decompose this wide notion into smaller criteria that can be studied separately, we
consider products and their related F/OSS community independently from each other. Figure 3 shows the
resulting structure.

11

QualOSS D1.3

Deliverable ID: D1.3

Page : 12 of 121

Version: 1.0
Date: Jun 22, 07

Figure 3: Prototype QualOSS evolvability model

• Product evolvability: The ability of a product to be corrected, adapted and extended over time, according to
the needs of its users.

12

Usefulness of
Code

Documentation

Actuality

Developer community fluctuation

Coverage

Product Evolvability

Usefulness of User
Documentation

Actuality

Coverage

Maintainability

Product complexity

Architecture flexibility

Product buildability

Portability
Platform specificity

Standard compliance

Community
Evolvability

Product Adoption

User community size

Mission Criticality

License permissiveness

Developer
community liveness

Developer community size

Developer community activity

Developer community heterogeneity

Process maturity

Established process coverage

Process automation

Support availability

Modification support availability

Deployment support availability

Interoperability
Runtime interoperability

Passive interoperability

Compliance to
Standards

Popularization

Backward support

QualOSS D1.3

Deliverable ID: D1.3

Page : 13 of 121

Version: 1.0
Date: Jun 22, 07

• Usefulness of code documentation: The extent to which the source code documentation
(documentation explicitly describing the product's internals) is useful when performing corrections,
adaptations or extensions to the product.

• Actuality: The extent to which the code documentation describes the current version of the
source code as opposite to describing older versions of it.

• Coverage: The ratio between size of documented code and general product code size.
• Code documentation standard compliance: The degree to which a product complies with

published standards relevant to code documentation.
• Usefulness of user documentation: The extent to which the product's user/administrator oriented

documentation is useful when deploying and using the product.
• Actuality: The extent to which the user documentation describes the current version of the

product functionality as opposite to describing outdated functionality.
• Coverage: The ratio between the number of documented product features and the general

number of features offered by the product.
• Internationalization: Availability of the documentation in various natural languages.
• user documentation standard compliance: The degree to which a product complies with

published standards relevant to documentation.
• Maintainability: The amount of effort required by a programmer or team of programmers with no

previous knowledge of the product, to understand its code to the point that successful modifications
are possible. IEEE: The ease with which a software system or component can be modified to
correct faults, improve performance or other attributes, or adapt to a changed environment.

• Product complexity: (IEEE) The degree to which a system or component has a design or
implementation that is difficult to understand and verify.

• Architecture flexibility: The ability of the product's architecture of being applied to new
problems. (IEEE) The ease with which a system or component can be modified for use in
applications or environments other than those for which it was specifically designed. (Note:
Architecture flexibility includes the notion of extensibility, which is defined as the possibility
of extending the architecture through external code modules (add-ons, plug-ins) that do not
require modifying the program's core. (IEEE) The ease with which a system or component
can be modified to increase its storage or functional capacity.

• Product Buildability: (IEEE) The degree to which a system or component can be rebuild
after modifications to the source.

• Fixability: The ease with which a software product can be fixed.
• Maintainability standard compliance: The degree to which a product complies with

published standards relevant to maintainability.
• Interoperability:The degree to which a software product can interoperate with other software product

either live or based on input/output data.
• Runtime Interoperability: Interoperability with other software products while in operation.
• Passive Interoperability: Interoperability with other software products based on output data

generated by the software product or based on the capacity of the software product to read
various data types and formats.

• Portability: (IEEE) The ease with which a system or component can be transferred from one
hardware or software environment to another.

• Platform specificity: The degree to which a product's code is specific to a particular
hardware or software environment.

• Portability Standard compliance: The degree to which a product complies with published
standards relevant to portability.

• Compliance to standards: The degree to which a product complies with published standards that are
relevant to its functionality. Important note: for measurement purposes, this criterion is applied
separately to various relevant software artefacts, i.e., source code, documentation, etc.

• Community evolvability: The likelihood that a F/OSS community remains able to maintain the product or
products it develops over an extended period of time.

• Product adoption: The extent to which a F/OSS product is actively used by individuals and
organizations around the world.

• User community size: The number of users (individuals and organizations) that use a
F/OSS product worldwide.

• Strategic importance: (aka. Mission criticality) The extent to which users of a product apply
it to mission-critical tasks. Alternatively, the degree to which users of a product depend on
the product for reaching their business goals.

13

QualOSS D1.3

Deliverable ID: D1.3

Page : 14 of 121

Version: 1.0
Date: Jun 22, 07

• License permissiveness: The amount of freedom allowed to product users by the product's
licence.

• Developer community liveness: The amount of work put by a development community into the
creation and further development of a software product over a certain period of time.

• Developer community size: The number of individuals and organizations actively
contributing to a product's development over a certain period of time.

• Developer community activity: The general number and size of the contributions made to a
product's development over a certain period of time.

• Developer community heterogeneity: The degree to which different types of developers
(e.g., individuals vs. organizations, for-profit vs. non-for-profit organizations, hobbyists vs.
paid professionals) are present in a developer community.

• Fluctuation: The rate movement of people into, and out of a developer community over time
• Process maturity: The ability of a developer community to achieve development related goals by

following established processes. Additionally, the level to which the processes followed by a
development community are able to guarantee that certain desired product characteristics will be
present in the product.

• Established process coverage: The degree to which the development activities a
community performs are covered by established, repeatable processes that are widely
known and accepted by community members. Development processes that have been
observed to be well established in existing development communities include project
management (i.e., milestone and roadmap definition, release management including
coherence numbering schemes for releases), quality assurance (i.e., bug tracking, different
forms of code and code change inspections) and requirements engineering (i.e., product
improvement proposals.)

• Process automation: The degree to which established processes are partially or completely
automated though the use of software tools. Examples of software tools commonly used by
development communities to automate software processes include bug tracking systems,
build farms and build daemons, and automated test suites.

• Popularization: The availability of support related to popularize a software product. The
assumption is that a mature project is attempting to popularize its product.

• Support availability: The ease with which a user can engage experienced individuals or
organizations (on a for-profit or voluntary basis) to perform tasks that make it possible to use a
product for a particular purpose.

• Modification support availability: The availability of support related to performing specific
modifications to a software product.

• Deployment support:The availability of support related to solving problems arising from the
deployment and use of a software product.

• Backward Support: The availability of support related to older version of a software product
still in use.

2.2 ROBUSTNESS

In general, robustness may be studied in a priori or posteriori fashion. A priori analyses study a particular
version of the product of interest by searching for weaknesses currently in it that may yield to poor robustness.
Posteriori analyses study the software product history to check for old cases where the software exhibited poor
robustness and if the community provide adequate solution to solve the causes in timely manner. Figure 4
shows the resulting structure.

14

QualOSS D1.3

Deliverable ID: D1.3

Page : 15 of 121

Version: 1.0
Date: Jun 22, 07

Figure 4: Prototype QualOSS robustness model

• Product robustness: (IEEE) The degree to which a system or component can function correctly in the
presence of invalid inputs or stressful environmental conditions.

• Reliability: (IEEE) The ability of a system or component to perform its required functions under
stated conditions for a specified period of time.

• Failure tolerance (ISO 9126: maturity): The capability of the software product to avoid failure
as a result of faults in the software.

• Fault tolerance (ISO 9126): The capability of the software product to maintain a specified
level of performance in cases of software faults or of infringement of its specified interface.

• Recoverability (ISO9126): The capability of the software product to re-establish a specified
level of performance and recover the data directly affected in the case of a failure.

• Availability (IEEE): The degree to which a system or component is operational and
accessible when required for use.

• Maturity:The degree to which the general, long-term objectives set for a product have been reached
by the current implementation.

• Age: The time span over which a product has been developed.
• Activity on stable development branch: The number and size of the contributions made to a

product's stable development branch over a certain period of time. High activity on a branch
declared to be stable can be a sign of low product maturity.

• Continuity: The regularity with which community contributions have been made to the a
product or in relation to the product over its lifespan.

• Security (ISO 12207): The capability of the software product to protect information and data so that
unauthorised persons or systems cannot read or modify them and authorised persons or systems
are not denied access to them. This includes measures and controls that ensure confidentiality,
integrity, and availability of IS assets including hardware, software, firmware, and information being
processed, stored, and communicated (CNSS, 2006).

• Confidentiality: The degree to which a system prevents unauthorized disclosure of
information; that is, provides assurance that information is not disclosed to unauthorized
individuals, processes, or devices. (CNSS, 2006)

15

Reaction time

Product
Robustness

Reliability
Fault tolerance

Recoverability

Security

Availability

Integrity

Age

Maturity

Continuity

Activity on stable development branch

Community
Robustness

Maturity of security
process

Compliance to standards/best practices

Reaction time

Maturity of
reliability process

Inclusion of preventive / reactive actions

Compliance to standards/best practices

Inclusion of preventive / reactive actions

Failure tolerance

Compliance to standards

Confidentiality

QualOSS D1.3

Deliverable ID: D1.3

Page : 16 of 121

Version: 1.0
Date: Jun 22, 07

• Integrity (ISO): The degree to which a system or component is able to protect the accuracy
and completeness of information and processing methods. This includes preventing
unauthorised modification or destruction of information (CNSS, 2006).

• Compliance to SECURITY standards: The degree to which a product complies with
published security standards that are relevant to its functionality.

• Community robustness: The ability of the established processes in a community to guarantee the delivery of
robust products.

• Maturity of security process: The degree to which a development community has established
processes dedicated to guarantee the security of delivered products. Also, the degree to which a
community reacts effectively and timely when a security defect is found in a released product.

• Compliance: The degree to which the processes and procedures dealing with security
adhere to best practices and security standards

• Reaction time: The amount of time that is typically required for resolving security-related
issues

• Inclusion of preventive/reactive actions: The degree to which the community commits to
actions aimed at preventing security problems

• Maturity of reliability process: The degree to which a development community has established
processes dedicated to guarantee that delivered products are free of critical defects (defects that
prevent the operation of the product under common operation conditions). Also, the degree to which
a community reacts effectively and timely when a critical defect is found in a released product.

• Compliance: The degree to which the processes and procedures dealing with reliability
adhere to best practices and security standards

• Reaction time: The amount of time that is typically required for resolving reliability-related
issues

• Inclusion of preventive/reactive actions: The degree to which the community commits to
actions aimed at preventing reliability problems

16

QualOSS D1.3

Deliverable ID: D1.3

Page : 17 of 121

Version: 1.0
Date: Jun 22, 07

3. EVOLVABILITY: PRODUCT QUALITY MODEL

This section details the metrics identified for measuring the product aspects of the quality model for evolvability.
For details, please refer to the appendix. In this and in the following sections, metrics are described using the
following format:

Level Measurement Tool

Basic or
Advanced

(UniqueName) All basic metrics receive a unique name
Brief explanation of the metric

Artefact: the artefacts / documents needed to compute the metric

Rationale: A brief rationale why this metric influences the corresponding quality
characteristic

Contact: The project member or organization to contact for more details on the
metric

Either tool
names for
computing the
metrics, or
“Manual”

3.1 USEFULNESS OF CODE DOCUMENTATION

Evaluation of quality of documentation is a focus of Section 8.

3.1.1 Actuality

Level Measurement Tool

Basic APIDocumentationDateSourceFilesDateDifference
Difference between the date of the generated technical API documentation
from documentation comments (“javadoc”, “docstring”) and the date of the
originating source files.

Source: Package Distribution Lists, Version Control Repositories, Websites
Artefact: API documentation Files, Source Files

Rationale: If the generated API documentation is older than the source files, the
chance is high that this API documentation is no more in line with the source
code.

Contact: FFM (CETIC)

Manual

Basic APIDocumentationDateProjectReleaseDateDifference

Difference between the date of the generated technical API documentation
from documentation comments (“javadoc”, “docstring”) and the date of the
product release.

Source: Package Distribution Lists, Version Control Repositories, Websites
Artefact: API Documentation Files

Rationale: If the generated API documentation is far older than the product
release date, the chance is high that this API documentation is no more in line
with the real content of the product release.

Contact: FFM (CETIC)

Manual

17

QualOSS D1.3

Deliverable ID: D1.3

Page : 18 of 121

Version: 1.0
Date: Jun 22, 07

Level Measurement Tool

Advanced APICommentsParameterCompatibilityPercentage
Ratio between the number of incompatibilities between input/output declared
in documentation comments (“javadoc”, “docstring”) and actual input/output
declared in the code element declaration and the total number of input/output
declared in the code element declarations

Source: Package Distribution Lists, Version Control Repositories
Artefact: Source Files

Rationale: If there is a lot of incompatibilities, the chance is high that the
documentation comments (and then the API Documentation Files) are no more
in line with the actual source code.

Contact: FFM (CETIC)

Manual

Advanced OutdatedCodeDocumentationPercentage
Ratio between the number of lines of comments commenting outdated code
and the total number of lines of comments

Source: Package Distribution Lists, Version Control Repositories
Artefact: Source Files

Rationale: If there is a lot of lines of old code that are commented, this means
that these lines of code should be removed, because these are outdated
comments. The average ratio comment to code is then lower than originally
calculated.

Contact: FFM (CETIC)

Manual

Advanced InadequateCodeDocumentationPercentage

Ratio between the number of lines of comments not related to the environing
code and the total number of lines of comments

Source: Package Distribution Lists, Version Control Repositories
Artefact: Source Files

Rationale: If there is a lot of comment lines that are not in line with the
environing code, the comments are not commenting actual code.

Contact: FFM (CETIC)

Manual

3.1.2 Coverage

Level Measurement Tool

Basic SourceCodeCommentsPercentage

Ratio between the total number of lines of comments and the total number of
lines of code in the package distribution list.

Source: Package Distribution Lists, Version Control Repositories
Artefact: Source Files

Rationale: If there is a high number of lines of comments, the coverage is
higher.

Contact: FFM (CETIC)

Squal
GNATmetric

18

QualOSS D1.3

Deliverable ID: D1.3

Page : 19 of 121

Version: 1.0
Date: Jun 22, 07

Level Measurement Tool

Advanced SufficientlyCommentedFilesPercentage

SufficientlyCommentedPackagesPercentage

SufficientlyCommentedClassesPercentage

SufficientlyCommentedMethodsPercentage
Ratio between the number of specific code elements (such as files, packages,
classes or methods) whose ratio comment to code is above a threshold and the
total number of those specific code elements.

Source: Package Distribution Lists, Version Control Repositories
Artefact: Source Files: Packages, Classes, Methods

Rationale: The more commented are the code elements, the higher is the code
documentation coverage.

Contact: FFM (CETIC)

Squal
GNATmetric

Advanced APICommentsForPublicClassesPercentage

APICommentsForPublicMethodsPercentage
Ratio between the number of public classes and public methods (or functions)
having documentation comments (“javadoc”, “docstring”) and the total number
of public classes and public methods (or functions)

Source: Package Distribution Lists, Version Control Repositories
Artefact: Source Files: Packages, Classes, Methods

Rationale: The more documentation comments there are, the higher is the
code documentation coverage.

Contact: FFM (CETIC)

Squal
GNATmetric

3.1.3 Code Documentation Standard Compliance

Level Measurement Tool

Basic APICommentsErrorsAverage

Ratio between the number of errors encountered in documentation comments
respecting the standards and the total number of documentation comments.

Source: Package Distribution Lists, Version Control Repositories
Artefact: Source Files: Lines of Comments

Rationale: If the ratio is low, then the code documentation is more likely to
comply with the standards of the documentation comments.

Contact: FFM (CETIC)

Checkstyle

19

QualOSS D1.3

Deliverable ID: D1.3

Page : 20 of 121

Version: 1.0
Date: Jun 22, 07

Level Measurement Tool

Advanced APIDocumentationStandardCompliance
Ratio between the sum of the scores related to the quality of the documented
API and the maximum score possible for this documented API.

Source: Package Distribution Lists, Version Control Repositories, Websites
Artefact: API Documentation Files

Rationale: See section 8

Contact: FFM (CETIC)

Manual

3.2 USEFULNESS OF USER DOCUMENTATION

Evaluation of quality of documentation is a focus of Section 8.

3.2.1 Actuality

Level Measurement Tool

Basic UserDocumentationDateProjectReleaseDateDifference
Difference between the date of the user documentation and the date of the
project release.

Source: Package Distribution Lists, Version Control Repositories, Websites
Artefact: User Documentation Files, Project Release

Rationale: If the user documentation is far older than the product release date,
the chance is high that this user documentation is no more in line with the real
content of the product release.

Contact: FFM (CETIC)

Manual

3.2.2 Coverage

Level Measurement Tool

Basic UserDocumentationAPIDocumentationCommonAbstractionsPercentage
Ratio between the total number of abstractions found in the user
documentation in common with the abstractions found in the technical API
documentation and the total number of abstractions found in the technical API
documentation of the product release.

Source: Package Distribution Lists, Version Control Repositories, Websites
Artefact: User Documentation Files, API Documentation Files

Rationale: If the number of abstractions found in the user documentation that
are in common with the abstractions found in the API documentation is low, the
chance is high that the user documentation covers a few features offered by
the product release.

Contact: FFM (CETIC)

Squal
GNATmetric

20

QualOSS D1.3

Deliverable ID: D1.3

Page : 21 of 121

Version: 1.0
Date: Jun 22, 07

3.2.3 Internationalization

Level Measurement Tool

Basic NumberOfUserDocumentationTranslations

Number of languages in which the User's documentation is correctly translated.

Source: Package Distribution Lists, Version Control Repositories, Websites
Artefact: User Documentation Files

Rationale: If there is a high number of languages in which the User's
documentation is translated, the product will have a wider audience.

Contact: FFM (CETIC)

Manual

3.2.4 User Documentation Standard Compliance

Level Measurement Tool

Basic no basic metrics identified so far; the documentation assessment framework
(Section 8) addresses this question

Manual

Advanced UserDocumentationStandardCompliance
Ratio between the sum of the scores related to the quality of the User
Documentation Files and the maximum score possible for the User
Documentation Files.

Source: Package Distribution Lists, Version Control Repositories, Websites
Artefact: User Documentation Files

Rationale: See section 8

Contact: FFM (CETIC)

Manual

3.3 MAINTAINABILITY

3.3.1 Product Complexity

Level Measurement Tool

Basic FileCyclomaticComplexityAverage

PackageCyclomaticComplexityAverage

ClassCyclomaticComplexityAverage

MethodCyclomaticComplexityAverage
Ratio between the sum of the cyclomatic complexity of code elements such as
files, packages, classes and methods and the total number of lines of code of
these code elements.

Source: Package Distribution Lists, Version Control Repositories
Artefact: Source Files: Packages, Classes, Methods

Rationale: If the ratio is low, the product is not so complex to understand, and
hence to maintain.

Contact: FFM (CETIC)

Squal
GNATmetric

21

QualOSS D1.3

Deliverable ID: D1.3

Page : 22 of 121

Version: 1.0
Date: Jun 22, 07

Level Measurement Tool

Basic HotFilesPercentage

HotPackagesPercentage

HotClassesPercentage

HotMethodsPercentage
Ratio between the number of specific code elements (such as files, packages,
classes or methods) whose cyclomatic complexities are above a threshold and
the total number of those specific code elements.

Source: Package Distribution Lists, Version Control Repositories
Artefact: Source Files: Packages, Classes, Methods

Rationale: If this ratio is low, this means that the number of code elements to
focus on is low, the product release is then easier to maintain.

Contact: FFM (CETIC)

Squal
GNATmetric

Basic MethodUnderstandabilityAverage
Average ratio between the cyclomatic complexity of methods and their
percentage of comments.

Source: Package Distribution Lists, Version Control Repositories
Artefact: Source Files: Methods

Rationale: If this ratio is low, this means that complex methods are well
documented, then the product release is not so hard to maintain.

Contact: FFM (CETIC)

Squal
GNATmetric

Basic MethodLinesOfCodeAverage

Average number of lines of code per method.

Source: Package Distribution Lists, Version Control Repositories
Artefact: Source Files: Methods

Rationale: If the number of lines of code per method is high, this means that
the methods are quite long, and hence less easy to grasp.

Contact: FFM (CETIC)

Squal
GNATmetric

Basic ClassNumberOfMethodsAverage

Average number of methods per class

Source: Package Distribution Lists, Version Control Repositories
Artefact: Source Files: Methods, Classes

Rationale: If the number of methods per class is high, this means that the
interfaces of the classes are rather difficult to grasp.

Contact: FFM (CETIC)

Squal
GNATmetric

22

QualOSS D1.3

Deliverable ID: D1.3

Page : 23 of 121

Version: 1.0
Date: Jun 22, 07

Level Measurement Tool

Advanced ClassDepthOfInheritanceAverage
Average depth of inheritance tree for a class

Source: Package Distribution Lists, Version Control Repositories
Artefact: Source Files: Classes

Rationale: If average depth of inheritance tree for a class is high, this means
that the classes are deep in the inheritance tree. Thus to grasp the behaviour
of a method in these classes, the whole ancestors needs to be mastered.

Contact: FFM (CETIC)

Squal
GNATmetric

Advanced MethodComplexityCouplingAverage

Average ratio between the cyclomatic complexity of methods and their
efferent coupling.

Source: Package Distribution Lists, Version Control Repositories
Artefact: Source Files: Methods

Rationale: If this ratio is high, this means that complex methods does not
require the understanding of the inners of a lot of different concepts, then the
product release is not so hard to maintain.

Contact: FFM (CETIC)

Squal
GNATmetric

3.3.2 Architecture Flexibility

Level Measurement Tool

Basic APIDocumentationExistence

DeveloperDocumentationExistence

Presence of API Documentation Files or Technical Programmer's Guide.

Source: Package Distribution Lists, Version Control Repositories
Artefact: Source Files: Packages

Rationale: If there are API Documentation Files or Technical Programmers
Guide, the application will be easier to extend.

Contact: FFM (CETIC)

Manual

Basic ThirdPartyPlugInPossibility

Existence of third-party plug-ins.

Source: Package Distribution Lists, Version Control Repositories
Artefact: Source Files: Packages

Rationale: If there are third-party plug-ins, the architecture of the application is
clearly extensible.

Contact: FFM (CETIC)

Manual

23

QualOSS D1.3

Deliverable ID: D1.3

Page : 24 of 121

Version: 1.0
Date: Jun 22, 07

Level Measurement Tool

Basic ProductConfigurationFilePossibility
Existence or Use of configuration files and properties (look for usage patterns)
to enable/disable functionalities.

Source: Package Distribution Lists, Version Control Repositories
Artefact: Source Files: Packages

Rationale: If there are configuration files, the application has the ability to be
easier tailored to new environments.

Manual

Advanced PackagePrivacyAverage

Average privacy of the packages. The privacy being computed as the ratio
between the number of public methods and the number of private methods of
the packages.

Source: Package Distribution Lists, Version Control Repositories
Artefact: Source Files: Packages, Methods

Rationale: If the average privacy of the packages is high, the original
architecture will be easier reused in new contexts because many functionalities
will be publicly available.

Contact: FFM (CETIC)

Squal

Advanced PackageAbstractnessAverage
Average abstractness of the packages. The abstractness being computed as
the ratio between the number of interfaces or abstract classes and the number
of concrete classes.

Source: Package Distribution Lists, Version Control Repositories
Artefact: Source Files: Packages

Rationale: If the average abstractness is high, it will be easier to add new
functionalities by extending the abstract classes found in the original packages
of the product release.

Contact: FFM (CETIC)

Squal

Advanced PackageAfferentCouplingAverage

Average afferent coupling of the packages in the product release.

Source: Package Distribution Lists, Version Control Repositories
Artefact: Source Files: Packages

Rationale: If the average afferent coupling is high, the packages are heavily
used, the more a package is relied on, the less likely it is to change. The
flexibility of the architecture will then be low if this average is high.

Contact: FFM (CETIC)

Squal

24

QualOSS D1.3

Deliverable ID: D1.3

Page : 25 of 121

Version: 1.0
Date: Jun 22, 07

Level Measurement Tool

Advanced PackageEfferentCouplingAverage
Average efferent coupling of the packages in the product release.

Source: Package Distribution Lists, Version Control Repositories
Artefact: Source Files: Packages

Rationale: If the average efferent coupling is high, the product depends on a lot
of external libraries. The product release is then more difficult to extend.

Contact: FFM (CETIC)

Squal

Advanced PackageInstabilityAverage
Average instability of packages. The instability being computed as the ratio
between the efferent coupling of package and the sum of its efferent and
afferent couplings.

Source: Package Distribution Lists, Version Control Repositories
Artefact: Source Files: Packages

Rationale: If the average instability of the packages is high, the architecture will
be hard to maintain, because a tailoring of a package will make the architecture
unstable, and will generate many cascading changes.

Contact: FFM (CETIC)

Squal

Advanced PackageLackOfCohesionAverage

Average lack of cohesion of the packages

Source: Package Distribution Lists, Version Control Repositories
Artefact: Source Files: Packages

Rationale: If the average cohesion of the packages is low, the product will be
hard to maintain because the product depends on a lot of external libraries. Its
flexibility will be low.

Contact: FFM (CETIC)

Advanced PackageNumberOfCyclesAverage
Average the number of cycles in the packages in the product release.

Source: Package Distribution Lists, Version Control Repositories
Artefact: Source Files: Packages

Rationale: If the ratio is high, there is a lot of cycles per package. The
architecture of the product release is not less flexible because the modification
of one package in a cycle has a potential impact on all the packages involved
in the cycle, hence.

Contact: FFM (CETIC)

Jdepend

25

QualOSS D1.3

Deliverable ID: D1.3

Page : 26 of 121

Version: 1.0
Date: Jun 22, 07

Level Measurement Tool

Advanced PackageArchitecturalAntiPatternAverage
Average number of architectural anti-patterns found per package. Example of
anti-patterns being “Blob”, “Envy”, ...

Source: Package Distribution Lists, Version Control Repositories
Artefact: Source Files: Packages

Rationale: If these anti-patterns are found, the architecture of the application
suffers from drawbacks that reduce its extensibility.

Contact: FFM (CETIC)

Semi-Manual

Advanced APIDocumentationStandardCompliance

DeveloperDocumentationStandardCompliance

Quality of the API Documentation Files or the Technical Programmer's Guide.

Source: Package Distribution Lists, Version Control Repositories
Artefact: Source Files: Packages

Rationale: If the quality of the technical documentation is low, the application
will be more difficult to extend.

Contact: FFM (CETIC)

Semi-Manual

Advanced PackageNumberOfGoodDesignPatternsAverage

Average number of used of good architecture design patterns per package

Source: Package Distribution Lists, Version Control Repositories
Artefact: Source Files: Packages

Rationale: In the same sense as the detection of anti-patterns, detecting good
design patterns, eases the possible extension of the application.

Contact: FFM (CETIC)

Semi-Manual

3.3.3 Fixability

Level Measurement Tool

Basic IssueOpenToCloseTimeAverage

Average time needed to close an issue. That is, the average difference
between the date of the creation of the issue and the first date where a status
such as CLOSE, FIXED, WONTFIX or SOLVED is assigned to this issue.

Source: Issue Tracking Systems
Artefact: Issue

Rationale: If the average time is low, this means that the correction of a bug is
easy. This product release seems then easier to maintain.

Contact: FFM (CETIC)

Semi-Manual

26

QualOSS D1.3

Deliverable ID: D1.3

Page : 27 of 121

Version: 1.0
Date: Jun 22, 07

3.3.4 Maintainability Standard compliance

Level Measurement Tool

Basic ProductNamingConventionErrorsPercentage

Ratio between the number of code style errors related to naming conventions
and the total number of code style errors

Source: Package Distribution Lists
Artefact: Source Files

Rationale: If the ratio is high, the product release is not standard compliant.

Contact: FFM (CETIC)

Semi-manual

Advanced ProductMaintainabilityStandardCompliance

Ratio between the number of design patterns effectively used and the total
number of design patterns recommended

Source: Package Distribution Lists
Artefact: Source Files

Rationale: If the ratio is low, the product release is not standard compliant.

Contact: FFM (CETIC)

Semi-manual

3.4 INTEROPERABILITY

3.4.1 Runtime Interoperability

Level Measurement Tool

Basic ProductReleaseNumberOfRuntimeExchangeFormats

Total number of formats exchanged at runtime by the application or listed in the
TODO Lists

Source: Package Distribution Lists, Version Control Repositories, Website
Artefact: User Documentation Files, Technical Documentation Files

Rationale: If the number of formats is high, the application will be easier to work
with, hence it is more likely to evolve easily as wanted by the user.

Contact: FFM (CETIC)

Manual

Basic ProductReleaseNumberOfStaticExchangeFormats
Total number of formats exchanged in a static way by the application or listed in
the TODO Lists

Source: Package Distribution Lists, Version Control Repositories, Website
Artefact: User Documentation Files, Technical Documentation Files

Rationale: If the number of formats is high, the application will be more
convenient to work with, hence it is more likely to evolve easily as wanted by
the user.

Contact: FFM (CETIC)

Manual

27

QualOSS D1.3

Deliverable ID: D1.3

Page : 28 of 121

Version: 1.0
Date: Jun 22, 07

Level Measurement Tool

Basic ProductReleaseRuntimeExchangeFormatsRatio
Ratio between the number of exchange formats dealt with at runtime or listed
in the TODO Lists and the number of formats dealt with in a static way

Source: Package Distribution Lists, Version Control Repositories, Website
Artefact: User Documentation Files, Technical Documentation Files

Rationale: If the ratio is low, then the application is less like to evolve easily in
the way wanted by the user.

Manual

Advanced ProductReleaseRuntimeExchangeFormatsCompliance

Ratio between the weighted number of matching exchange formats actually
dealt with by the application at runtime or listed in the TODO Lists and the
weighted number of formats wished by the user at runtime

Source: Package Distribution Lists, Version Control Repositories, Website
Artefact: User Documentation Files, Technical Documentation Files

Rationale: If the ratio is low, then the application is less like to evolve easily in
the way wanted by the user.

Manual

3.4.2 Passive Interoperability

Level Measurement Tool

Basic DocumentationInteroperabilityPresence

User Documentation Files and/or Technical Documentation Files have sections
about Interoperability.

Source: Package Distribution Lists, Version Control Repositories, Websites
Artefact: User Documentation Files, Technical Documentation Files

Rationale: If yes, the product is more likely to evolve easily.

Contact: FFM (CETIC)

Manual

Basic ProductReleaseNumberOfExchangedFormats

Total number of exchange formats that the application can deal with or that are
listed in the TODO Lists.

Source: Package Distribution Lists, Version Control Repositories, Website
Artefact: User Documentation Files, Technical Documentation Files

Rationale: If there is a low number of exchange formats, the product is less
likely to evolve easily.

Contact: FFM (CETIC)

Manual

28

QualOSS D1.3

Deliverable ID: D1.3

Page : 29 of 121

Version: 1.0
Date: Jun 22, 07

Level Measurement Tool

Basic ProductReleaseNumberOfOpenExchangeFormats
Total number of open exchange formats that the application can deal with or
that are listed in the TODO Lists.

Source: Package Distribution Lists, Version Control Repositories, Website
Artefact: User Documentation Files, Technical Documentation Files

Rationale: If there is a low number of open exchange formats, the product is
less likely to evolve easily.

Contact: FFM (CETIC)

Manual

Basic ProductReleaseNumberOfCommunicatingApplications

Total number of applications that the application can communicate with or that
are listed in the TODO Lists.

Source: Package Distribution Lists, Version Control Repositories, Website
Artefact: User Documentation Files, Technical Documentation Files

Rationale: If there are a few such applications, the product release is less likely
to evolve easily.

Contact: FFM (CETIC)

Manual

Advanced ProductReleaseExchangeFormatsCompliance
Ratio between the weighted number of matching exchange formats actually
dealt with by the application or listed in the TODO Lists and the weighted
number of formats wished by the user

Source: Package Distribution Lists, Version Control Repositories, Website
Artefact: User Documentation Files, Technical Documentation Files

Rationale: If the ratio is low, then the application is less like to evolve easily in
the way wanted by the user.

Contact: FFM (CETIC)

Manual

Advanced ProductReleaseCommunicatingApplicationsCompliance
Ratio between the weighted number of matching application with which the
application actually communicates or that are listed in the TODO Lists and the
weighted number of applications wished by the user

Source: Package Distribution Lists, Version Control Repositories, Website
Artefact: User Documentation Files, Technical Documentation Files

Rationale: If the ratio is low, then the application is less like to evolve easily in
the way wanted by the user

Contact: FFM (CETIC)

Manual

29

QualOSS D1.3

Deliverable ID: D1.3

Page : 30 of 121

Version: 1.0
Date: Jun 22, 07

3.5 PORTABILITY

3.5.1 Platform Specificity

Level Measurement Tool

Basic ProductReleaseHighlyPortableProgrammingLanguageUsed

Used programming language (Portable: Java > Python > Perl, Less protable:
C++ > C)

Source: Package Distribution Lists
Artefact: Source Files

Rationale: It the programming language of the product release is Java, it is
more evolvable than if it is C.

Contact: FFM (CETIC)

Manual

Advanced ProductReleaseUseOfStandardLibrariesPercentage
Ratio between the number of standard libraries used and the total number of
libraries used in the source code of the project release.

Source: Source files in package distribution list

Rationale: If the ratio is high, the product release is not reduced to a platform.

Contact: FFM (CETIC)

Semi-manual

Advanced ProductReleaseUseOfSpecificLibrariesPercentage

Ratio between the number of specific platform libraries used and the total
number of libraries used. Ex: use of OLEDB, SQLServer instead of JDBC

Source: Source files in package distribution list.

Rationale: If the ratio is high, the product release is highly reduced to a
platform.

Contact: FFM (CETIC)

Semi-manual

3.5.2 Portability Standard compliance

Level Measurement Tool

Basic ProductReleaseCodeStyleErrorsAverage
Ratio between the total number of code style errors reported and the total
number of lines of code

Source: Source files in Package Distribution List

Rationale: If the ratio is high, the product release is not standard compliant.

Contact: FFM (CETIC)

Manual

30

QualOSS D1.3

Deliverable ID: D1.3

Page : 31 of 121

Version: 1.0
Date: Jun 22, 07

Level Measurement Tool

Advanced ProductReleaseCodeNamingConventionErrorsPercentage
Ratio between the number of code style errors related to naming conventions
and the total number of code style errors

Source: Source files in Package Distribution List

Rationale: If the ratio is high, the product release is not standard compliant.

Contact: FFM (CETIC)

Semi-manual

Advanced ProductReleaseUsedDesignPatternsPercentage

Ratio between the number of design patterns effectively used and the total
number of design patterns recommended

Source: Source files in package distribution list

Rationale: If the ratio is low, the product release is not standard compliant.

Contact: FFM (CETIC)

Semi-manual

31

QualOSS D1.3

Deliverable ID: D1.3

Page : 32 of 121

Version: 1.0
Date: Jun 22, 07

4. EVOLVABILITY: COMMUNITY QUALITY MODEL

This section details the metrics identified for measuring the community aspects of the quality model for
evolvability. In parts, this is addressed by the process and document assessment frameworks in
Sections 7 and 8.For details on the metrics listed in this section, please refer to the appendix.

4.1 PRODUCT ADOPTION

4.1.1 User Community Size

Level Measurement Tool

Basic (NumOfDevelopers) Number of developers who have made commits.

Source: Version Control Repositories
Artefact: Author
Rationale: Commiters in a project are (generally speaking) also users of this
product. Developers can be identified by their commits.
Contact: DI/ACS (URJC)

CVSAnaly

Basic (NumOfPostersMailingLists) Number of people writing in the several lists of
the project.

Source: Mailing List Archive
Artefact: Original Message ID, Date, Subject
Rationale: Users can be identified because they write messages in Mailing
Lists.
Contact: DI/ACS (URJC)

MLStats

Advanced Number of people writing in forums.

Source: Discussion Forum (accessible via a Web or News server)
Artefact: Name, email of poster
Rationale: Users can be identified because they write messages in forums
Contact: DI/ACS (URJC)

Manual

Advanced Number of people participating in the IRC

Source: IRC log
Artefact: Name, nickname.
Rationale: Users can be identified because they use the IRC.
Contact: DI/ACS (URJC)

Manual

4.1.2 Mission Criticality

Level Measurement Tool

Basic No metrics identified so far.

Advanced

4.1.3 License permissiveness

Level Measurement Tool

Basic (LicenseUsedSourceCode) Type of licenses used by the project source code

Source: Product Distribution List
Artefact: Source Code
Rationale: Source code files, usually, contain information regarding to license

Manual

32

QualOSS D1.3

Deliverable ID: D1.3

Page : 33 of 121

Version: 1.0
Date: Jun 22, 07

used in the project.
Contact: DI/ACS (URJC)

Basic (LicenseUsedDocumentation) Type of licenses used by the project
documentation

Source: Documentation files, information in web site and even Mailing List
Archive, Discussion Forum, Website or IRC Logs.
Rationale: Documentation has its own license.
Contact: DI/ACS (URJC)

Manual

Advanced No Advanced Metrics identified so far

4.2 DEVELOPER COMMUNITY LIVELINESS

4.2.1 Developer Community Size

Level Measurement Tool

Basic (TotalNumOfDevelopers) Number of developers who have made changes in
the project in the whole life of the project.

Source: Version Control Repositories
Artefact: Author
Rationale: Total number of developers is necessary to measure how big is the
community.
Contact: DI/ACS (URJC)

CVSAnaly

Basic (PastNumOfDevelopers) Number of developers who had made commits in
the project in an exact date in the past.

Source: Version Control Repositories
Artefact: Author
Rationale: Number of developers working in the past is useful to know how big
was the community in the past.
Contact: DI/ACS (URJC)

Basic (EvolutionOfNumOfDevelopers) Evolution of number of developers along the
life of the project.

Source: Version Control Repositories
Artefact: Author
Rationale: Evolution of num of developers is extremely useful to know the
evolution of the community of developers.
Contact: DI/ACS (URJC)

Basic (TotalNumOfNonActiveDevelopers) Number of non-active developers

Source: Version Control Repositories
Artefact: Author
Rationale: Knowing number of non-active developers (we can consider as non-
active developer a person who has not made commits in more than six months)
nowadays for a project is useful to guess how big is this group of non-active
developers regarding the total.
Contact: DI/ACS (URJC)

CVSAnaly

Basic (TotalNumOfNonActiveDevelopersInPast) Number of non-active developers
in an exact date in the past.

Source: Version Control Repositories
Artefact: Author

33

QualOSS D1.3

Deliverable ID: D1.3

Page : 34 of 121

Version: 1.0
Date: Jun 22, 07

Rationale: How large the non-active developers group was in an exact date in
the past.
Contact: DI/ACS (URJC)

Basic (EvolutionNumOfNonActiveDevelopers) Evolution of number of non-active
developers.

Source: Version Control Repositories
Artefact: Author
Rationale: Its own name is auto-explicative.
Contact: DI/ACS (URJC)

Basic (TotalNumOfActiveDevelopers) Number of active developers at the present
time.

Source: Version Control Repositories
Artefact: Author
Rationale: How big the group of active developers is.
Contact: DI/ACS (URJC)

Basic (TotalNumOfActiveDevelopersInPast) Number of active developers in an
exact date in the past.

Source: Version Control Repositories
Artefact: Author
Rationale: How big the group of active developers was.
Contact: DI/ACS (URJC)

Basic (EvolutionNumOfActiveDevelopers) Evolution of active developers

Source: Version Control Repositories
Artefact: Author
Rationale: Its own name is auto-explicative.
Contact: DI/ACS (URJC)

Advanced None

4.2.2 Developer Community Activity

Level Measurement Tool

Basic (NumOfChangesToSource) Number of changes (commits) made in the
source code until now.

Artefact: Comment Log
Source: Version Control Repositories
Rationale: This activity is basic for developers.
Contact: DI/ACS (URJC)

CVSAnaly

Basic (EvolutionOfChangesToSource) Activity of version control systems (number
of commits per month or year, it depends on how big the project is)

Source: Version Control Repositories
Artefact: Historical Analyses specific to Version Control Data
Rationale: Its own name is auto-explicative.
Contact: DI/ACS (URJC)

CVSAnaly

34

QualOSS D1.3

Deliverable ID: D1.3

Page : 35 of 121

Version: 1.0
Date: Jun 22, 07

Level Measurement Tool

Basic (NumOfMessagesOfDevelopers) Developers Mailing list activity. Number of
messages.

Source: Mailing List Archive
Artefact: Original Message ID, Date, Subject
Rationale: Discussions, generally speaking in big projects, are taken in public
mailing lists. For instance, developers take design decisions there.
Contact: DI/ACS (URJC)

MLStats

Basic (EvolutionMessagesOfDevelopers) Evolution in the number of messages
from developers in a mailing list. (Number of messages per month or year, it
depends on how large the mailing lists are.)

Source: Mailing List Archive
Artefact: Historical Analyses specific to Mailing List Archive
Rationale: Its own name is auto-explicative.
Contact: DI/ACS (URJC)

MLStats

Advanced Developers Forum activity. Number of reply posts.

Source: Discussion Forum
Artefact: Thread of answers
Rationale: Instead of using mailing list, developers can use forums.
Contact: DI/ACS (URJC)

No tool

Advanced Evolution in the number of reply posts in developers forums

Source: Discussion Forum
Artefact: Historical Analyses specific to Discussion Forum.
Rationale: Its own name is auto-explicative.
Contact: DI/ACS (URJC)

No tool

Advanced Number of participants in all IRC logs

Source: IRC logs
Artefact: Participants
Rationale: IRC is another place where developers take decisions
Contact: DI/ACS (URJC)

No tool

4.2.3 Developer Community Heterogeneity

Level Measurement Tool

Basic (PeopleOnFiles) Number of people working in the same group of files.

Source: Version Control Repository
Artefact: Set of Files
Rationale: People can work on the same files or in different files. It is better if a
developer is specialized in their own files. If there is a bug, it is likely he/she will
be able to solve it before than others.
Contact: DI/ACS (URJC)

CVSAnaly

Basic (PeopleOnGroupsOfFiles) Number of people working in several group of
files.

Source: Version Control Repository
Artefact: Set of Sets of Files
Rationale: People more specialized is better for the group. CVSAnalY is able to
detect if people are working in a group of files or another group of files. Thus, it
is better to have people specialized, for instance in translation activities.

CVSAnaly

35

QualOSS D1.3

Deliverable ID: D1.3

Page : 36 of 121

Version: 1.0
Date: Jun 22, 07

Contact: DI/ACS (URJC)

Advanced Betweeness: identification of people in the project with a high knowledge of it.

Source: Version Control Repository
Artefact: Author
Rationale: Betweeness is a social network metric. It measures if a person is
between two big social network groups. In this case, it measures if a person is
working on files where people, usually, are working only in one of them. It
means, this persons is important for the project because he/she has a
knowledge of the two groups of files and he can modify them.
Contact: DI/ACS (URJC)

CVSAnaly +
scripts +
Conan

Advanced Community composition: Number of developers, number of companies working
in the project, contributions (in terms of lines of code) by companies

Source: Version Control Repository, Mailing List

Rationale: These are several metrics which must be analysed by several tools
and it is not clear if they are useful for measuring quality. However they are
quite interesting for other companies and individual authors.
Contact: DI/ACS (URJC)

CVSAnaly,
Pyternity and
others

4.2.4 Developer Community Fluctuation

Level Measurement Tool

Basic (DevRegeneration) Developer regeneration

Source: Version Control Repository
Artefact: Comment Log
Rationale: It is necessary to know if there are new developers working on the
project. Developers in FLOSS projects work as a volunteers (generally), thus
because of several causes they decide to leave the project. Hence, new
developers are basic for the project. Regeneration measures if this being made
in a good way, or on the other hand, there are some periods without activity in
the project. (at least in the core group).
Contact: DI/ACS (URJC)

CVSAnaly

Advanced Number of people who are not developers but they provide ideas in developers
mailing lists. Perhaps this is an idea near of regeneration of developers
because these persons in the future could be developers.

Source: Mailing List Archive
Artefact: Name, email of poster
Rationale: There is a process of regeneration in all the projects, some people
leave the project and some others enter as new people. Some of the last one
can be detected and a study of their work in the project, from mailing lists to
commits is useful.
Contact: DI/ACS (URJC)

MLStats +
CVSAnaly

4.3 PROCESS MATURITY

4.3.1 Established Process Coverage

Level Measurement Tool

Advanced The degree to which best practices of F/OSS projects are implemented. This Manual

36

QualOSS D1.3

Deliverable ID: D1.3

Page : 37 of 121

Version: 1.0
Date: Jun 22, 07

metric uses the process assessment framework (see Section 7)

Artefact: User Documentation Files, Project Release, project website

Rationale: Maturity of the community/project is usually perceived in terms of
how well the project implements best practice processes.

Contact: MC/MS (IESE)

Advanced Idea for an advanced metric is to study the political structure of the community,
a great example here is Apache, Mozilla or OpenOffice community.

Artefact: User Documentation Files, Project Release, project website

Rationale: Maturity of the community/project also determined by its
management structure.

Contact: MC/MS (IESE)

Manual

4.3.2 Process Automation

Level Measurement Tool

Basic (ToolSupport) Tools used within the project (Result: List of tools)

Artefact: User Documentation Files, Project Release, project website,
community composition

Rationale: To a certain degree, tool support is necessary for effective
collaboration in F/OSS projects.

Contact: DI/ACS (URJC)

Manual

Advanced Manual methods (looking for administrative structure and tools like BTS, CVS
or similar.

Contact: DI/ACS (URJC)

Manual

4.3.3 Popularization

Level Measurement Tool

Advanced The question of whether organisations and processes exist to foster
popularization of the projects can be assessed using the process assessment
framework (see Section 7)

Artefact: User Documentation Files, Project Release, project website,
community composition

Rationale: Maturity of the community/project is usually perceived in terms of
how well the project implements best practice processes.

Contact: MC/MS (IESE)

Manual

4.4 SUPPORT AVAILABILTY

4.4.1 Modification Support Availability

Level Measurement Tool

Advanced Functionality suggested by users are implemented by developers? How long CVSAnalY +

37

QualOSS D1.3

Deliverable ID: D1.3

Page : 38 of 121

Version: 1.0
Date: Jun 22, 07

does it takes?

Source: Version Control Repository
Artefact: Comment Log

Contact: DI/ACS (URJC)

Mailing list
stats

Advanced How many developers reply messages in mailing lists oriented to users?
Number of developers replying in mailing lists regarding total number of
developers accessing CVS.

Source: Mailing List Archives
Artefact: Thread of answers

Rationale: Measure activity in mailing lists and we can try to look for developers
who participate in these mailing lists in order to provide great information to
normal users.

Contact: DI/ACS (URJC)

MLStats

Advanced Evolution of number of answers in Mailing List

Source: Mailing List Archives
Artefact: Historical Analyses specific to Mailing List Data

Contact: DI/ACS (URJC)

MLStats

Advanced How many developers reply posts in forum to users?
Number of developers replying in forum regarding total number of developers
accessing CVS.

Source: Discussion Forum
Artefact: Thread of answers

Contact: DI/ACS (URJC)

No tool

Advanced Evolution of number of answers in Discussion forum

Source: Discussion Forum
Artefact: Historical Analyses specific to Discussion Forum

Contact: DI/ACS (URJC)

No tool

4.4.2 Deployment Support Availability

Level Measurement Tool

Advanced Deployment functionality suggested by users are implemented by developers?
How long does it takes?

Source: Version Control Repository
Artefact: Comment Log

Contact: DI/ACS (URJC)

CVSAnalY +
Mailing list
stats

Advanced How many developers reply messages in mailing lists oriented to users for
deployment issues?

MLStats

38

QualOSS D1.3

Deliverable ID: D1.3

Page : 39 of 121

Version: 1.0
Date: Jun 22, 07

Source: Mailing List Archives
Artefact: Thread of answers

Contact: DI/ACS (URJC)

Advanced Evolution of number of answers in Mailing List for deployment issues.

Source: Mailing List Archives
Artefact: Historical Analyses specific to Mailing List Data

Contact: DI/ACS (URJC)

MLStats

Advanced How many developers reply posts in forum to users asking for deployment
problems?

Source: Discussion Forum
Artefact: Thread of answers

Contact: DI/ACS (URJC)

No tool

Advanced Evolution of number of answers in Discussion forum for deployment issues.

Source: Discussion Forum
Artefact: Historical Analyses specific to Discussion Forum

Contact: DI/ACS (URJC)

No tool

4.4.3 Backward Support

Level Measurement Tool

Basic No basic Metrics Identified.

Advanced No basic Metrics Identified so far. To be done in D1.5

39

QualOSS D1.3

Deliverable ID: D1.3

Page : 40 of 121

Version: 1.0
Date: Jun 22, 07

5. ROBUSTNESS: PRODUCT QUALITY MODEL

This section details the metrics identified for measuring the product aspects of the quality model for
robustness. For details, please refer to the appendix.

5.1 RELIABILITY

5.1.1 Failure Tolerance

Definition: The capability of the software product to avoid failure and to maintain a specified level of
performance when software faults are executed.

Level Metrics/Analyses Tool

Basic • (TotalIssuesAllReleases) Total Number of issues for all releases
• (ResolvedIssuesAllReleases) Number of issues for all releases whose

resolution flag has been assigned a value
• (RatioResolvedIssuesAllReleases = ResolvedIssuesAllReleases /

TotalIssuesAllReleases) For all releases, ratio of number of issues whose
resolution flag has been assigned a value over total of all issues for all
releases

• (TotalIssuesSubsetReleases) Total number of issues for a specific set of
releases (e.g., a singleton of a single release or a subset of releases within
the same major release number)

• (ResolvedIssuesSubsetReleases) Number of issues for a specific set of
releases whose resolution flag has been assigned a value

• (RatioIssuesSubsetReleases = ResolvedIssuesSubsetReleases /
TotalIssuesSubsetReleases) For a specific set of releases, ratio of number of
issues whose resolution flag has been assigned a value over total number of
issues.

• (CrashIssuesAllReleases) Number of issues for all releases whose title,
description or additional comments containing the word “CRASH”

• (CrashIssuesSubsetReleases) Number of issues for a specific set of
releases whose title, description or additional comments containing the word
“CRASH”

Source: Issue Tracking Database
Artefact: Set of Issues (set may vary depending on the query used, e.g., set of
issues related to a single specific release or to all releases.)

Rationale:
The number of issues and their ratio between solved and still open issues
definitely indicate the level of robustness of the product.
Contact: JCD – CETIC

Manual:
Advanced
Search in
Issue Tracking
System

Basic • (VulAllReleases) Number of all exposures and vulnerabilities for all
releases of a software product

• (SeverVulAllReleases) Number of sever exposures and vulnerabilities for
all releases of a software product (sever = vulnerabilities that could yield to
system crash or control being taken by an outsider)

• (VulSubsetReleases) Number of all exposures and vulnerabilities for a
specific subset of releases of a software product (can be a singleton or
more)

• (SeverVulSubsetReleases) Number of sever exposures and vulnerabilities
for a specific subset of releases of a software product

Source: Security databases
Artefact: Set of Vulnerabilities and Exposures

Manual:
Advanced
Search of NVD

40

QualOSS D1.3

Deliverable ID: D1.3

Page : 41 of 121

Version: 1.0
Date: Jun 22, 07

Level Metrics/Analyses Tool

Rationale:
Vulnerabilities and exposures identified by users identify clearly failures
observed under real usage scenarios
Contact: JCD – CETIC

Basic • (CrashMessage) Number of messages whose subject line contains the
word CRASH.

Source: Discussion Archive
Artefact: Set of Mails

Rationale:
Some FOSS projects do not use ITS and instead use mailing lists as a mean of
communication between community members. In such cases, failures are
reported by emails.
Contact: JCD – CETIC

Manual:
Search of
pages with
discussion
archive

Advanced Analysis to detect potential runtime failures: deadlocks, memory leaks, illegal
memory accesses (array out of bound, dangling pointers, double free), ...

Source: Distributions List
Artefact:
• Executable files of a single specific release or version OR
• Source files of a single specific release or version

Rationale:
Potential runtime errors lead to an unstable state which often leads to failure.

Contact: JCD – CETIC

Valgrind,
GNATstack,
GNATmem,
GNATcheck,
Jlint, ...

Advanced Analysis of error handling in source code

Source: Distributions List
Artefact: Source files of a single specific release or version

Rationale:
if exception are not handle properly in the code, it may lead to failure

Contact: JCD – CETIC

Augmented
JavaAnalyzer

Advanced List of Environments on which a FOSS distribution release was tested as
described in documentation

Source: Distributions List
Artefact: Documentation Files

Rationale:
Argument: The more environments the product was tested on, the more reliable
it is likely to be on this environment)
Contact: JCD – CETIC

Manual

Advanced Test coverage: percentage of classes, methods, basic block covered by tests

Source: Distributions List
Artefact:
Executable files of a single specific release or version OR

Emma, GCOV

41

QualOSS D1.3

Deliverable ID: D1.3

Page : 42 of 121

Version: 1.0
Date: Jun 22, 07

Level Metrics/Analyses Tool

Source files of a single specific release or version

Rationale:
The more tests cover the code, the more are failures likely to be identified
during testing and therefore addressed before release.
Contact: JCD – CETIC

Advanced Run full test suite on executables and collect test log then determine the
number of software failures in test log (Analysis for crash or unexpected test
failures evidences in log). Possibility to directly analyse logs of nightly builts if
available.

Source: Distributions List
Artefact: Test Suite AND/OR Nightly-built test logs of a single release

Rationale:
If tests show to much of an evidence of lack of robustness then that is bad;
however, a certain number of failure shows that the test suite is good.
Contact: JCD – CETIC

Manual
(automation of
test script
execution)

Advanced Historical variation of number of empty catch bloc, bad use of throws (and of
potential runtime error) in software product within the same major release.

Source: Historical Analyses specific to Product Distribution
Artefact: Source Files of a set of releases

Rationale:
Argument: steady improvement in error checking over time show dedication by
developers to improve robustness
Contact: JCD – CETIC

To build

Advanced Historical variation of code coverage obtained by testing.

Source: Historical Analyses specific to Product Distribution
Artefact: Source Files + Test Scripts for a set of releases (most likely children of
a major release)

Rationale:
A steady improvement and then a maintained high code coverage by tests
shows high level of dedication by testers to maintain and improve robustness.
Contact: JCD – CETIC

Test Coverage
Tools +
Historical
Analysis of test
coverage
results

Advanced • (IssuesResolvedNotReopenAllReleases) Number of issues for all releases
whose resolution flag has been assigned a value and where Status has not
been set to REOPEN afterward

• (IssuesResolvedNotReopenSubsetReleases) Number of issues for a specific
set of releases whose resolution flag has been assigned a value and where
Status has not been set to REOPEN afterward

Source: Issue Tracking Database
Artefact: Set of Issues (set may vary depending on the query used, e.g., set of
issues related to a single specific release or to all releases.)

Rationale:
The number of issues and their ratio between solved and still open issues
definitely indicate the level of robustness of the product.
Contact: JCD – CETIC

Manual:
Advanced
Search in
Issue Tracking
System

42

QualOSS D1.3

Deliverable ID: D1.3

Page : 43 of 121

Version: 1.0
Date: Jun 22, 07

Level Metrics/Analyses Tool

Advanced Historical variation of issues (alternatively only those containing the word
CRASH.) This curve should fit with the logarithmic function.

Source: Issue Tracking System
Artefact: Historical data on set of issues

Rationale:
Logarithmic decrease in number of failures reported indicate a good trend in
relation to improving robustness.
Contact: JCD – CETIC

Historical
analysis of
issue tracking
database

Advanced Historical variation of issues (alternatively only those containing the word
CRASH.) This curve should fit with the logarithmic function.
Number of undetected defects left in specific version as predicted by statistical
analysis of full history of issues

Source: Issue Tracking System
Artefact: Historical data on set of issues

Rationale:
statistical prediction based on the past often yield a good indicator for the
future.
Contact: JCD – CETIC

Manual:
Advanced
Search of
Issue Tracking
System +
Manual

Advanced Number of messages whose content body contains the word CRASH

Source: Discussion Archive
Artefact: Set of Mails

Rationale:
Some FOSS projects do not use ITS and instead use mailing lists as a mean of
communication for the community members hence failures are reported by
emails. The equivalent basic metric only searches for CRASH in title however
that may not be sufficient and the body of the email may also need to be
searched. (unfortunately, when done by hand, this requires searching message
by message)

Contact: JCD – CETIC

To build

Advanced Number of defect discovered during code review
(This metrics assumes that a source code review process is explicitly described
as part of the verification process and that recording of review results is
required)

Source: Textual Documents
Artefact: Project Website

Rationale:
Code review has shown to be one of the most efficient mechanism to discover
defects in code)

Contact: JCD – CETIC

Manual

Advanced • Number of vulnerabilities with patches proposed as compared to all
vulnerabilities

Manual:
Advanced

43

QualOSS D1.3

Deliverable ID: D1.3

Page : 44 of 121

Version: 1.0
Date: Jun 22, 07

Level Metrics/Analyses Tool

• Average time between vulnerabilities posted and patch provided

Source: Security databases
Artefact: Set of Vulnerabilities and Exposures

Rationale:
Risk of vulnerabilities alleviated if patch exists. Moreover this risk decreases as
patches are made available in a timely manner.

Contact: JCD – CETIC

Search of NVD

Advanced (The analysis below is maybe more related to Community Robustness Process)
Verify that test and other QA tools e.g., styles checkers, are ran automatically
when committing changes to the version control repository.
Source: Version Control Repository Configuration
Artefact: Version Control Configuration

Rationale:
Applying QA checks before granting a commit improves the quality of the code
and will help avoid failures in the long run.
Contact: JCD – CETIC

To build or
Manual

5.1.2 Fault / Error Tolerance

Definition: The capability of the software product to avoid failures and to maintain a specified level of
performance in cases of infringement of its specified interface.

Level Measurement Tool

Advanced Check for Code/SQL injection (Additional code check related to fault tolerance
will be identified)
Source: Distributions List
Artefact: Source Files

Rationale:
Injection are cases of malicious infringement to the specified interface
Contact: JCD – CETIC

LAPSE,
JavaAnalyzer

Advanced Methods/Classes that catch generic exceptions.
Source: Distributions List
Artefact: Source or Executable Files

Rationale:
catching generic exception make it much harder to react appropriately to go
from unstable back to a stable state of execution
Contact: JCD – CETIC

LAPSE,
JavaAnalyzer

Advanced Check User-Interface libraries used
Source: Distributions List
Artefact: Source or Executable Files

Rationale:
Some UI are more fault tolerant than other, e.g., such as java GUI is fault
tolerant, in cases where exceptions are raised, the UI usually stays up and
running only dumping stack trace on background console
Contact: JCD – CETIC

LAPSE,
JavaAnalyzer

44

QualOSS D1.3

Deliverable ID: D1.3

Page : 45 of 121

Version: 1.0
Date: Jun 22, 07

Level Measurement Tool

Advanced Check that test for Code and SQL injection exist
Source: Distributions List
Artefact: Test Files

Rationale:
If test cases exist for injection, it is likely to be identified before releases)
Contact: JCD – CETIC

Manual

Advanced Installation, Administration, and or User documentation explain the environment
and scope in which the product was tested and remains functional even in case
of some failures.
Source: Distributions List
Artefact: Documentation Files

Rationale:
If the user is informed of the framework to stay in, he is likely to be less
frustrated when crashes occur due to uses outside the foreseen scope.
Contact: JCD – CETIC

Manual

5.1.3 Recoverability

Level Measurement Tool

Basic • (TotalIssuesAllReleases) Total Number of issues for all releases
• (RecoverIssuesAllReleases) Number of issues for all releases containing

RECOVER in the title, description or additional comments
• (RatioRecoverIssuesAllReleases = RecoverIssuesAllReleases /

TotalIssuesAllReleases) For all releases, ratio of number of issues containing
RECOVER in the title, description or additional comments over total number
of all issues

• (TotalIssuesSubsetReleases) Total number of issues for a specific set of
releases (e.g., a singleton of a single release or a subset of releases within
the same major release number)

• (RecoverIssuesSubsetReleases) Number of issues for a specific set of
releases containing RECOVER in the title, description or additional
comments

• (RatioRecoverIssuesSubsetReleases = RecoverIssuesSubsetReleases /
TotalIssuesSubsetReleases) For a specific set of releases, ratio of number of
issues containing RECOVER in the title, description or additional comments
over total number of issues.

Source: Issue tracking database
Artefact: Set of Issues

Rationale:
Recoverability issues reported in bug tracking system are highly likely to use
the words recovered, recoverable, unrecoverable, ...
Contact: JCD – CETIC

Manual:
Advanced
Search of
Issue Tracking
System

Advanced Software patterns related to recoverability are present in the source code, for
example, presence of a thread that wakes up periodically to auto-save data
Source: Distributions List
Artefact: Source Files

To build

45

QualOSS D1.3

Deliverable ID: D1.3

Page : 46 of 121

Version: 1.0
Date: Jun 22, 07

Level Measurement Tool

Rationale:
If patterns related to recoverability are found in the code, it is likely that the
product has some degree of recoverability.
Contact: JCD – CETIC

Advanced Verify that test script or test procedure tests the software product for
recoverability, for example, by bringing down the software application and then
starting it again to verify that data could be recovered
Source: Distributions List or Version Control Repository
Artefact: Test Files

Rationale:
If some tests actually check for recoverability, it is more likely that the product
has the intend to provide a recoverability feature)
Contact: JCD – CETIC

Manual

Advanced User Documentation has content dedicated to Recoverability (for example,
section on recoverability mentions how to activate and customize data
recoverability for the software product or how to install it to improve
recoverability)
Source: Distribution List
Artefact: Documentation Files

Rationale:
If the documentation addresses recoverability, it is more likely that the product
has the intend to provide a recoverability feature)
Contact: JCD – CETIC

Manual

5.1.4 Availability

Availability (IEEE): The degree to which a system or component is operational and accessible when required
for use.

Level Measurement Tool

Basic • (TotalIssuesAllReleases) Total Number of issues for all releases
• (AvailIssuesAllReleases) Number of issues for all releases containing

AVAILABILITY or ACCESS in the title, description or additional comments
• (RatioAvailIssuesAllReleases = AvailIssuesAllReleases /

TotalIssuesAllReleases) For all releases, ratio of number of issues containing
AVAILABILITY or ACCESS in the title, description or additional comments
over total number of all issues

• (TotalIssuesSubsetReleases) Total number of issues for a specific set of
releases (e.g., a singleton of a single release or a subset of releases within
the same major release number)

• (AvailIssuesSubsetReleases) Number of issues for a specific set of
releases containing AVAILABILITY or ACCESS in the title, description or
additional comments

• (RatioAvailIssuesSubsetReleases = AvailIssuesSubsetReleases /
TotalIssuesSubsetReleases) For a specific set of releases, ratio of number of
issues containing AVAILABILITY or ACCESS in the title, description or
additional comments over total number of issues.

Source: Issue Tracking Database
Artefact: Set of Issues

Advanced
Search Issue
tracking
database

46

QualOSS D1.3

Deliverable ID: D1.3

Page : 47 of 121

Version: 1.0
Date: Jun 22, 07

Level Measurement Tool

Rationale:
Availability issues reported in bug tracking system are highly likely to use the
words availability, access
(note: some seach tools perform matching on word root hence available is a
match however, based on some tests too many hits are returned when
matching available so they must be ignored)
Contact: JCD – CETIC

Advanced Product is build on libraries that have proven track record regarding availability
Source: Distributions List
Artefact: Executable Files

Rationale:
Software using existing libraries that have a trac record for their way of
managing high availability are also likely to have a high level of availability.
Contact: JCD – CETIC

To build

Advanced Patterns showing the ability to handle and manage multiple client connections
or multi tasking, for example, proper use of multi threading or processing,
Potential use of a queue scheduling and management system for system with
high demand, Presence of a separate subcomponent dedicated to the
scheduling of processes (or threads).
Source: Distributions List
Artefact: Source Files

Rationale:
High availability should be dealt with explicitly and clearly in the code.
Contact: JCD – CETIC

To build

Advanced Test script contains stress tests to assess the availability of the software
product before releases.
Source: Distributions List
Artefact: Test Files

Rationale:
If the product is put under stress, load testing it is more likely to address
availability.
Contact: JCD – CETIC

To build or
Manual

5.2 MATURITY

5.2.1 Age

Definition: The time span over which a product has been developed.

Level Measurement Tool

Basic (FirstFOSSAge) Age of the first stable distribution release in FOSS (as
compared to present time)
Source: Distributions List OR Website
Artefact: Single Packaged Release OR Webpages (listing releases)

Rationale:
Directly linked not need for rational
Contact: JCD – CETIC

Manual

47

QualOSS D1.3

Deliverable ID: D1.3

Page : 48 of 121

Version: 1.0
Date: Jun 22, 07

Level Measurement Tool

Basic (FirstSourceAge) Age of the oldest source file of the first stable release in the
Version Control Repository (as compare to present time)
Source: Distributions List
Artefact: Source Files

Rationale:
Alternate mean to compute age.
Contact: JCD – CETIC

Manual

Basic (NonFOSSAge) Age of the software product from its first closed source version
(as compare to present time) (In case, the software product existed in closed
source prior to its FOSS release)
Source: Website
Artefact: Webpages

Rationale:
Some product existed under a proprietary licence and close source prior to
being released. It is an important information to take into account when
determining the age of a product.
Contact: JCD – CETIC

Manual

5.2.2 Continuity

Definition: The regularity and intensity with which the product or information related to the product was created
or modified over the product's lifespan.

Level Measurement Tool

Basic • (TotalCommitAllRelease) Number of Commits for all releases
• (TotalCommitSubsetRelease) Number of Commits for a specific set of

releases (e.g. all minor releases under a specific major release or even just a
singleton set with a single release)

• (TotalLOCCommitAllRelease) Number of lines of code committed for all
releases.

• (TotalLOCCommitSubsetRelease) Number of lines of code committed for
a specific set of releases

Source: Version Control Repository
Artefact: Set of Commits and Set of Change set

Rationale:
The number of commit and the quantity of changes in general as well as
targeted to specific releases can be an indirect approximation of the continuity
of effort put in the product.
Contact: JCD – CETIC

CVSAnalY /
Version
Control
Repository
(VCR)

Basic • (TotalMajorRelease) Number of Major Releases
• (TotalAllReleases) Number of stable releases (all, major and minor)
• (TotalMajorOverAge = TotalMajorRelease / FOSSAge) Number of Major

Releases over age of existence in FOSS
• (TotalAllReleasesOverAge = TotalAllReleases / FOSSAge) Number of

stable releases (all, major and minor) over age of existence in FOSS

Source: Version Control Repository or Website
Artefact: Tagged Snapshot in Version Control Repository OR Webpages listing

CVSAnalY /
OR
Manual:
Search
Website

48

QualOSS D1.3

Deliverable ID: D1.3

Page : 49 of 121

Version: 1.0
Date: Jun 22, 07

Level Measurement Tool

the Packaged Releases.

Rationale:
All these measurements approximate the continuity in the development effort.
Contact: JCD – CETIC

Basic • (TotalMajorPerYear) Number of Major Releases per year
• (TotalAllReleasesPerYear) Number of stable releases (all major and minor)

per year (or per trimester)

Source: Version Control Repository or Website
Artefact: Tagged Snapshot in Version Control Repository OR Webpages listing
the Packaged Releases.

Rationale:
The historical analysis of number of releases over a period of time is the best
indicator of continuity related to effort development.
Contact: JCD – CETIC

Manual +
CVSAnaly

Basic • (TotalBook) Number of books published about the software product
• (TotalBookPerYear) Number of books on the software product published

per year

Source: Publication Database
Artefact: Set of Books

Rationale:
The presence of books shows high degree of commitment from the community
especially when studied over a time period.
Contact: JCD – CETIC

Search Book
on
Amazon.com

Basic
(COULD BE MOVE ELSEWHERE)
• (TotalSciArt) Number of scientific article published related to the FOSS

software product (not limited to article studying the project but also research
innivation implemented in the product, e.g. gcc research)

• (TotalSciArtPerYear)Number of scientific article published related to the
FOSS software product per year

Source: Publication Database
Artefact: Set of Articles OR Set of Bibliographies

Rationale:
The presence of research article indicates that innovation is likely to be
implemented in the project and to continuously generate improvement effort in
the product.
Contact: JCD – CETIC

Tool: Search
on
(http://liinwww.i
ra.uka.de/bibli
ography/)

Advanced For the first 6 metrics below, the acceptable variation must be defined.
• Historical variation of commits per month for all releases
• Historical variation of commits for a specific release per month
• Historical variation of commits for a specific set of releases (e.g. all minor

releases under a specific major release) per month
• Historical variation of lines of code committed for all releases per month
• Historical variation of lines of code committed for a specific release per

month

CVSAnaly +
historical
statistical
analysis of
Version
Control
Repository

49

QualOSS D1.3

Deliverable ID: D1.3

Page : 50 of 121

Version: 1.0
Date: Jun 22, 07

Level Measurement Tool

• Historical variation of lines of code committed for a specific set of releases
(e.g. all minor releases under a specific major release) per month

Source: Version Control Repository
Artefact: Set of Commits (per month)

Rationale:
Historical study of community contribution shows a continuous effort in
improving the product.
Contact: JCD – CETIC

5.2.3 Activity on stable development branch

Definition: The number and size of the contributions made to a product's stable development branch over a
certain period of time. High activity on a branch declared to be stable can be a sign of low product maturity.

Level Measurement Tool

Basic (TotalSubsetReleases) Number of children releases within a selected
release/version number.
Source: Website
Artefact: Webpages listing Set of Distributions

Rationale:
The number of sub releases is directly related to the number of activity within a
stable branch
Contact: JCD – CETIC

Manual:
Search
Website

Basic (TotalSubsetReleasesPerYear) Number of children releases under a selected
release/version number per year
Source: Website
Artefact: Webpages listing Set of Distributions (per year)

Rationale:
Release activity over time period is a good indicator of the level of stability of a
release
Contact: JCD – CETIC

Manual:
Search
Website

Basic (TotalCommitAllReleases) Number of commits performed for all releases
containing a given prefix in their tag (assuming that children releases share a
common prefix with their parent release)
Source: Version Control Repository
Artefact: Tags in VCR

Rationale:
Analysis of activity in the version control is a direct indication of product stability.
Contact: JCD – CETIC

CVSAnaly

Basic (TotalVulAllReleases) Number of vulnerabilities and exposures in NVD for all
releases of a software product
Source: Security Database
Artefact: Set of Vulnerabilities and Exposures

Rationale:
Identification of vulnerabilities or exposures in a stable branch requires actions
hence directly participate to the level of activities in relation to the branch.

Manual:
Advanced
Search of NVD

50

QualOSS D1.3

Deliverable ID: D1.3

Page : 51 of 121

Version: 1.0
Date: Jun 22, 07

Level Measurement Tool

Contact: JCD – CETIC

Advanced • Number of issues reported for all children releases of a selected release
• Number of issues whose resolution flag show an action took place vs. all

issues reported for a single selected release
• Number of issues whose resolution flag show an action took place vs. all

issues reported for all children releases of a selected release.

NOTE: A resolution flag that indicates is, for example, FIX where as WONTFIX
or INVAL shows that no real action on the product took place in response to the
issue report.

Source: Issue Tracking Database
Artefact: Set of Issues

Rationale:
Issue reporting is also a indirect indicator regarding activity on stable branches
Contact: JCD – CETIC

Manual:
Advanced
Search of
Issue Tracking
System

Advanced • Number of issues reported for all children releases under a selected release
per year

• Number of issues per year whose resolution flag show an action took place
vs. all issues reported for a single selected release

• Number of issues per year whose resolution flag show an action took place
vs. all issues reported for all children releases under a selected release

NOTE: A resolution flag that indicates is, for example, FIX where as WONTFIX
or INVAL shows that no real action on the product took place in response to the
issue report.

Source: Issue Tracking Database
Artefact: Set of Issues (per year)

Rationale:
More advanced studies of data provided in issue tracking system can help
identify finer level of activities in a specific branch .
Contact: JCD – CETIC

Manual:
Advanced
Search of
Issue Tracking
System

Advanced Historical variation, on a monthly basis, of the number of commits performed for
all releases containing a given prefix in their tag (assuming that children
releases share a common prefix with their parent release). This curve should fit
with the logarithmic function.
Source: Version Control Repository
Artefact: Tags in VCR

Rationale:
It is expected that a specific release has a decreasing level of activity over time.
Contact: JCD – CETIC

CVSAnaly +
Manual

Advanced Number of vulnerabilities and exposures in NVD for a specific subset of
releases of a software product (for example all children release under 1.*)
Source: Security databases
Artefact: Set of Vulnerabilities and Exposures

Rationale:
More advanced studies of data provided in security databases can help identify
finer level of activities in a specific branch.

Manual:
Advanced
Search of NVD

51

QualOSS D1.3

Deliverable ID: D1.3

Page : 52 of 121

Version: 1.0
Date: Jun 22, 07

Level Measurement Tool

Contact: JCD – CETIC

Advanced Historical variation of number of vulnerabilities and exposures in NVD for a
specific proper subset of releases of a software product. (This curve should fit
with the logarithmic function)
Source: Security databases
Artefact: Set of Vulnerabilities and Exposures (over time)

Rationale:
It is expected that a specific release has a decreasing level of vulnerabilities
reported over time.
Contact: JCD – CETIC

Manual:
Advanced
Search of NVD

5.3 SECURITY

5.3.1 Confidentiality

Definition: The degree to which a system prevents unauthorized disclosure of information; that is, provides
assurance that information is not disclosed to unauthorized individuals, processes, or devices. (CNSS, 2006)

Level Measurement Tool

Basic • (TotalIssuesAllReleases) Total Number of issues for all releases
• (ConfidIssuesAllReleases) Number of issues for all releases containing

AUTHENTICATION AUTHORIZATION or ACCESS CONTROL in the title,
description or additional comments

• (RatioConfidIssuesAllReleases = ConfidIssuesAllReleases /
TotalIssuesAllReleases) For all releases, ratio of number of issues containing
AUTHENTICATION AUTHORIZATION or ACCESS CONTROL in the title,
description or additional comments over total number of all issues

• (TotalIssuesSubsetReleases) Total number of issues for a specific set of
releases (e.g., a singleton of a single release or a subset of releases within
the same major release number)

• (ConfidIssuesSubsetReleases) Number of issues for a specific set of
releases containing AUTHENTICATION AUTHORIZATION or ACCESS
CONTROL in the title, description or additional comments

• (RatioConfidIssuesSubsetReleases = ConfidIssuesSubsetReleases /
TotalIssuesSubsetReleases) For a specific set of releases, ratio of number of
issues containing AUTHENTICATION AUTHORIZATION or ACCESS
CONTROL in the title, description or additional comments over total number
of issues.

Source: Issue Tracking Database
Artefact: Set of Issue Titles and Textual Description

Rationale:
Confidentiality issues reported in bug tracking system are highly likely to use
these words.
Contact: JCD – CETIC

Manual:
Advanced
Search of
Issue Tracking
System

Basic • (SeverVulAllReleases) Number of sever vulnerabilities or exposures for all
releases of a product

Source: Security Databases
Artefact: Set of Vulnerabilities and Exposures

Rationale:

Manual :
Advanced
Search of NVD

52

QualOSS D1.3

Deliverable ID: D1.3

Page : 53 of 121

Version: 1.0
Date: Jun 22, 07

Level Measurement Tool

• raw data can provide overall information as to the expected level of
confidentiality one may expect from the product.

• Argument: Users want to make sure the specific version in use (or to be
integrated) contains literally no known vulnerabilities and exposures

Contact: JCD – CETIC

Advanced Use of renown libraries/framework for authentication, authorization and access
control.
Source: Distributions List
Artefact: Executable Files

Rationale:
A know access control framework simplify the integration the appropriate
confidentiality in a product
Contact: JCD – CETIC

To build

Advanced • Use of appropriate code and pattern to interact with an authentication,
authorization and access control framework

• Use of appropriate code and pattern to encrypt data before streaming it out
of the application. (Argument: On the top of using a framework, the code
must use it properly to avoid confidentiality leakage, for example, information
streamed out of the application are encrypted prior, ...)

Source: Distributions List
Artefact: Source Files

Rationale:
Using existing libraries is not sufficient, they must be used correctly hence the
proper use can be seen in the source code.
Contact: JCD – CETIC

To build

Advanced Test suite contains tests that attempt to gain access to the application or its
data without appropriate rights) (Argument: such test scripts would show that
confidentiality is tested for)
Source: Distributions List
Artefact: Test Files

Rationale:
If there are tests regarding confidentiality then the product is more likely to
provide confidentiality to its users.
Contact: JCD – CETIC

Manual

Advanced • User Documentation explains how the software product handle
authentication, authorization, access control, and encryption.

• Installation Manual explain how to setup the product to guarantee a high
level of confidentiality

Source: Distributions List
Artefact: Documentation Files

Rationale:
Documentation that contains information related to confidentiality shows that
confidentiality is addressed by the software product.
Contact: JCD – CETIC

Manual

53

QualOSS D1.3

Deliverable ID: D1.3

Page : 54 of 121

Version: 1.0
Date: Jun 22, 07

Level Measurement Tool

Advanced • Ratio of sever vulnerabilities with patch vs all for a specific release of the
product

Source: Security Databases
Artefact: Set of Vulnerabilities and Exposures

Rationale:
• raw data can provide overall information as to the expected level of

confidentiality one may expect from the product.
• Argument: Users want to make sure the specific version in use (or to be

integrated) contains literally no known vulnerabilities and exposures

Contact: JCD – CETIC

Manual :
Advanced
Search of NVD

Advanced Verify that patches are provided quickly after the initial report (for example, no
later than a week after initial report)
Source: Security Databases
Artefact: Set of Vulnerabilities and Exposures

Rationale:
Patch created promptly maintain a high confidence from users regarding low
risk of potential intrusion and confidentiality leaks)
Contact: JCD – CETIC

To be build or
Manual

5.3.2 Integrity

Integrity (ISO): The degree to which a system or component is able to protect the accuracy and completeness
of information and processing methods. This includes preventing unauthorised modification or destruction of
information (CNSS, 2006).

Level Measurement Tool

Basic • (TotalIssuesAllReleases) Total Number of issues for all releases
• (IntegriIssuesAllReleases) Number of issues for all releases containing

CORRUPTED or CHECKSUM in the title, description or additional comments
• (RatioIntegriIssuesAllReleases = ConfidIssuesAllReleases /

TotalIssuesAllReleases) For all releases, ratio of number of issues containing
CORRUPTED or CHECKSUM in the title, description or additional comments
over total number of all issues

• (TotalIssuesSubsetReleases) Total number of issues for a specific set of
releases (e.g., a singleton of a single release or a subset of releases within
the same major release number)

• (IntegriIssuesSubsetReleases) Number of issues for a specific set of
releases containing CORRUPTED or CHECKSUM in the title, description or
additional comments

• (RatioIntegriIssuesSubsetReleases = ConfidIssuesSubsetReleases /
TotalIssuesSubsetReleases) For a specific set of releases, ratio of number of
issues containing CORRUPTED or CHECKSUM in the title, description or
additional comments over total number of issues.

Source: Issue Tracking Database
Artefact: Set of Issues title or description text

Rationale:
Confidentiality issues reported in bug tracking system are highly likely to use
these words.
Contact: JCD – CETIC

Manual:
Advanced
Search of
Issue Tracking
System

54

QualOSS D1.3

Deliverable ID: D1.3

Page : 55 of 121

Version: 1.0
Date: Jun 22, 07

Level Measurement Tool

Advanced Use of renown libraries/framework for encryption and digital signature
Source: Distributions List
Artefact: Executable Files

Rationale:
A know access control framework simplify the integration the appropriate code
to implement integrity in a product.
Contact: JCD – CETIC

To build

Advanced Use of appropriate code and pattern to saving and checking data integrity
before streaming it in and out of the application.
Source: Distributions List
Artefact: Source Files

Rationale:
On the top of using a framework, the code must use it properly to guarantee
integrity
Contact: JCD – CETIC

To build

Advanced Test suite contains tests that attempt to corrupt data and to process corrupted
data)
Source: Distributions List
Artefact: Test Files

Rationale:
Such test scripts would show that integrity is tested for hence has more
chances to be address adequately
Contact: JCD – CETIC

Manual

Advanced • Installation Manual explain how to setup the product to guarantee a high
level of integrity

• User Manuel explain to the user how to sign data (Argument: helping the
user sign data show a concern for integrity)

Source: Distributions List
Artefact: Documentation Files

Rationale:
Documentation that contains information related to integrity shows that integrity
is addressed by the software product. For example, how to setup the product to
use digital signature
Contact: JCD – CETIC

Manual

Advanced (not integrity of the product but integrity of the product download)
Product Distribution download packages provide their MD5 or other checksum.
Source: Website
Artefact: Webpages listing distribution releases

Rationale:
Providing a checksum show that the project consider integrity to be a priority
Contact: JCD – CETIC

Manual

55

QualOSS D1.3

Deliverable ID: D1.3

Page : 56 of 121

Version: 1.0
Date: Jun 22, 07

5.3.3 Security Standard compliance

Compliance to security standards: The degree to which a product complies with published security standards
that are relevant to its functionality.

We were unable to identify simple basic metrics to be used in tasks 1.4-1.6. That is, we will not be able to
measure this quality attribute yet.

Level Measurement Tool

Basic No metrics identified

Advanced Are the security framework used to guarantee confidentiality and integrity
renown for following X.509 standard, Kerberos, ...
Source: Distributions List
Artefact: Executable Files

Rationale:
This renown standards have been implemented in libraries. If these libraries are
used it shows a desire to refer to existing security standard rather than have an
ad-hoc solution.
Contact: JCD – CETIC

To build

Advanced (For Server Application) Are the security specifications (confidentiality, integrity)
found in product configuration files written in a renown language for specifying
security policies such as XACML
Source: Distributions List
Artefact: Source Files

Rationale:
The use of a standard security policy configuration indicate a certain level of
standard compliance
Contact: JCD – CETIC

To build or
Manual

Advanced Are documents mentioning that the software product has been used in systems
that are now certified Common Criteria level X (where is must be certified)
Source: Distributions List
Artefact: Documentation Files

Rationale:
If the documentation refers to existing security standard, it show commitment to
include such standard in the product.
Contact: JCD – CETIC

Manual

56

QualOSS D1.3

Deliverable ID: D1.3

Page : 57 of 121

Version: 1.0
Date: Jun 22, 07

6. ROBUSTNESS: COMMUNITY QUALITY MODEL

This section details the metrics identified for measuring the community aspects of the quality model for
evolvability. In parts, this is addressed by the process and document assessment frameworks in
Sections 7 and 8.For details on the metrics listed in this section, please refer to the appendix.

6.1 MATURITY OF SECURITY PROCESSES

6.1.1 Compliance

Level Measurement Tool

Basic No Basis metrics identified

Advanced The degree to which best practices in security processes of F/OSS projects are
implemented. This metric uses the process assessment framework (see
Section 7)

Artefact: User and developer documentation Files, project website, process
guidelines, ...

Rationale: Maturity of the community/project is usually perceived in terms of
how well the project implements best practice processes.

Doceval and
others

Advanced Number of messages in the mailing list about security bug issues.

Source: Mailing List Archive
Artefact: Text content and attachments. Thread of answers.

Contact: DI/ACS (URJC)

MLStats

Advanced Evolution in the number of messages in the mailing list about security bug
issues.

Source: Mailing List Archive
Artefact: Historical Analyses specific to Mailing List Archive

Contact: DI/ACS (URJC)

MLStats

Advanced Developers Forum activity. Number of posts about security issues.

Source: Discussion Forum
Artefact: Text content and attachments. Thread of answers

Contact: DI/ACS (URJC)

To build or
Manual

Advanced Evolution in the number of posts about security issues.

Source: Discussion Forum
Artefact: Historical Analyses specific to Discussion Forum.

Contact: DI/ACS (URJC)

To build or
Manual

Advanced How many messages are in the IRC naming a bug for security issues.

Source: IRC logs
Artefact: Static text content.

Contact: DI/ACS (URJC)

Basic tools like
“grep” and
others

57

QualOSS D1.3

Deliverable ID: D1.3

Page : 58 of 121

Version: 1.0
Date: Jun 22, 07

6.1.2 Reaction Time

Level Measurement Tool

Basic No Basic metrics identified

Advanced Time between a security bug is accepted to be solved and the final commit with
the bug solved to CVS repository.

Sources: Version Control Repository, Issue Tracking Database

Rationale: We need to cross results from Bug Tracking System for security
issues and CVSAnaly (At URJC we do not have yet a tool for measuring BTS).
And not in all cases we will be able to cross these results. It depends on the
use of the BTS and how much information it has.

Contact: DI/ACS (URJC)

To build or
Manual

Advanced We could cross results from Bug Tracking Systems (BTS) security bugs about
security issues and try to guess how long it takes appearing a mailing list
thread about it using the message date and bug date.

Source: Mailing List Archive, Issue Tracking Database

Contact: DI/ACS (URJC)

To build or
Manual

Advanced We could cross results from Bug Tracking Systems (BTS) security bugs and try
to guess how long it takes appearing a forum thread about it using the post
date and bug date.

Source: Discussion Forum, Issue Tracking Database

Contact: DI/ACS (URJC)

To build or
Manual

Advanced We could cross results from Bug Tracking Systems (BTS) security bugs and try
to guess how long it takes appearing a message in the IRC about it using the
irc message date and bug date.

Source: IRC logs, Issue Tracking Database

Contact: DI/ACS (URJC)

To build or
Manual

6.1.3 Inclusion of Preventive/Reactive Actions

Level Measurement Tool

Advanced The degree to which best practices in security processes of F/OSS projects are
implemented. This metric uses the process assessment framework (see
Section 7)

Artefact: User and developer documentation Files, project website, process
guidelines, ...

Rationale: Maturity of the community/project is usually perceived in terms of
how well the project implements best practice processes.

Manual

58

QualOSS D1.3

Deliverable ID: D1.3

Page : 59 of 121

Version: 1.0
Date: Jun 22, 07

Level Measurement Tool

Advanced Number / Percentage of commits related to security problems.

With CVSAnalY we know commits and the files used.

Source: Version Control Repository

Rationale: Perhaps, an idea could be: we need to identify critical files for
security issues and then we can measure commits over these files, but we
need at the beginning to identify these files.

Contact: DI/ACS (URJC)

CVSAnaly and
Manual

6.2 MATURITY OF RELIABILITY PROCESSES

6.2.1 Compliance

Level Measurement Tool

Basic (NumOfBugMessages) Number of messages in the mailing list about bugs. A
basic metric can be obtained crossing number of bugs with the body of
messages. (The problem here is that it is necessary a list of bugs (its names)).

Source: Mailing List Archive
Artefact: Text content and attachments. Thread of answers.
Rationale: If people and developers use mailing list to solve this problems,
everybody can observe the evolution of this bug and its solution.
Contact: DI/ACS (URJC)

MLStats

Basic (EvolutionHistoryBugMessages) Evolution in the number of messages in the
mailing list about bugs. A basic metric can be obtain crossing number of bugs
with the body of messages and then, observe the evolution in Mailing List. (The
problem here is that it is necessary a list of bugs (its names)).

Source: Mailing List Archive
Artefact: Historical Analyses specific to Mailing List Archive
Rationale: Its name is auto-explicative.
Contact: DI/ACS (URJC)

MLStats

Advanced Developers Forum activity. Number of posts about bugs.

Source: Discussion Forum
Artefact: Text content and attachments. Thread of answers
Rationale: Same as above
Contact: DI/ACS (URJC)

To build or
Manual

Advanced Evolution in the number of posts about bugs.

Source: Discussion Forum
Artefact: Historical Analyses specific to Discussion Forum.
Rationale: Same as above
Contact: DI/ACS (URJC)

To build or
Manual

Advanced How many messages are in the IRC naming a bug.

Source: IRC logs
Artefact: Static text content.
Rationale: Same as above
Contact: DI/ACS (URJC)

Basic tools like
“grep” and
others

59

QualOSS D1.3

Deliverable ID: D1.3

Page : 60 of 121

Version: 1.0
Date: Jun 22, 07

6.2.2 Reaction Time

Level Measurement Tool

Advanced Time between a bug is accepted to be solved and the final commit with the bug
solved to CVS repository.

Sources: Version Control Repository, Issue Tracking Database

Rationale: We need to cross results from Bug Tracking System and CVSAnaly
(At URJC we do not have yet a tool for measuring BTS). And not in all cases
we will be able to cross these results. It depends on the use of the BTS and
how much information it has.

Contact: DI/ACS (URJC)

To build or
Manual

Advanced We could cross results from Bug Tracking Systems (BTS) bugs and try to guess
how long it takes appearing a mailing list thread about it using the message
date and bug date.

Source: Mailing List Archive, Issue Tracking Database

Contact: DI/ACS (URJC)

To build or
Manual

Advanced We could cross results from Bug Tracking Systems (BTS) bugs and try to guess
how long it takes appearing a forum thread about it using the post date and bug
date.

Source: Discussion Forum, Issue Tracking Database

Contact: DI/ACS (URJC)

To build or
Manual

Advanced We could cross results from Bug Tracking Systems (BTS) bugs and try to guess
how long it takes appearing a message in the IRC about it using the irc
message date and bug date.

Source: IRC logs, Issue Tracking Database

Contact: DI/ACS (URJC)

To build or
Manual

6.2.3 Inclusion of Preventive/Reactive Actions

Level Measurement Tool

Advanced The degree to which best practices in reliability processes of F/OSS projects
are implemented. This metric uses the process assessment framework (see
Section 7)

Artefact: User and developer documentation Files, project website, process
guidelines, ...

Rationale: Maturity of the community/project is usually perceived in terms of
how well the project implements best practice processes.

Manual

Advanced Number / Percentage of commits related to reliability problems.

With CVSAnalY we know commits and the files used.

Source: Version Control Repository

Contact: DI/ACS (URJC)

CVSAnaly and
Manual

60

QualOSS D1.3

Deliverable ID: D1.3

Page : 61 of 121

Version: 1.0
Date: Jun 22, 07

7. PROCESS ASSESSMENT ASPECTS

The QualOSS quality model was explicitly designed to cover not only product quality but community quality,
i.e., the general ability of a F/OSS community to deliver quality products over an extended period of time.
Although, per definition, community quality is reflected in the resulting product quality, high product quality
alone cannot really guarantee that a community is generally capable, since it is well known that the efforts of
capable and motivated individuals may lead to high product quality for particular instances of a product. So, for
example, the fact that a particular version of a product is especially good does not guarantee that future
versions will be as good, because the degree of commitment of some developers may wane over time.

Experience with standard software development shows that the capability of an organization to consistently
and predictably deliver high quality software is connected with the maturity of their software processes, i.e., the
actual practices used to develop or maintain a software product. During the last 20 years, a number of models
and standard have been created that allow to assess the maturity of an organization's software processes and
provide guidelines to improve such maturity over time.

Although these models have been development with traditional, hierarchically controlled software organizations
in mind, we believe that many of the concepts they use can be applied to F/OSS as well. The main rationale is
that many F/OSS projects actually deliver consistently high quality products over time, and that this fact must
be linked to good practices that are enforced inside the community. For this reason, we decided to study the
possibility of applying existing process maturity models to F/OSS projects. Due to the obvious differences
between traditional software organizations and F/OSS communities, it must be expected that a number of the
practices required by established process maturity models simply do not apply to F/OSS. On the other hand,
many good practices certainly apply and can be found in one form or another in actual F/OSS projects.

Our final aim is to identify this latter set of practices in order to produce a process maturity model for F/OSS
that makes it possible to comprehensively assess the process maturity of a given F/OSS community. Although
this maturity model is not yet complete, we present here the first set of results related to it. These results are
discussed in more detail in the following subsections.

7.1 STATUS AND NEXT STEPS

Currently, we have defined a reference framework for the process assessment that covers all CMMi process
areas relevant to QualOSS, as well as identified assessment levels. However, we have currently not defined an
interpretation model for the assessment framework; that is, a procedure to assign assessment levels to a
specific F/OSS project.

Therefore, the next steps in tasks 1.4 and 1.5 will include to calibrate the process assessment; that is, to define
which practices are required on which level to be able to assign a metric value to each process area.

7.2 A MODEL FOR PROCESS MATURITY: CMMI

The Capability Maturity Model for Software, published in the early 1990's by the Software Engineering Institute
(SEI) at Carnegie Melon University was one of the first, and has been one of the most influential process
maturity models until now. Over the years, the CMM evolved into the so-called CMMI-DEV (Capability Maturity
Mode Integration for Development), which can be considered the current version of the model. From its
preface:

CMMI® (Capability Maturity Model® Integration) is a process improvement maturity model for the
development of products and services. It consists of best practices that address development and
maintenance activities that cover the product lifecycle from conception through delivery and
maintenance.

[...]

The purpose of CMMI for Development is to help organizations improve their development and
maintenance processes for both products and services. CMMI for Development is a collection of best
practices that is generated from the CMMI Framework. 1 The CMMI Framework supports the CMMI

61

QualOSS D1.3

Deliverable ID: D1.3

Page : 62 of 121

Version: 1.0
Date: Jun 22, 07

Product Suite by allowing multiple models, training courses, and appraisal methods to be generated
that support specific areas of interest.

We chose CMMI-DEV as a basis for our F/OSS process maturity model. Reasons for this choice include the
fact that CMMI-DEV is well established and widely used, that it has excellent and freely available
documentation, and that it has a flexible, modular structure that makes it possible to cherry pick interesting
elements (that is, we can use the elements that apply to F/OSS and ignore those that do not apply.) Although
we are using CMMI-DEV as our main process maturity model, the possibility of including elements from other
models such as SPICE [] remains open.

CMMI-DEV is organized in 22 so-called process areas each one covering a different area of the general
software process. Process areas contain goals, which, in turn, are divided into practices. Both goals and
practices are classified in two categories: specific and generic. From the 22 process areas, we have identified
those that may apply to F/OSS projects. Afterwards, we have gone through the goals and practices looking for
evidence of their use in actual F/OSS projects. The rationale of doing this is that if there exists at least one
F/OSS project/community that actually uses a particular practice, it is sensible to ask for the presence of this
practice in other F/OSS projects. Section 7.3 presents the results of this analysis for five different process
areas.

Section 7.4 presents an example of how the results of an assessment may look like, namely, the Python
project was analysed with respect to requirements management.

7.3 EVIDENCE OF PROCESS MATURITY IN F/OSS PROJECTS

As explained above, finding evidence of the use of a particular practice in a F/OSS project tells us that it is
reasonable to look for that same practice in other F/OSS projects. For this reason, we chose a number of
CMMI-DEV process areas and looked for such evidence in well known F/OSS projects. This serves as a form
of validation of the maturity model.

The following sections present the relevant CMMI-DEV process areas, goals (SG or GG for specific or generic
goal) and practices (SP or GP for specific or generic practice). The text in boxes is taken verbatim from CMMI-
DEV, and briefly explains each goal or practice (the reader is invited to refer to CMMI-DEV for more detailed
explanations and examples.) Finally, the text following the boxes presents our collected evidence of the use of
practices in actual F/OSS projects.

7.3.1 Configuration Management

SG 1 Establish Baselines

Baselines of identified work products are established.

SP 1.1 Identify Configuration Items

Identify the configuration items, components, and related work products that will be placed
under configuration management.

Most OSS projects are opened for the whole community, so there isn’t much of a selection
which the community can have access. Most of the project’s files are managed under
configuration management.

SP 1.2 Establish a Configuration Management System

Establish and maintain a configuration management and change management system for
controlling work products.

OSS projects use a version control system to maintain a configuration management and
change management. The tool CVS (Concurrent Version System) is used for version control in
most projects as it satisfies all basic requirements. All versions are kept in a repository and
mechanisms are used to minimize the space consumption. It can handle branches,
information about versions can be given in the change log, symbolic tags can be assigned to
versions. Usually write access to the CVS repository is generously granted such that several

62

QualOSS D1.3

Deliverable ID: D1.3

Page : 63 of 121

Version: 1.0
Date: Jun 22, 07

hundred developers can add new versions to it. Regular patches can also be added to the
repository by the moderators (a person who owns one or more modules). Patches have to be
sent to the moderator, who alone decides whether to apply the change or to reject it.
Moderators are used in Linux. In the OSS projects, versions are almost never used to revert to
an older version. Instead, versions are used as a history trail, describing how a file has
developed by reading the log comments and by comparing versions using the comparison
functionality (which can show the differences between two versions of a file). Most projects are
targeted towards several platforms. OSS projects seem to handle variants by either separating
code into different files or directories, or by using conditional compilation, so all variants can
exist in the same branch. Changes apply either to the whole project, or platform-specific code.

SP 1.3 Create or Release Baselines

Create or release baselines for internal use and for delivery to the customer.

Most OSS projects do not release software in the traditional sense, wrapping up code,
documentation, help files, install scripts and more, turning it into a software packet. They rely
on users themselves or on commercial companies, like Red Hat and others. Few OSS
projects use fixed release dates, and labeling and timing of releases is mostly arbitrary. They
do, however, carry out what can be called internal releases, which are points in time where
they freeze the source code and for which there is a process. When an internal release is
getting nearer, the development branch enters a freeze stage: initially a soft freeze stage
means that new features that break compatibility are discouraged but not forbidden, then a
hard freeze stage, in which any contribution that will change an interface is forbidden. Only
bug fixes are allowed. Finally, when the internal release is made, the code is copied to a new
branch, called stable, where maintenance can be performed if needed. Further development
continues on the development branch, heading for the next internal release. An internal
releases of sufficient quality can be used when creating a traditional release. In the Mozilla
project they use a time-based release schedule. This means that development proceeds until
a certain date, when a release is labeled (called a milestone in Mozilla terms). The milestone
is then used to see what has been achieved. Features and achievements are not planned into
milestones; they only work as a feedback tool.

SG 2 Track and Control Changes

Changes to the work products under configuration management are tracked and controlled.

SP 2.1 Track Change Requests

Track change requests for the configuration items.

In OSS the review of change proposals is not explicit, if there at all. Anyone can propose a
change and often changes are not even proposed before a change implementation is
submitted directly. Change proposals might be prioritized implicitly or explicitly, but an OSS
project cannot assign tasks to developers – everyone works on what he chooses.

Two slightly different processes exist depending on whether contributions have to be sent to a
moderator or if the developer can apply his changes directly to the repository through his write
access. In both cases, however, the overall process is the same: an idea for a change is
conceived, implemented and tested, submitted as a patch or applied directly on the repository,
and then the implementation (and sometimes the change idea itself) is evaluated through
testing, review and discussion.

SP 2.2 Control Configuration Items

Control changes to the configuration items.

The final evaluation may result in the patch being rejected by a moderator or a change to the
repository being reverted by a coordinator. Usually write access to the repository is given only
to trusted developers, so reversion of a change to the repository is rare

63

QualOSS D1.3

Deliverable ID: D1.3

Page : 64 of 121

Version: 1.0
Date: Jun 22, 07

Most change management problems seem to be caught during review. Contributions are often
tested via code reviewing and special run time tests, formal testing is not always used. When
a change has been made, developers sometimes just use the new code. Developers who
have submitted many good patches are more trusted, and their contributions make their way
into the repository more quickly. Accepted contributions show up immediately in the repository.

Even though wish lists and lists of bugs are kept, bugs and change proposals seem to be fixed
somewhat arbitrarily. Changes are kept track of using detailed lists, so that willing users can
test new features. Mail and newsgroups are used to communicate wish lists, bugs, and
changes and to discuss the general development of the project.

7.3.2 Requirements Management

Specific Practices by Goal

SG 1 Manage Requirements

Requirements are managed and inconsistencies with project plans and work products are identified.

SP 1.1 Obtain an Understanding of Requirements

Develop an understanding with the requirements providers on the meaning of the
requirements.

It appears that open software requirements are articulated in a number of ways that are
ultimately expressed, represented, or depicted on the Web. On closer examination,
requirements for open software can appear or be implied within an email message or within a
discussion thread that is captured and/or posted on a project's Web site message board for
open review, elaboration, refutation, or refinement.

These requirements are simply asserted without reference to other documents, sources,
standards, or JAD focus groups--they are requirements because some developers wanted
these capabilities.

SP 1.2 Obtain Commitment to Requirements

Obtain commitment to the requirements from the project participants.

Developing open software requirements is a community building process that must be
institutionalized both within a community and its software informalisms to flourish. In this
regard, the development of requirements for open software is usually not a traditional
requirements engineering process, at least, not yet. It is instead socio-technical process that
entails the development of constructive social relationships, informally negotiated social
agreements, and a commitment to participate through sustained contribution of software
discourse and shared representations. So the Author and/or the Core Group must motivate
and explain why the volunteers should stick to the requirements.

SP 1.3 Manage Requirements Changes

Manage changes to the requirements as they evolve during the project.

Asserted system capabilities are post-hoc requirements characterizing a functional capability
that has already been implemented. Concerned developers justify their requirements through
their provision of the required coding effort to make these capabilities operational. Senior
members or core developers in the community then vote or agree through discussion to
include the asserted capability into the system’s distribution. The historical record may be
there, within the email or message board discussion archive, to document who required what,
where, when, why, and how. However, once asserted, there is generally no further effort
apparent to document, formalize, or substantiate such a capability as a system requirement.

64

QualOSS D1.3

Deliverable ID: D1.3

Page : 65 of 121

Version: 1.0
Date: Jun 22, 07

Asserted capabilities then become invisible or transparent, taken-for-granted requirements
that can be labeled or treated as obvious (i.e., a shared awareness) to those familiar with the
system's development.

SP 1.4 Maintain Bidirectional Traceability of Requirements

Maintain bidirectional traceability among the requirements and work products.

The traceability of the requirements is done using the archives from the mailing list or bulletin
boards. It isn’t common to find evidence or data to indicate the occurrence or documentation
of a requirements elicitation effort arising in an open software development project. However,
finding such evidence would not invalidate the other observations; instead, it would point to a
need to broaden the scope of how software requirements are captured or recorded.

SP 1.5 Identify Inconsistencies Between Project Work and Requirements

Identify inconsistencies between the project plans and work products and the requirements.

Software requirements are validated with respect to the software’s implementation. But the
open software requirements are generally not recorded in a formal SRS document, nor are
these requirements typically cast in a mathematical logic, algebraic, or state transition-based
notational scheme. So the requirements for open software are co-mingled with design,
implementation, and testing descriptions and software artifacts, as well as with user manuals
and usage artifacts (e.g., input data, program invocation scripts). The inconsistencies found
are posted in the mailing list or message board so it can be reviewed and fixed.

Generic Practices by Goal

GG 2 Institutionalize a Managed Process

The process is institutionalized as a managed process.

GP 2.1 Establish an Organizational Policy

Establish and maintain an organizational policy for planning and performing the requirements
management process.

Open software requirements can emerge from the experiences of community participants
through their email and message board discussion forums. These communication messages
in turn give rise to the development of narrative descriptions that more succinctly specify and
condense into a web of discourse about the functional and non-functional requirements of an
open software system. This discourse is rendered in descriptions that can be found in email
and discussion forum archives, on Web pages that populate community Web sites, and in
other informal software descriptions that are posted, hyperlinked, or passively referenced
through the assumed common knowledge that community participants expect their cohorts to
possess.

GP 2.2 Plan the Process

Establish and maintain the plan for performing the requirements management process.

This plan for performing the requirements management process can be part of (or referenced
by) the project plan as described in the Project Planning process area.

GP 2.3 Provide Resources

Provide adequate resources for performing the requirements management process,
developing the work products, and providing the services of the process.

65

QualOSS D1.3

Deliverable ID: D1.3

Page : 66 of 121

Version: 1.0
Date: Jun 22, 07

Tools to support the requirements management process are available in web portals like
SourceForge.org. The most used tool is The Open Source Requirements Management Tool
(OSRMT) and Shore.

GP 2.4 Assign Responsibility

Assign responsibility and authority for performing the process, developing the work products,
and providing the services of the requirements management process.

The tool OSRMT is commonly used to provide services of the requirements management
process.

GP 2.5 Train People

Train the people performing or supporting the requirements management process as
needed.

The archives from the mailing lists and bulletin boards are used as manuals to trains the new
incomers.

GP 2.6 Manage Configurations

Place designated work products of the requirements management process under
appropriate levels of control.

Not found in the OSS Projects

GP 2.7 Identify and Involve Relevant Stakeholders

Identify and involve the relevant stakeholders of the requirements management process as
planned.

OSS deals with Human Resources with a Joining Policy, some explicitly make sure to admit
only contributors from whom high quality submissions can be expected while other projects
are more liberal. The Author and Core Team are always involved motivating and selecting the
ones that might contribute for the project.

GP 2.8 Monitor and Control the Process

Monitor and control the requirements management process against the plan for performing
the process and take appropriate corrective action.

This practice is usually made with the support of OSRMT

GP 2.9 Objectively Evaluate Adherence

Objectively evaluate adherence of the requirements management process against its
process description, standards, and procedures, and address noncompliance.

Not found in the OSS Projects

GP 2.10Review Status with Higher Level Management

Review the activities, status, and results of the requirements management process with
higher level management and resolve issues.

Not found in the OSS Projects

7.3.3 Project Planning

The term project means different things in CMMI and F/OSS. In the case of CMMI, a project, in its simplest
form, is an endeavour with a specific start and end date to accomplish specific objectives. However, in the case

66

QualOSS D1.3

Deliverable ID: D1.3

Page : 67 of 121

Version: 1.0
Date: Jun 22, 07

of F/OSS, the term project is much loser as we commonly refer to project to mean an existing endeavour on a
software product without knowing when this endeavour ends and in fact, hoping that is will live as long as
possible. On the other hand, many F/OSS project use the concept of releases, which resemble much more to
project as defined by CMMI. In turn, in this interpretation of the CMMI project planning process is equated to
F/OSS release planning process.

SG 1 Establish Estimates

Estimates of project planning parameters are established and maintained.

Although most method for estimating the release planning of F/OSS project are not explicitly shared,
many successful F/OSS projects display their plans. In order to come up with such plans, they must
clearly follow a logic historically, it is possible to check whether previous plans held correct. One
usually finds that serious, successful FOSS projects satisfy their plan estimation. However there is little
documented evidence to support that F/OSS projects “establish estimates” for their releases.

SP 1.1 Estimate the Scope of the Project

Establish a top-level work breakdown structure (WBS) to estimate the scope of the project.

Yes/Satisfied. There are distinct cases: 1. initial release of F/OSS project, 2. a major release
between two version and 3. a minor release (within the same major release). Release
Management includes a phase for selecting what request will be implemented in the given
release cycle. (AdaCore has such a procedure in place, in larger F/OSS project, the scope of
a release is also specified in plans. (see the Eclipse projects but also ASF, SFS)

SP 1.2 Establish Estimates of Work Product and Task Attributes

Establish and maintain estimates of the attributes of the work products and tasks.

Partial. ln some F/OSS project, the plan specifies the work products or components to be
implemented along with milestones and dates

SP 1.3 Define Project Life cycle

Define the project lifecycle phases on which to scope the planning effort.

Yes/Satisfied. Some project specifically state that they use an Agile Development
Methodology while in other cases it is implied by the fact that they release early and release
often.

SP 1.4 Determine Estimates of Effort and Cost

Estimate the project effort and cost for the work products and tasks based on estimation
rationale.

Likely. F/OSS Projects that perform SP1.1 likely perform SP1.4 but within the private context
of companies working on the an F/OSS project (hence hard to measure since data will not be
render public by companies)

SG 2 Develop a Project Plan

A project plan is established and maintained as the basis for managing the project.

SP 2.1 Establish the Budget and Schedule

Establish and maintain the project’s budget and schedule.

Likely. F/OSS Projects that perform SP1.1 likely perform SP1.4 but within the private context
of companies working on the an F/OSS project (hence hard to measure since data will not be
render public by companies)

67

QualOSS D1.3

Deliverable ID: D1.3

Page : 68 of 121

Version: 1.0
Date: Jun 22, 07

SP 2.2 Identify Project Risks

Identify and analyze project risks.

No.

SP 2.3 Plan for Data Management

Plan for the management of project data.

Yes. Data are often managed in a forge (SourceForge, Apache, GNU, ...)

SP 2.4 Plan for Project Resources

Plan for necessary resources to perform the project.

No.

SP 2.5 Plan for Needed Knowledge and Skills

Plan for knowledge and skills needed to perform the project.

Often satisfied. Successful F/OSS project attract talented developers who like the challenge to
fix bugs or develop new functionalities

SP 2.6 Plan Stakeholder Involvement

Plan the involvement of identified stakeholders.

Yes. Presence of alpha release, release candidate then stable release (where stakeholders
are involved)

SP 2.7 Establish the Project Plan

Establish and maintain the overall project plan content.

Yes. Milestones are established and published for the next release or new few releases

SG 3 Obtain Commitment to the Plan

Commitments to the project plan are established and maintained.

SP 3.1 Review Plans That Affect the Project

Review all plans that affect the project to understand project commitments.

Likely. Milestones for releases must probably be approved by vote of important community
members before publication

SP 3.2 Reconcile Work and Resource Levels

Reconcile the project plan to reflect available and estimated resources.

No.

SP 3.3 Obtain Plan Commitment

Obtain commitment from relevant stakeholders responsible for performing and supporting
plan execution.

No.

68

QualOSS D1.3

Deliverable ID: D1.3

Page : 69 of 121

Version: 1.0
Date: Jun 22, 07

7.3.4 Validation

In many cases, a project starts from a developer's need hence the solution he develops matches its need.
Later on successful projects gather communities. Then, validation is performed by early adopters and also
during the scope of release management

SG 1 Prepare for Validation

Preparation for validation is conducted.

SP 1.1 Select Products for Validation

Select products and product components to be validated and the validation methods that will
be used for each.

Partial Software validation takes place but what about validation of other work products
(different doc.)

SP 1.2 Establish the Validation Environment

Establish and maintain the environment needed to support validation.

Yes. Specifies the distribution or environment on which product works or has been tested

SP 1.3 Establish Validation Procedures and Criteria

Establish and maintain procedures and criteria for validation.

Likely Partial. Test script for automatic integration testing (however nothing for non-software
products including maintenance, support and training). Larger projects like Apache may create
a sub-project in charge of testing and validation. In some cases, standard test suite may be
used (for example, J2EE test suite, WebSPEC99, ...)

SG 2 Validate Product or Product Components

The product or product components are validated to ensure that they are suitable for use in their
intended operating environment.

SP 2.1 Perform Validation

Perform validation on the selected products and product components.

Little. Overall test results (pass/failed) + Test Logs saved

SP 2.2 Analyze Validation Results

Analyze the results of the validation activities.

No.

7.3.5 Technical Solution

SG 1 Select Product Component Solutions

Product or product component solutions are selected from alternative solutions.

This subgoal does not apply to all release management cycles. In many cases, all product and
component selection have be done initially. However, it is possible to identify certain release cycles
(between certain major releases for example) where alternative must be developed. At the foundation

69

QualOSS D1.3

Deliverable ID: D1.3

Page : 70 of 121

Version: 1.0
Date: Jun 22, 07

or F/OSS project level, it is possible to identify discussion regarding technical issues or find justification
for the selection of certain exiting F/OSS products/libraries to include in a new F/OSS project.

SP 1.1 Develop Alternative Solutions and Selection Criteria

Develop alternative solutions and selection criteria.

Satisfied. At the foundation level, decision to integrate existing project or to reimplement are
found and such decisions are quite strategic, for example, Geronimo was reimplemented to
have a Java AS under the Apache license + for IBM to be involved in a F/OSS AS project
without open sourcing WebSphere. At the level of a single project, the decision to reuse can
also be present, for example, Jakarta Commons for sharing reusable libraries across Jakarta
Sub-projects.

SP 1.2 Select Product Component Solutions

Select the product component solutions that best satisfy the criteria established.

Satisfied. At the initiation of a F/OSS project, the project initiators select technologies and a
language to implement their solution.

SG 2 Develop the Design

Product or product component designs are developed.

The outcome is rarely a single design document. However, during thorough refactoring, re-
engineering, discussion threads on specialize mailing list can usually be identified

SP 2.1 Design the Product or Product Component

Develop a design for the product or product component.

Partial. Complete reimplementation of a F/OSS product sometimes take place due to
discussion among important community members

SP 2.2 Establish a Technical Data Package

Establish and maintain a technical data package.

No.

SP 2.3 Design Interfaces Using Criteria

Design product component interfaces using established criteria.

Yes. Criteria are based on feedback from users

SP 2.4 Perform Make, Buy, or Reuse Analyses

Evaluate whether the product components should be developed, purchased, or reused
based on established criteria.

F/OSS project often use other F/OSS product as part of their implementation. Or they make
sure data exchange with other F/OSS project can be achieved, for example, by implementing
input/output functionality based on open, published standards

70

QualOSS D1.3

Deliverable ID: D1.3

Page : 71 of 121

Version: 1.0
Date: Jun 22, 07

SG 3 Implement the Product Design

Product components, and associated support documentation, are implemented from their designs.

SP 3.1 Implement the Design

Implement the designs of the product components.

Yes. All F/OSS project must provide their code. Per se, code does not necessarily implement
an explicit design since most F/OSS do not create design

SP 3.2 Develop Product Support Documentation

Develop and maintain the end-use documentation.

Yes. All popular F/OSS product have growing set of documentation styles along with tutorials

7.4 SAMPLE ANALYSIS

This section presents a detailed assessment of the project developing the well-known F/OSS Python
programming language, with respect to process area “Requirements Management”.

Specific Practices by Goal

SG 1 Manage Requirements

Requirements are managed and inconsistencies with project plans and work products are identified.

SP 1.1 Obtain an Understanding of Requirements

Develop an understanding with the requirements providers on the meaning of the
requirements.

The Python Programming Language Project has the PEP system to understand and manage
their requirements. PEP stands for Python Enhancement Proposal. A PEP is a design
document providing information to the Python community, or describing a new feature for
Python or its processes or environment. The PEP should provide a concise technical
specification of the feature and a rationale for the feature.

PEPs are intended to be the primary mechanisms for proposing new features, for collecting
community input on an issue, and for documenting the design decisions that have gone into
Python. The PEP author is responsible for building consensus within the community and
documenting dissenting opinions.

The PEPs are well structured and meet the following criteria:

● Clearly and properly stated

● Complete

● Consistent with each other

● Uniquely identified

● Traceable

SP 1.2 Obtain Commitment to Requirements

Obtain commitment to the requirements from the project participants.

All contributions to the PEP need one or more maintainers. This can be an individual, but it is
frequently a group of people such as the XML-SIG. Groups may subdivide maintenance tasks
among themselves. Head maintainers are convenient people the integrators can address if

71

QualOSS D1.3

Deliverable ID: D1.3

Page : 72 of 121

Version: 1.0
Date: Jun 22, 07

they want to resolve specific issues, such as the ones detailed later in this document. They are
responsible for the contributors to stick to the requirements and negotiate commitments.

SP 1.3 Manage Requirements Changes

Manage changes to the requirements as they evolve during the project.

To submit a PEP update depends on several factors, such as the maturity of the PEP, the
preferences of the PEP author, and the nature of the comments. For the early draft stages of
the PEP, it's probably best to send the comments and changes directly to the PEP author. For
more mature, or finished PEPs it is best to submit corrections to the SourceForge bug
manager or better yet, the SourceForge patch manager so that the changes don't get lost. If
the PEP author is a SourceForge developer, the bug/patch is assigned to him, otherwise
assigned to the PEP editor.

PEP authors who are also Python/SourceForge committers can update the PEPs themselves
by using “svn commit” to commit their changes.

SP 1.4 Maintain Bidirectional Traceability of Requirements

Maintain bidirectional traceability among the requirements and work products.

The requirements are well organized in PEP numbers, a little description, the owner and the
status (accepted, final, etc…). Every change or bug fix release has to be linked with the
related PEP number.

SP 1.5 Identify Inconsistencies Between Project Work and Requirements

Identify inconsistencies between the project plans and work products and the requirements.

PEPs consist of two parts, a design document and a reference implementation. The PEP
should be reviewed and accepted before a reference implementation is begun, unless a
reference implementation will aid people in studying the PEP.

PEP authors are responsible for collecting community feedback on a PEP before submitting it
for review. A PEP that has not been discussed on python-list@python.org and/or python-
dev@python.org will not be accepted.

Once the authors have completed a PEP, they must inform the PEP editor that it is ready for
review. PEPs are reviewed by the BDFL and his chosen consultants, who may accept or reject
a PEP or send it back to the author(s) for revision. For a PEP that is pre-determined to be
acceptable the BDFL may also initiate a PEP review, first notifying the PEP author(s) and
giving them a chance to make revisions.

For a PEP to be accepted it must meet certain minimum criteria. It must be a clear and
complete description of the proposed enhancement. The enhancement must represent a net
improvement. The proposed implementation, if applicable, must be solid and must not
complicate the interpreter unduly. Finally, a proposed enhancement must be "pythonic" in
order to be accepted by the BDFL. (However, "pythonic" is an imprecise term; it may be
defined as whatever is acceptable to the BDFL. This logic is intentionally circular.).

Generic Practices by Goal

GG 2 Institutionalize a Managed Process

The process is institutionalized as a managed process.

GP 2.1 Establish an Organizational Policy

Establish and maintain an organizational policy for planning and performing the requirements
management process.

72

mailto:python-dev@python.org
mailto:python-dev@python.org
mailto:python-dev@python.org
mailto:python-dev@python.org
mailto:python-dev@python.org
mailto:python-dev@python.org
mailto:python-list@python.org
mailto:python-list@python.org
mailto:python-list@python.org

QualOSS D1.3

Deliverable ID: D1.3

Page : 73 of 121

Version: 1.0
Date: Jun 22, 07

The BDFL (Benevolent Dictator for Life) is responsible for the whole PEP process and
requirement management.

GP 2.2 Plan the Process

Establish and maintain the plan for performing the requirements management process.

The Python project has a well-structured and detailed on-line documentation to explain how
the PEP process works and how it should be done. The PEP process is also opened for new
improvements by the community, but it has to follow the structured PEP Work Flow and be
accepted by the BDFL.

GP 2.3 Provide Resources

Provide adequate resources for performing the requirements management process,
developing the work products, and providing the services of the process.

PEPs are kept in text-based files in Python Project’s website, and because the PEPs are
maintained as text files in a versioned repository, their revision history is the historical record
of the feature proposal.

Python uses Sourceforge.org tools to facilitate the requirement management: Bug Tracking
and Patch Tracking.

GP 2.4 Assign Responsibility

Assign responsibility and authority for performing the process, developing the work products,
and providing the services of the requirements management process.

The PEP’s owner is the one to assign responsibilities related to his requirement.

GP 2.5 Train People

Train the people performing or supporting the requirements management process as
needed.

The Python Project’s webpage has the manual for new incomers so they can follow the rules
and train on their own. The new people can also communicate with other members in case of
questions and doubts.

GP 2.6 Manage Configurations

Place designated work products of the requirements management process under
appropriate levels of control.

The PEP’s owner controls its requirements or/and change request, and the BDFL controls if
the PEP should be accepted or rejected.

GP 2.7 Identify and Involve Relevant Stakeholders

Identify and involve the relevant stakeholders of the requirements management process as
planned.

The stakeholders involved in the requirements management are: PEP’s owners, BDFL and the
community.

GP 2.8 Monitor and Control the Process

Monitor and control the requirements management process against the plan for performing
the process and take appropriate corrective action.

73

QualOSS D1.3

Deliverable ID: D1.3

Page : 74 of 121

Version: 1.0
Date: Jun 22, 07

The PEP’s author submits his PEP for approval by the BDFL, who will review and decide if the
PEP is consistent or not, if it is not, the PEP is taken back to its author for corrective action so
it can be submitted again and try a new approval.

GP 2.9

Objectively Evaluate Adherence

Objectively evaluate adherence of the requirements management process against its
process description, standards, and procedures, and address noncompliance.

Not found in the Python Project.

GP 2.10Review Status with Higher Level Management

Review the activities, status, and results of the requirements management process with
higher level management and resolve issues.

Not found in the Python Project.

74

QualOSS D1.3

Deliverable ID: D1.3

Page : 75 of 121

Version: 1.0
Date: Jun 22, 07

8. EVALUATION OF DOCUMENTATION IN OPEN SOURCE SOFTWARE

This section describes an initial version of the proposed documentation assessment framework. As identified
during task 1.2, there are no readily available metrics to assess the quality of documentation available for an
F/OSS product.

75

Figure 5: Part of an Open Source Software Documentation for a completeness documentation.

Structure
Completeness

of Documentation

Design
Documentation

Product
Documentation

Manual Users
 Documentation

Online Help or
 Online Documentation

Design Documentation

Sub-system
Documention

Requirements
Documention

Module/Package
Documention

Validation
Documention

System Architecture
 Documention

System Maintenance
Guide

Documentation

Interaction
 Documention

Product Documentation

Issuing Organisation
and authors Name

Release Date

Product Name
and Version

System
Requirements

Contact Details

Installation Guide

Copyright and
Distribution Information

Changelog (List of
fixes and

new features)

Functional
Description

Online Help or
Online Documentation

Manual Users
 Documentation

Introductory Guide

Collaboration Guide

FAQ Manual

Reference Manual

Support Guide

QualOSS D1.3

Deliverable ID: D1.3

Page : 76 of 121

Version: 1.0
Date: Jun 22, 07

In section 8.1, we inventory the different type of documentation and describe them. Later, we will use this list to
propose metrics for measure the completeness of documentation provided by a F/OSS product. In section 8.2,
we present a definition of a document quality based on the IEEE 1063 standard for software user
documentation. This IEEE standard highlights the adequate structure for documentation documents. Finally, in
Section 8.3, we propose a list of criteria for evaluating functional description documents that we have
elaborated.

8.1 DIFFERENT TYPE OF DOCUMENTATION: DOCUMENTATION COMPLETENESS

The completeness of documentation and the adequacy of its content directly contributes to product evolvability
since it will facilitate use by a larger population size. Furthermore, documentation documents are themselves
an integral part of the product and therefore, their own degree of evolvability impacts the evolvability of the
product as a whole. In turn, regarding documentation, we must produce metrics that measure documentation
completeness, documentation adequacy, compliance to documentation standards and documentation
evolvability.

As shown in Figure 3, FOSS present various kinds of documentation. FOSS projects with a high quality
documentation are expected to have different documentation parts listed below. The existence of each part
contributes to the « completeness » of documentation. We will later define more formal metrics to assess the
completeness of documentation, currently, we simply inventory and describe each documentation type below.

8.1.1 Design Documentation

Documents describing the design, implementation and testing of a system are essential if the program is to be
understood and maintained. A Design Document is a description of a software product that a software designer
writes in order to give a software development team an overall guidance of the architecture of the software
project. It usually accompanies an architecture diagram and has pointers to the detailed feature specifications
of smaller pieces of the design. A design document is practically required to coordinate a large team under a
single vision.

Ideally, the Design documentation should include the items, as show on Figure 5 :

• A requirements documentation and an associated rationale. The requirements themselves are the
descriptions of the system services and constraints that are generated during the requirements
engineering process. This could be the functional and non functional requirements, users requirements
or system requirements.

• A document describing the architecture system : The architecture design uses information flow
characteristics, and maps them into the program structure. Transformation mapping method is applied
to exhibit distinct boundaries between incoming and outgoing data. The Data Flow diagrams allocate
control input, processing, and output along three separate modules.

• For each program (sub-system...) of the system, a description of the architecture of the program

• For each component of the system (module, package...), a description of its functionality and interface

• A document describing Interaction between users and the system. It describes internal and external
program interfaces as well as the design of human interface.

• A validation document describing how each program is validated and how the validation information
relates the requirements.

• A system maintenance guide which describes known problems with the system, describes which parts
of the system are hardware or software dependent and also describes how evolution of the system has
been taken into account in its design.

8.1.2 Product Documentation

The software product should have a file in a text format « Read Me » or other kind of text file that includes the
following:

76

QualOSS D1.3

Deliverable ID: D1.3

Page : 77 of 121

Version: 1.0
Date: Jun 22, 07

• Product Name and Version

• Issuing organisation (and Authors Name)

• Release date

• Functional description – Description of services provided

• A change log : this is the list of fixes and new features

• System requirements (CPU, RAM, disk space, operating systems supported)

• Copyright and distribution information (rules for people who want to distribute your product)

• Contact details (email, phone, fax website and postal address)

• Installation guide & System requirements

• System Interoperability

The «Read Me » file is important in open source software because everybody who might be interested in an
open source software product is expecting it, including reviewers, users, or people who want to use it or to
contribute to it.

8.1.3 Manual Users documentation / Online Help or online documentation

There are many kinds of documentation of interest to various kind of users. In FOSS, we commonly find these
types of user documentation:

• Introductory Guide (for beginner) or Tutorial Guide– Getting started with the system

• Reference Manual – Details of all system functionalities

• FAQ Manual

• Collaboration guide (developer info, contributor, ...) (this could be online or manual)

• Support Guide (which is sometimes in the form of a Wiki where users can contribute new information)

8.2 DOCUMENT QUALITY

77

Figure 6: Description of a document quality

Document
Structure Quality

Process Standard

Document Quality

Documentation
Standards Quality

Product Standards

Interchange Standards

QualOSS D1.3

Deliverable ID: D1.3

Page : 78 of 121

Version: 1.0
Date: Jun 22, 07

Document quality is as important as program quality for Open Source Software development. Without
information on how to use a system or how to understand it, the utility of that system is degraded. The
document structure and documentation standards has a major impact on readability and usability and it is
important to design this carefully when creating documentation. Figure 6 below present how we structure
documentation quality. Each criteria is detailed in sub-sections below.

8.2.1 Document Structure

As with software systems, it is important to design document structure so that the different parts are as
independent as possible. The IEEE 1063 standard for software user documentation proposes that the structure
of a document should include the components as show below.

Component Description

Identification data
(documentation title,
documentation version and
date published, software
product and version,
issuing organisation, ...)

Data such as title and identifier that uniquely identifies the document

Table of contents Chapter/Section names and page number

List of illustrations Figure number and title

Introduction Defines the purpose of the document and a brief summary of the contents

Information for use of the
documentation

Suggestions for different readers on how to use the documentation effectively

Concepts of operations An explanation of the conceptual background to use of the software

Procedures Directions on how to use the software to complete the tasks that it is designed to
support

Information on software
commands

A description of each of the commands supported by the software

Errors messages and
problem resolution

A description of the errors that can be reported and how to recover from these
errors

Glossary Definitions of specialized terms used

Related information
sources

References or links to other documents that provide additional information

Navigational features Features that allow readers to find their current location and move around the
document

Index A list of key terms and the pages where these terms are referenced

Search capability In electronic documentation, a way of finding specific terms in the document

The structure provided by IEEE1063 is a good starting point however, we must still develop a complete model
suited to the evaluation of the different types of FOSS documentation. All in all, it will not be expected that
every documentation document produced respects all the criteria enumerated in the table above.

8.2.2 Documentation Standards

Documentation standards is important and useful for document quality assurance. Documents produced
according to appropriate standards have a consistent appearance, structure and quality. There are many
others standards that may be used in the documentation process; In particular when writing documentation in
open source software projects.

Process standards: they define the process which should be follow for high-quality document production. One
possible process (iterative process) will be drafting, checking, revising and re-drafting which should be

78

QualOSS D1.3

Deliverable ID: D1.3

Page : 79 of 121

Version: 1.0
Date: Jun 22, 07

continued until a document of acceptable quality is produced. This part of the evaluation is more related to the
quality characteristics “Established Process Coverage” however, we just mention it here.

Documentation Product standards

Some of the product standard which should be developed are:

• Document identification standards : each document must be uniquely identified. If possible, with a
formal identifier

• Document structure standards: as presented above, a document structure standards should have
those information.

• Document presentation standards: document presentation standards define a « house style » for
documents and they contribute significantly to document consistency

• Document update standards: as a document is changed to reflect changes in the system, a consistent
way of indicating these changes should be used.

Interchange standards

FOSS projects produce many electronic documents. Document interchange standard is therefore important for
robustness and evolvabiliy of the product. The use of interchange standards allow documents to be transferred
electronically and re-created in their original form.

8.3 STUDY FOR THE CASE OF FUNCTIONAL DESCRIPTION DOCUMENTATION

Beside assessing the quality of documentation generically as presented in the two previous sections 8.1 and
8.2, it is also possible to qualify the quality of each particular type of documentation. In this section, we present
our initial effort for producing a list of criteria for evaluating functional description documents (FDD). This is still
work in progress and we expect to develop advanced analysis to be use in the later part of the QUALOSS
project. Currently, the list of criteria is quite exhaustive and we must select those that are unavoidable to
produce a high quality documentation while keeping FOSS in mind.

We have structured the criteria based on the main topic expected to be found in documents describing the
software product functions. All such documents is therefore providing the Functional Description
Documentation (FDD)

FDD1 (Introduction)

It describes the:

• FDD1-1 (Purpose)

• FDD1-2 (Scope) and

• FDD1-3 (Organization)

of the Functional Description Documentation.

FDD2 (Software Overview)

• FDD2-1 (Product description): Describes briefly why the software (or upgrade) is being developed,
and lists the most important features and capabilities.

• FDD2-2 (Product functional capabilities): Presents a list of the functions that the software will be
required to perform. Where a product feature comprises several functional capabilities, a table may be
developed to illustrate these relationships.

79

QualOSS D1.3

Deliverable ID: D1.3

Page : 80 of 121

Version: 1.0
Date: Jun 22, 07

• FDD2-3 (User characteristics): Describes the intended users of the software in terms of job function,
specialized knowledge, or skill levels. Considers various user classes or profiles such as managers,
engineers, equipment operators, IT support staff, and network or database administrators.

• FDD2-4 (User operations and practices): Describes how persons will normally use the software, and
the tasks they will most frequently perform. Also covers how users might use the software on an
occasional basis, such as creating data backups or importing data from another program.

• FDD2-5 (General constraints): Algorithm limitations, user interface limitations, and data limitations.

• FDD2-6 (Assumptions): Lists any assumptions that were made in specifying the functional
requirements.

• FDD2-7 (Other software): How does the program interact with other software, for example,
spreadsheet or database systems.

FDD3 (Specific Function Descriptions)

This section is repeated for each function of the software (some examples of functions are: engineering
calculations, sorting or sequencing, other operations relating inputs to outputs, validity checks on inputs, error
handling and recovery).

• FDD3-1 (Description): Describes the function and its role in the software.

• FDD3-2 (Inputs): Describes the inputs to the function. Where user interface (UI) elements are present,
these are described (some examples of UI elements are check boxes, dropdown lists, and
alphanumeric fields). Input validation strategy, allowed data types and value ranges are specified for
each input.

• FDD3-3 (Processing): Describes what is done by the function. Where algorithms, equations, or other
logic are used, they are eventually described here. If calculations are done utilizing the methods of
specific standards or references, these are cited.

• FDD3-3 (Outputs): Describes the outputs of the function. Where a user interface description is
relevant, it is included. Reports generated are also defined.

FDD4 (External Interfaces)

The interfaces in this section are specified by documenting: the name and description of each item, source or
input, destination or output, ranges, accuracy and tolerances, units of measure, timing, display formats and
organization, and data formats.

• FDD4-1 (User Interfaces): Describes all major forms, screens, or web pages, including any complex
dialog boxes. This is usually best done via non-functioning screen shots simulating usage scenarios,
and it may be presented in a separate document. Specific items are described for each screen such as
input fields, control buttons, sizing options, and menus. The navigation flow of the windows, menus,
and options is described, along with the expected content of each window.

• FDD4-2 (Hardware Interfaces): Describes the equipment needed to run the software, and also other
output or input devices such as printers or handheld devices.

• FDD4-3 (Software Interfaces): Describes any software that will be required in order for the product to
operate fully. Also describes any software that the software product will interact with such as operating
system platforms supported, file import and export, networking, automation, or scripting. Specifies
whether the users must provide the interfacing software themselves, and any special licensing
requirements.

• FDD4-4 (Communication Interfaces): Describes how the software product will communicate with
itself (for multi-platform applications) or other software applications, including items such as
networking, email, intranet, and Internet communications.

FDD5 (Performance)

80

QualOSS D1.3

Deliverable ID: D1.3

Page : 81 of 121

Version: 1.0
Date: Jun 22, 07

Discusses items such as response times, throughput requirements, data volume requirements, maximum data
file size or problem complexity, maximum number of concurrent uses, and peak load requirements (for web-
based applications). Includes expected response times for entering information, querying data files and
databases, performing calculations of various complexities, and importing/exporting data.

FDD6 (Design Constraints)

Discusses items constraints that affect software design choices such as memory constraints involving
minimum and maximum RAM and hard disk space, and limitations arising from hardware, software or
communications standards.

FDD7 (Attributes)

• FDD7-1 (Security): Describes any password-protected access levels such as operator,
engineer/modeler, manager, database administrator-and which functionality will be accessible to each
access level. If relevant, describes the planned approach to locking the software.

• FDD7-2 (Reliability, Availability, Maintainability): Describes requirements items such as days or
weeks of continuous operation, strategy for data recovery, code structuring for ease of future
modification.

• FDD7-3 (Configuration and Compatibility): Describes requirements such as those connected with
individual customization or operation in specific computing environments.

• FDD7-4 (Installation): Describes the planned method for installation: done by the user independently,
done by customer company internal IT services, done by an external contractor.

• FDD7-5 (Usability): Describes items that will ensure the user-friendliness of the software.

These are some criteria on software usability elements.

• FDD7-5-1 Same screen appears each time application is launched

• FDD7-5-2 Consistent and logical navigation flow

• FDD7-5-3 Uses standard GUI features (e.g., pull-down menus, dialog boxes, toolbar buttons)

• FDD7-5-4 Application windows have consistent look and feel

• FDD7-5-5 Data formats are consistent throughout application windows

• FDD7-5-6 Menu options can be accessed via keyboard commands and/or arrow keys. Mouse-only
access to options should be avoided.

• FDD7-5-7 Controls on page must respond properly to Tab order and hot-keys (alt-keys). A user should
be able to use the Tab key to move from one control to the next. This should work in a logical manner
such as from left to right, or top to bottom.

• FDD7-5-8 Interface recovers gracefully from anticipated user errors (e.g., invalid input)

• FDD7-5-9 Information and error messages are useful, accurate, and correctly spelled

• FDD7-5-10 Unnecessary warnings do not appear

• FDD7-5-11 Technical support information identical to that stated in documentation

• FDD7-5-12 The organization Copyright, Ordering Information, and Disclaimer Notice elements for
software appear as required.

FDD8 (Additional Requirements)

Describes other characteristics the software must have, that were not covered in the prior sections.

81

QualOSS D1.3

Deliverable ID: D1.3

Page : 82 of 121

Version: 1.0
Date: Jun 22, 07

• FDD8-1 (Database): Describes any specific requirements relating to the database, such as database
type (e.g. relational), capability to handle large text fields, real-time capability (e.g. handling an
incoming data stream, as from instruments), multi-user capability, special requirements relating to
queries and forms.

• FDD8-2 (Administration): Includes any periodic updating or data management needed.

• FDD8-3 (User documentation): Describes the user documentation to be delivered with the software,
including both hard copy and online requirements.

• FDD8-4 (Other requirements): Describes any other requirements not already covered above that
need to be considered during the design of the software.

82

QualOSS D1.3

Deliverable ID: D1.3

Page : 83 of 121

Version: 1.0
Date: Jun 22, 07

9. ISSUES FOR THE QUALOSS ADVANCED QUALITY MODEL

Open issues and information that need to be refined to create the “advanced” QualOSS quality model; that is,
these issues are relevant for the QualOSS model but cannot be addressed in the first iteration. This can
include complete quality models, parts of models that need to be further refined, or metrics that cannot be
collected in the first iteration. The advanced model workpackage (WP 4) will prioritize and potentially enhance
the list of open issues for the second iteration.

In the sections 3-6, we have already highlighted metrics that will be investigated as advanced quality model.

In addition, there are the following main problems with initial model: Currently, the model assumes that (a) all
data are available as requested, and (b) the metric values are comparable between different measurements

However, in practice, these assumptions are often not met.

Missing data: It is to be expected that some projects will miss some required data. Typical strategies to
address this are: (a) Ignore the project, (b) ignore the missing quality characteristic, (c) use alternate metrics to
interpret the quality characteristic, or (d) try to predict/interpolate the missing data (e.g., by using Bayesian
analysis).

The question of missing data is further complicated by the fact that the fact that data are missing in itself can
be an important statement, such as in a repository of vulnerability.

The advance models will have to investigate these strategies to identify the best suited one for QualOSS.

Comparability of metrics: Even when using the same metrics, results of measurements may not be directly
comparable. For example, even when computing the same metrics with different tools, the result may be
different. Computing similar metrics, for example for different programming languages will lead to different
results. And for manual measurements, it is obvious that there is a bias introduced by the measurer. To
address these comparability issues, we introduced the notion of indicators (LEVEL OF ABSRACTION) that
interpret their underlying metrics into a common scale. However, this will have to be further examined when
constructing advanced models; in particular, our insights gained so far suggests that the notion of looking at
trends from historical data might prove useful.

83

QualOSS D1.3

Deliverable ID: D1.3

Page : 84 of 121

Version: 1.0
Date: Jun 22, 07

10. INTERPRETATION GUIDE / QUALOSS USER MANUAL

The previous sections described which metrics we intend to use to measure the QualOSS quality model.
However, to be able to interpret the model's results for a specific quality characteristic, the user needs to be
presented with an aggregated result, which comprises and summarizes all individual metrics and
characteristics it is composed of. This section describes how we intend to aggregate metrics and
characteristics, thus making the model interpretable.

For this purpose, we introduce indicators that wrap metrics and abstract from their concrete value, thus
providing an interpretation. Thus, for each quality characteristic, the QualOSS quality model will assign a
comparable indicator value, which can be aggregated. The individual metric may be concerned with measuring
an attribute or its trend, while the indicator is supposed to summarize a metric's value (or a set of metrics) in a
traffic-light manner. For example, an indicator for product complexity may summarize several metrics and offer
a single interpretable value (such as complexity acceptable, risky, unacceptable). In other words, the indicators
contain the formulae to condense underlying metrics into a single value that enables to assess the
corresponding quality characteristic; that is, to answer its underlying question. Currently, we have not yet
identified authoritative and alternate formulae. Thereby, alternate formulae are supposed to be used when the
authoritative formulae are not applicable (e.g. for reasons of missing data, or if the data quality is too low). As
described in the previous section, such questions are to be tackled with the advanced quality models; hence,
authoritative and alternate formulae will be used to represent and implement these findings.

Two aspects need to be addressed:

• Normalization of metric output: Indicators need to use a common scale to interpret the underlying values.
For example, this can be a range of 0 to 100, with values from 0 to 34 indicating “critical” ranges of metrics,
from 35 to 69 indicating some problems, and values from 70-100 indicating that the underlying metrics are
acceptable.

• Weighting of metrics and characteristics: Quality characteristics are of different importance; this will be
represented through weights. Although the user will have to be able to adjust these weights, we will propose
weights for different usage scenarios, which will be elicited from stakeholders.

Aggregation in this view basically consists of calculating weighted means of sub-characteristics. However, we
are aware that there are limitations to this approach. For example, some characteristics are “show-stoppers”;
that is, if one metric exceeds thresholds, it has over-proportional influence on the results. For example, for one
particular user, a F/OSS product may be unacceptable if it exceeds a certain threshold in reliability; as long as
the value is not exceeded, reliability is not important at all. In that case, a simple weighting will not reflect the
user's intention, as the weight would have to be equal to zero if the metric does not exceed the critical value,
and equal to infinity if it does. Therefore, the QualOSS model resp. the interpretation guide will have to be able
to address such issues.

84

QualOSS D1.3

Deliverable ID: D1.3

Page : 85 of 121

Version: 1.0
Date: Jun 22, 07

11. SUMMARY AND CONCLUSIONS

This report defines the the prototype QualOSS quality model in terms of a revised definition of the quality
characteristics and identification of basic and advanced metrics to operationalize these definitions. It defines
aspects to be addressed in the advanced quality models. These aspects include metrics and quality
characteristics that we are not able to measure yet, as well as strategies for dealing with incomplete or
incompatible data.

The prototype QualOSS quality model separates product-specific and community-specific aspects of
robustness and evolvability. In particular, measurement of community aspects is enhanced by introducing
process and documentation assessment frameworks, as the ability of a project to consistently and predictably
deliver high quality software is connected with the maturity of their software processes. We have found that
successful F/OSS projects use a range of practices and mature processes, so we believe that a process
assessment approach is able to deliver useful results for QualOSS.

Further work is still required. The interpretation of the QualOSS prototype model needs to be defined; that is,
for each quality characteristic, we need to define indicators that summarize and aggregate the underlying
metric values. Task 1.4 will target this through the calibration of the quality models. In addition, the assessment
frameworks need to be operationalized; that is, they need to be refined in a way that allows to assign a metric
value to a project.

Another issue to be addressed in the next steps is weighting the different quality characteristics. In the
remainder of WP1, we will elicit initial weightings from stakeholders

85

QualOSS D1.3

Deliverable ID: D1.3

Page : 86 of 121

Version: 1.0
Date: Jun 22, 07

12. APPENDIX A: PRODUCT METRICS TABLES

The table below help to systematically ask whether the content of a data type, data sources and historical evolution of
data can be studied to assess the quality characteristics defining evolvability and robustness found at the leaves of our
hierarchies.

IMPORTANT – This comment regards the analyses or metrics that can be specified in each cell. In particular, the table
below contains an ambiguity. An analysis can be specified on a single instance of a data type or on a list of instances of
that data type. For instance, an analysis can either work on an a single issue in a issue tracking system or on a set of
issues, that is, searching data fields of a single issue vs. searching certain data fields of an set of or all the issues in the
database. In addition, each data source also has a row to specify historical analysis of its data content. For example,
variation in numbers of bugs reported over time.

In addition to data sources of D1.1, we have added Discussion Forum (accessible via a Web or News server)

Data Source Data Type (= artifacts or = contains
artifacts)

Useful Analysis and tools

Product Distribution List

Executable/Library Files

Source Files

Test Files (input + scripts)

Documentation Files

Build Files

Historical Analyses specific to Product
Distribution

Version Control Repository

Time stamp (VC metadata)

Author (VC metadata)

Change Set (= file diff) (VC metadata)

Comment Log (VC metadata)

Check in/out programs (VC metadata)

Historical Analyses specific to Version
Control Data

Issue Tracking Database

Request ID, Title, description

Env. Spec related to Request (software
product, version, hardware, OS, etc.)

Request Reporter's name and email

Request Status, priority, severity

Request Assignee

Target Milestones

Attachments such as test cases for bugs,
scenario for enhancement.

Additional Participants' Comments

Historical Analyses specific to Issue
Tracking

Mailing List Archive, discussion forum (accessible
via a Web or News server)

Name, email of poster

Original Message ID, Date, Subject

Target email and list of recipients

Text Content and Attachments

Thread of answers (fields above for
following up on original message: who,
when, what, where)

Historical Analyses specific to Mailing List
Data

Website

Static webpages

Dynamic webpages (wiki or others)

Historical Analyses specific to Website

IRC logs

Discussion topic

Participants

Static text content

86

QualOSS D1.3

Deliverable ID: D1.3

Page : 87 of 121

Version: 1.0
Date: Jun 22, 07

Historical Analyses specific to IRC Data

Security Databases

Vulnerability and Exposure ID, description

Date entered

Authors

Severity

Patch info (who, when, how large, how
impactful)

Historical Analyses specific to Security
Data

Publication Database

Publication

Type of publication

Popularity of publication

Historical Analyses specific to Publication
Data

General News sites

News Source, Article title and date

Visibility (Distribution Size)

Authors

Author recognition/credibility

Historical Analyses specific to General
News data

FLOSSMETRICS, SQO-OSS and FLOSSMole

Sample of data above plus eventual
additional measurements already
performed and saved

Historical Analyses specific to F/OSS data
repositories

Historical ANALYSIS on Aggregated Data from
Various Data Sources

12.1 METRICS

12.1.1 Simple Analysis

Metric Tools

12.1.2 Advanced Analysis

List of advanced analyses whose results could be transformed into interesting metrics for assessing evolvability and
robustness and tools potentially useful to build on to compute these advanced analyses.

87

QualOSS D1.3

Deliverable ID: D1.3

Page : 88 of 121

Version: 1.0
Date: Jun 22, 07

13. APPENDIX B: PRODUCT ROBUSTNESS

13.1 RELIABILITY – FAULT TOLERANCE – FAILURE TOLERANCE

Definition: The capability of the software product to avoid failure and to maintain a specified level of
performance when software faults are executed.

13.2 MAPPING DATA SOURCES TO METRICS OF INTEREST

Data Source Data Type (= artifacts or = contains
artifacts)

Useful Analysis and tools

Product Distribution List (PDL)

Executable/Library Files ADVANCED – Single Instance
(For jar or pyc) analysis to detect potential runtime failures: deadlocks, memory
leaks, illegal memory accesses (array out of bound, dangling pointers, double
free), ...
(Argument: potential runtime errors lead to an unstable state which often leads to
failure)

Source Files ADVANCED – Single Instance
1. Analysis of error handling (Argument: if exception are not handle properly in
the code, it may lead to failure)
2. Analysis to detect potential runtime exceptions: deadlock detection, memory
leaks, illegal memory access (array out of bound, dangling pointers, double free),
...
(Argument: potential runtime errors lead to an unstable state which often leads to
failure)

Test Files (input + scripts) ADVANCED – Single Instance
1. Test coverage: percentage of class, methods, basic block covered by testing
(Argument: the more tests cover the code, the more are failures likely to be
identified during testing and therefore addressed before release)
2. Run full test suite on executables and collect test log then determine the
number of software crashes in test log (Analysis for crash evidences in log)
(Argument: if tests show to much of an evidence of lack of robustness then that is
bad; however, a certain number of failure shows that the test suite is good)

Documentation Files ADVANCED – Single Instance
1. Number of test environments as described in documentation (Argument: The
more environments the product was tested on, the more reliable it is likely to be
on this environment)

Build Files

Historical Analyses specific to Product
Distribution

1. Historical variation of number of empty catch bloc, bad use of throws (and of
potential runtime error) in software product within the same major release.
(Argument: steady improvement in error checking over time show dedication by
developers to improve robustness)
2. Historical variation of code coverage obtained by testing. (Argument: a
constant high code coverage by test shows high level of dedication by testers to
maintain and improve robustness)

Version Control Repository (VCR)

Time stamp (VC metadata)

Author (VC metadata)

Change Set (= file diff) (VC metadata)

Comment Log (VC metadata)

Check in/out programs (VC metadata)

Historical Analyses specific to Version
Control Data

Issue Tracking Database (ITD

Request ID, Title, description BASIC – Set of Instances
1. Numbers of issues in the ITD (possible variations based on the text containing
the word “CRASH”, issues related to a single, a set of or all releases and based
on the status and resolution flag of issues) (Argument: the number of issues and
their ratio between solved and open issues definitely indicate the level of
robustness of the product)

Env. Spec related to Request (software
product, version, hardware, OS, etc.)

Request Reporter's name and email

Request Status, priority, severity

Request Assignee

Target Milestones

Attachments such as test cases for bugs,
scenario for enhancement.

Additional Participants' Comments BASIC – Set of Instances
1. Numbers of issues in the ITD (possible variations based on issues related to all
versions vs. single and based on closed vs open issues.)
2. Number of issues whose additional content contains the word CRASH
(possible variations based on issues related to all versions vs. single and based
on closed vs open issues.)

Historical Analyses specific to Issue ADVANCED – Set of Instances

88

QualOSS D1.3

Deliverable ID: D1.3

Page : 89 of 121

Version: 1.0
Date: Jun 22, 07

Tracking 1. Historical variation of issues (alternatively only those containing the word
CRASH)
2. Number of undetected defects left in specific version as predicted by statistical
analysis of full history of issues

(Argument: statistical prediction based on the past often yield a good indicator for
the future)

Discussion Archive (DA)
(that is, Mailing List Archive, Discussion Forum
accessible via a Web or News server)

Name, email of poster

Original Message ID, Date, Subject BASIC – Set of Instances
?? Number of messages whose subject line contains the word CRASH

Target email and list of recipients

Text Content and Attachments ADVANCED – Set of Instances
?? Number of messages whose content body contains the word CRASH

Thread of answers (fields above for
following up on original message: who,
when, what, where)

Historical Analyses specific to Mailing List
Data

Website Pages (WP)

Static Pages ADVANCED – Set of Instances
Source Code Review process are explicitly described as part of the verification
process and require the recording of reviews so issues highlighted are addressed
before committing code
Number of defect discovered during code review
(Argument: Code review has shown to be one of the most efficient mechanism to
discover defects in code)

Wiki Pages

Historical Analyses specific to Website
Data

IRC logs (ICR)

Discussion topic

Participants

Static text content

Historical Analyses specific to IRC Data

Security Databases (SD)

Vulnerability and Exposure ID, description BASIC – Set of Instances
1. Number of all exposures and vulnerabilities for a software product
2. Number of all exposures and vulnerabilities for a single software product
release
3. Number of all exposures and vulnerabilities for all minor releases of a software
product under the same majors release.
4. The 3 analysis above for sever vulnerabilities only, that is, vulnerabilities that
could yield to system crash or external control been taken)

Date entered

Authors

Severity

Patch info (who, when, how large, how
impactful)

ADVANCED – Set of Instances
1. Number of vulnerabilities with patches proposed as compared to all
vulnerabilities (Argument: Risk of vulnerabilities alleviated if patch exists)
2. Average time between vulnerabilities posted and patch provided.

Historical Analyses specific to Security
Data

Publication Database (PD)

Publication

Type of publication

Popularity of publication

Historical Analyses specific to Publication
Data

General News sites (GN)

News Source, Article title and date

Visibility (Distribution Size)

Authors

Author recognition/credibility

Historical Analyses specific to General
News data

F/OSS Research Databases (FRD)
(that is FLOSSMETRICS, SQO-OSS and
FLOSSMole)

Sample of data above plus eventual
additional measurements already
performed and saved

Historical Analyses specific to F/OSS data
repositories

Historical ANALYSIS on Aggregated Data from
Various Data Sources

89

QualOSS D1.3

Deliverable ID: D1.3

Page : 90 of 121

Version: 1.0
Date: Jun 22, 07

13.3 DETAILS ON METRICS

13.3.1 Basic Metrics

ALL means bugs of all status

OPEN means bug of status open

Metric Tools

Number of issues of ANY status for all product
releases

(same with “CRASH” in title and/or details, description
and/or comments) (Argument all basic metrics except
the last one: the number of issues and their ratio
between solved and open issues definitely indicate
the level of robustness of the product)

Any tools with an advanced search functionality
enabling search of the title, the body and comments of
an issue tracking systems
Example of Existing Tools:
• Bugzilla Advanced Search (bugzilla is used by

Eclipse, Apache),
• SourceForge Tracker Advanced Search,
• Jira Search New (used by Apache Jakarta projects)
What about?
• FSF repository whose strategy is to use mailing

lists to report and comment on issues?
• Unstructured repositories such as Trac (could

search tickets)?

Number of issues of status OPEN for all product
releases

(same with “CRASH” in title and/or details, description
and/or comments)

same tool as above

Ratio of OPEN vs. ANY bugs for all product releases

(same with “CRASH” in in title and/or details,
description and/or comments)

same tool as above

Number of issues of ANY status for a specific product
release

(same with “CRASH” in in title and/or details,
description and/or comments)

same tool as above

Number of issues of status OPEN for a specific
product release

(same with “CRASH” in title and/or details, description
and/or comments)

same tool as above

Ratio of OPEN vs. ANY bugs for a specific product
release

(same with “CRASH” in title and/or details, description
and/or comments)

same tool as above

Number of subjects in mailing list or news forum
containing “CRASH”

Existing
• SourceForge Mailing List Advanced Search

What about?
• Eclipse Mailing List Subject Search (inconvenient

90

QualOSS D1.3

Deliverable ID: D1.3

Page : 91 of 121

Version: 1.0
Date: Jun 22, 07

must search one page at a time)
• FSF must subscribe to mailing list

Checks related to user exception handling (PMD for
Java, PyLint for Python, CETIC analyzer for Java,
what about for C/C++ and Ada?)

(Argument: if error handling is not handle properly in
the code, it may lead to failure)

Existing Tools:
• PMD, SQUAL Analyzer for Java
• PyLint for Python
What about?
• for C/C++ and Ada

13.3.2 Advanced Metrics

• Check for potential run time exception in executable or source files: number of potential deadlocks, memory
allocation accesses, memory leaks (Argument: potential runtime errors lead to an unstable state which often
leads to failure)

• Check for more complex user define exception and their proper handling (Argument: if error handling is not
handle properly in the code, it may lead to failure)

• Percentage of code covered by testing (classes, methods, blocks) (Argument: the more tests cover the
code, the more are failures likely to be identified during testing and therefore addressed before releases)

• Historical variation of test coverage over several product releases (Must improve or stabilize at certain
thresholds: classes: 100%, methods: 80%, basic blocks: 60% for example. (Argument: a constant high code
coverage by test shows high level of dedication by testers to maintain and improve robustness)

• Number of issues of ANY status for a specific set of product releases (e.g. all release under the same major
release) (same with “CRASH” in title and/or details, description and/or comments) (Argument for this and
two metrics below: the number of issues and their ratio between solved and open issues definitely indicate
the level of robustness of the product)

• Number of issues of status OPEN for a specific set of product release (e.g. all release under the same major
release) (same with “CRASH” in in title and/or details, description and/or comments)

• Ratio of OPEN vs. ANY bugs for a specific set of product release (e.g. all release under the same major
release) (same with “CRASH” in title and/or details, description and/or comments)

• Fitness with a logarithmic function of the function defined by the number of issues (Y-axis) over time (X-axis)
for all minor releases of a same major release. (time period for the X-axis must be set to a particular value,
for example, 1 month period. This metric can also be defined over an inverse logarithmic function of the
delta of issues reported over each period + also a variant on issues status and resolution flag and also with
“CRASH” in title, description body or comments bodies) (Argument: statistical prediction based on the past
often yield a good indicator for the future)

• Number of undetected defects left in specific version as predicted by statistical analysis of full history
(Argument: statistical prediction based on the past often yield a good indicator for the future)

• Number of crash evidences in test log (after executing the full test suite provided as part of the F/OSS
product or by stress tests executed by the quality assessor. (Argument: if tests show a great evidence of
lack of robustness then that is bad; however, the exhibition of a certain number of failures shows that the
test suite is good)

• Number of environments on which the software product was tested as described in the documentation
(Argument: The more environments the product was tested on, the more reliable it is likely to be on this
environment)

13.4 PRODUCT ROBUSTNESS – RELIABILITY – FAULT TOLERANCE – ERROR TOLERANCE

Definition: The capability of the software product to avoid failures and to maintain a specified level of
performance in cases of infringement of its specified interface.

91

QualOSS D1.3

Deliverable ID: D1.3

Page : 92 of 121

Version: 1.0
Date: Jun 22, 07

In the context of identifying metrics for this deliverable, the insight we gained showed that it is hard to separate
the different subconstructs of failure/fault tolerance

Data Source Data Type (= artifacts or = contains
artifacts)

Useful Analysis and tools

Product Distribution List

Executable/Library Files

Source Files ADVANCED
• Check for Code/SQL injection (Argument: injection arevcases of malicious

infringement to the specified interface) (Additional code check related to fault
tolerance will be identified)

• Methods/Classes that catch generic exceptions (Argument: catching generic
exception make it much harder to react appropriately to go from unstable
back to a stable state of execution)

• ??Check UI libraries used?? (Argument: a UI such as java GUI is fault
tolerant, in cases where exceptions are raised, the UI usually stays up and
running only dumping stack trace on background console)

Test Files (input + scripts) ADVANCED
Check that test for Code and SQL injection exist (Argument: If test cases exist for
injection, it is likely to be identified before releases)

Documentation Files ADVANCED
Installation, Administration, and or User documentation explain the environment
and scope in which the product was tested and remains functional even in case
of some failures. (Argument: if the user is informed of the framework to stay in, he
is likely to be less frustrated when crashes occur due to uses outside the
foreseen scope)

Build Files

Historical Analyses specific to Product
Distribution

Version Control Repository

Time stamp (VC metadata)

Author (VC metadata)

Change Set (= file diff) (VC metadata)

Comment Log (VC metadata)

Check in/out process programs (VC
metadata)

ADVANCED
(The analysis below is maybe more related to Community Robustness Process)
Checkin process programs automatically runs all tests and the checkin is only
granted if a smaller number of failures are generated then prior to the change set.
Further, process programs can run additional checks on code convention respect,
...

Historical Analyses specific to Version
Control Data

Issue Tracking Database

Request ID, Title, description

Env. Spec related to Request (software
product, version, hardware, OS, etc.)

Request Reporter's name and email

Request Status, priority, severity

Request Assignee

Target Milestones

Attachments such as test cases for bugs,
scenario for enhancement.

Additional Participants' Comments

Historical Analyses specific to Issue
Tracking

Discussion Archive (DA)
(that is, Mailing List Archive, Discussion Forum
accessible via a Web or News server)

Name, email of poster

Original Message ID, Date, Subject

Target email and list of recipients

Text Content and Attachments

Thread of answers (fields above for
following up on original message: who,
when, what, where)

Historical Analyses specific to Mailing List
Data

Website

Static Pages

Wiki Pages

Historical Analyses specific to Website
Data

IRC logs

Discussion topic

Participants

Static text content

Historical Analyses specific to IRC Data

92

QualOSS D1.3

Deliverable ID: D1.3

Page : 93 of 121

Version: 1.0
Date: Jun 22, 07

Security Databases

Vulnerability and Exposure ID, description

Date entered

Authors

Severity

Patch info (who, when, how large, how
impactful)

Historical Analyses specific to Security
Data

Publication Database

Publication

Type of publication

Popularity of publication

Historical Analyses specific to Publication
Data

General News sites

News Source, Article title and date

Visibility (Distribution Size)

Authors

Author recognition/credibility

Historical Analyses specific to General
News data

FLOSSMETRICS, SQO-OSS and FLOSSMole

Sample of data above plus eventual
additional measurements already
performed and saved

Historical Analyses specific to F/OSS data
repositories

Historical ANALYSIS on Aggregated Data from
Various Data Sources

13.5 PRODUCT ROBUSTNESS – RELIABILITY – RECOVERABILITY

Definition: The capability of the software product to re-establish a specified level of performance and recover
the data directly affected in the case of a failure.

Data Source Data Type (= artifacts or = contains
artifacts)

Useful Analysis and tools

Product Distribution List

Executable/Library Files

Source Files ADVANCED – Single Instances
1. Software patterns related to recoverability are present in the source code, for
example, presence of a thread that wakes up periodically to auto-save data
(Argument: if patterns related to recoverability are found in the code, it is likely
that the product has some degree of recoverability.

Test Files (input + scripts) ADVANCED – Single Instances
1. Test script or test procedure tests the software product for recoverability, for
example, by bringing down the software application and then starting it again to
verify that data could be recovered (Argument: if some tests actually check for
recoverability, it is more likely that the product has the intend to provide a
recoverability feature)

Documentation Files ADVANCED – Single Instances
1. User Documentation has content dedicated to Recoverability (for example,
section on recoverability mentions how to activate and customize data
recoverability for the software product or how to install it to improve recoverability)
(Argument: if the documentation addresses recoverability, it is more likely that the
product has the intend to provide a recoverability feature)

Build Files

Historical Analyses specific to Product
Distribution

Version Control Repository

Time stamp (VC metadata)

Author (VC metadata)

Change Set (= file diff) (VC metadata)

Comment Log (VC metadata)

Check in/out process programs (VC
metadata)

Historical Analyses specific to Version
Control Data

Issue Tracking Database Request ID, Title, description BASIC – Set of Instances

93

QualOSS D1.3

Deliverable ID: D1.3

Page : 94 of 121

Version: 1.0
Date: Jun 22, 07

1. Numbers of issues whose title or description body contains the word
RECOVER (possible variations based on issues related to product, single
release, set of releases and based on status and resolution flags)

Env. Specs related to Request (software
product, version, hardware, OS, etc.)

Request Reporter's name and email

Request Status, priority, severity

Request Assignee

Target Milestones

Attachments such as test cases for bugs,
scenario for enhancement.

Additional Participants' Comments BASIC – Set of Instances
1. Numbers of issues whose title or description body contains the word
RECOVER (possible variations based on issues related to product, single
release, set of releases and based on status and resolution flags) (Argument:
recoverability issues reported in bug tracking system are highly likely to use the
words recovered, recoverable, unrecoverable, ...)

Historical Analyses specific to Issue
Tracking

ADVANCED – Set of Instances
1. Historical variation of issues whose content contains the word RECOVER

Discussion Archive (DA)
(that is, Mailing List Archive, Discussion Forum
accessible via a Web or News server)

Name, email of poster

Original Message ID, Date, Subject

Target email and list of recipients

Text Content and Attachments

Thread of answers (fields above for
following up on original message: who,
when, what, where)

Historical Analyses specific to Mailing List
Data

Website

Static Pages

Wiki Pages

Historical Analyses specific to Website
Data

IRC logs

Discussion topic

Participants

Static text content

Historical Analyses specific to IRC Data

Security Databases

Vulnerability and Exposure ID, description

Date entered

Authors

Severity

Patch info (who, when, how large, how
impactful)

Historical Analyses specific to Security
Data

Publication Database

Publication

Type of publication

Popularity of publication

Historical Analyses specific to Publication
Data

General News sites

News Source, Article title and date

Visibility (Distribution Size)

Authors

Author recognition/credibility

Historical Analyses specific to General
News data

FLOSSMETRICS, SQO-OSS and FLOSSMole

Sample of data above plus eventual
additional measurements already
performed and saved

Historical Analyses specific to F/OSS data
repositories

Historical ANALYSIS on Aggregated Data from
Various Data Sources

94

QualOSS D1.3

Deliverable ID: D1.3

Page : 95 of 121

Version: 1.0
Date: Jun 22, 07

13.5.1 Basic Metrics

Metric Tools

Number of issues of ANY status for all product
releases with string “RECOVER” in title and/or details,
description and/or comments)

Same search tools as for Failure tolerance

Number of issues of status OPEN for all product
releases with string “RECOVER” in title and/or details,
description and/or comments

Same search tools as for Failure tolerance

Ratio of OPEN vs. ANY bugs for all product releases
with “RECOVER” in in title and/or details, description
and/or comments)

Same search tools as for Failure tolerance

Number of issues of ANY status for a specific product
release with string “RECOVER” in in title and/or
details, description and/or comments

Same search tools as for Failure tolerance

Number of issues of status OPEN for a specific
product release with string “RECOVER” in title and/or
details, description and/or comments

Same search tools as for Failure tolerance

Ratio of OPEN vs. ANY bugs for a specific product
release with string “RECOVER” in title and/or details,
description and/or comments

Same search tools as for Failure tolerance

13.5.2 Advanced Metrics

• Software patterns related to recoverability are present in the source code, for example, presence of a thread
that wakes up periodically to auto-save data

• Test script or test procedure tests the software product for recoverability, for example, by bringing down the
software application and then starting it again to verify that data could be recovered

• User Documentation has content dedicated to Recoverability (for example, section on recoverability
mentions how to activate and customize data recoverability for the software product or how to install it to
improve recoverability)

• Historical variation of issues whose content contains the word RECOVER and deviation from logarithmic
curve (or at least a “steep” linear decrease)

13.6 PRODUCT ROBUSTNESS – RELIABILITY – AVAILABILITY

Availability (IEEE): The degree to which a system or component is operational and accessible when required
for use.

Data Source Data Type (= artifacts or = contains
artifacts)

Useful Analysis and tools

Product Distribution List

Executable/Library Files ADVANCED - Single Instances
1. Product is build on libraries that have proven track record regarding availability

Source Files ADVANCED – Single Instances
1. Patterns showing the ability to handle and manage multiple client connections
or multi tasking, for example, proper use of multi threading or processing,
Potential use of a queue scheduling and management system for system with
high demand.

Test Files (input + scripts) ADVANCED – Single Instances

95

QualOSS D1.3

Deliverable ID: D1.3

Page : 96 of 121

Version: 1.0
Date: Jun 22, 07

1. Test script contains stress test to assess the availability of the software product
before releases.

Documentation Files ADVANCED – Single Instances
For server product:
1. User doc has sections on redundancy, load balancing
2. Installation manual mentions how to set the product to increase availability

Build Files

Historical Analyses specific to Product
Distribution

Version Control Repository

Time stamp (VC metadata)

Author (VC metadata)

Change Set (= file diff) (VC metadata)

Comment Log (VC metadata)

Check in/out process programs (VC
metadata)

Historical Analyses specific to Version
Control Data

Issue Tracking Database

Request ID, Title, description BASIC – Set of Instances
1. Numbers of issues whose title or description body contains the word
AVAILABILITY or ACCESS (possible variations based on issues related to
product, single release, set of releases and based on status and resolution flags)

Env. Specs related to Request (software
product, version, hardware, OS, etc.)

Request Reporter's name and email

Request Status, priority, severity

Request Assignee

Target Milestones

Attachments such as test cases for bugs,
scenario for enhancement.

Additional Participants' Comments BASIC – Set of Instances
1. Numbers of issues whose additional comment contains the word
AVAILABILITY or ACCESS (possible variations based on issues related to
product, single release, set of releases and based on status and resolution flags)

Historical Analyses specific to Issue
Tracking

Discussion Archive (DA)
(that is, Mailing List Archive, Discussion Forum
accessible via a Web or News server)

Name, email of poster

Original Message ID, Date, Subject

Target email and list of recipients

Text Content and Attachments

Thread of answers (fields above for
following up on original message: who,
when, what, where)

Historical Analyses specific to Mailing List
Data

Website

Static Pages

Wiki Pages

Historical Analyses specific to Website
Data

IRC logs

Discussion topic

Participants

Static text content

Historical Analyses specific to IRC Data

Security Databases

Vulnerability and Exposure ID, description

Date entered

Authors

Severity

Patch info (who, when, how large, how
impactful)

Historical Analyses specific to Security
Data

Publication Database

Publication

Type of publication

Popularity of publication

Historical Analyses specific to Publication
Data

96

QualOSS D1.3

Deliverable ID: D1.3

Page : 97 of 121

Version: 1.0
Date: Jun 22, 07

General News sites

News Source, Article title and date

Visibility (Distribution Size)

Authors

Author recognition/credibility

Historical Analyses specific to General
News data

FLOSSMETRICS, SQO-OSS and FLOSSMole

Sample of data above plus eventual
additional measurements already
performed and saved

Historical Analyses specific to F/OSS data
repositories

Historical ANALYSIS on Aggregated Data from
Various Data Sources

13.6.1 Basic Metrics

The metrics below are approximative at best

Metric Tools

Number of issues of ANY status for all product
releases with string “AVAILABILITY” in title and/or
details, description and/or comments)

Same issue search tools as for Failure tolerance

Number of issues of status OPEN for all product
releases with string “AVAILABILITY” in title and/or
details, description and/or comments

Same issue search tools as for Failure tolerance

Ratio of OPEN vs. ANY bugs for all product releases
with “AVAILABILITY” in in title and/or details,
description and/or comments)

Same issue search tools as for Failure tolerance

Number of issues of ANY status for a specific product
release with string “AVAILABILITY” in in title and/or
details, description and/or comments

Same issue search tools as for Failure tolerance

Number of issues of status OPEN for a specific
product release with string “AVAILABILITY” in title
and/or details, description and/or comments

Same issue search tools as for Failure tolerance

Ratio of OPEN vs. ANY bugs for a specific product
release with string “AVAILABILITY” in title and/or
details, description and/or comments

Same issue search tools as for Failure tolerance

13.6.2 Advanced Metrics

• Product is build on libraries that have proven track record regarding high availability

• Software Patterns in source code showing the ability to handle and manage multiple client connections or
multi tasking, for example, proper use of multi threading or processing, Potential use of a messaging system
for product with high demand.

• Test script contains stress tests to assess the availability of the software product before releases.

• (For Server Product) User doc has sections on redundancy, load balancing

97

QualOSS D1.3

Deliverable ID: D1.3

Page : 98 of 121

Version: 1.0
Date: Jun 22, 07

• (For Server Product) Installation manual mentions how to set the product to increase availability

13.7 PRODUCT ROBUSTNESS – SECURITY – CONFIDENTIALITY

Data Source Data Type (= artifacts or = contains
artifacts)

Useful Analysis and tools

Product Distribution List (PDL)

Executable/Library Files ADVANCED – Single Instance
1. Use of renown libraries/framework for authentication, authorization and access
control (Argument: a know access control framework simplify the integration the
appropriate confidentiality in a product)

Source Files ADVANCED – Single Instance
1. Use of appropriate code and pattern to interact with an authentication,
authorization and access control framework
2. Use of appropriate code and pattern to encrypt data before streaming it out of
the application. (Argument: On the top of using a framework, the code must use it
properly to avoid confidentiality leakage, for example, information streamed out of
the application are encrypted prior, ...)

Test Files (input + scripts) ADVANCED – Single Instance
1. Test suite contains tests that attempt to gain access to the application or its
data without appropriate rights) (Argument: such test scripts would show that
confidentiality is tested for)

Documentation Files ADVANCED – Single Instance
1. User Documentation explains how the software product handle authentication,
authorization, access control, and encryption.
2. Installation Manual explain how to setup the product to guarantee a high level
of confidentiality
(Argument: documentation that contains information related to confidentiality
shows that confidentiality is addressed by the software product.

Build Files

Historical Analyses specific to Product
Distribution

Version Control Repository (VCR)

Time stamp (VC metadata)

Author (VC metadata)

Change Set (= file diff) (VC metadata)

Comment Log (VC metadata)

Check in/out programs (VC metadata)

Historical Analyses specific to Version
Control Data

Issue Tracking Database (ITD)

Request ID, Title, description BASIC – Set of Instances
(not a very reliable metric)
1. Numbers of issues whose title or description body contains one of the words
AUTHENTICATION AUTHORIZATION or ACCESS CONTROL (possible
variations based on issues related to product, single release, set of releases and
based on status and resolution flags)

Env. Spec related to Request (software
product, version, hardware, OS, etc.)

Request Reporter's name and email

Request Status, priority, severity

Request Assignee

Target Milestones

Attachments such as test cases for bugs,
scenario for enhancement.

Additional Participants' Comments BASIC – Set of Instances
1. Numbers of issues whose additional comment contains one of the words
AUTHENTICATION AUTHORIZATION or ACCESS CONTROL (possible
variations based on issues related to product, single release, set of releases and
based on status and resolution flags)

Historical Analyses specific to Issue
Tracking

Discussion Archive (DA)
(that is, Mailing List Archive, Discussion Forum
accessible via a Web or News server)

Name, email of poster

Original Message ID, Date, Subject

Target email and list of recipients

Text Content and Attachments

Thread of answers (fields above for
following up on original message: who,
when, what, where)

Historical Analyses specific to Mailing List
Data

Website Pages (WP)

Static Pages

Wiki Pages

Historical Analyses specific to Website
Data

98

QualOSS D1.3

Deliverable ID: D1.3

Page : 99 of 121

Version: 1.0
Date: Jun 22, 07

IRC logs (ICR)

Discussion topic

Participants

Static text content

Historical Analyses specific to IRC Data

Security Databases (SD)

Vulnerability and Exposure ID, description BASIC – Set of Instances
1. Number of sever vulnerabilities or exposures for all releases of a product
(Argument: raw data can provide overall information as to the expected level of
confidentiality one may expect from the product.)
2. Ratio of sever vulnerabilities with patch vs all for a specific release of the
product (Argument: Users want to make sure the specific version in use (or to be
integrated) contains literally no known vulnerabilities and exposures

Date entered

Authors

Severity

Patch info (who, when, how large, how
impactful)

ADVANCED – Set of Instances
1. Verify that patches are provided quickly after the initial report (for example, no
later than a week after initial report) (Argument: patch created promptly maintain
a high confidence from users regarding low risk of potential intrusion and
confidentiality leaks)

Historical Analyses specific to Security
Data

Publication Database (PD)

Publication

Type of publication

Popularity of publication

Historical Analyses specific to Publication
Data

General News sites (GN)

News Source, Article title and date

Visibility (Distribution Size)

Authors

Author recognition/credibility

Historical Analyses specific to General
News data

F/OSS Research Databases (FRD)
(that is FLOSSMETRICS, SQO-OSS and
FLOSSMole)

Sample of data above plus eventual
additional measurements already
performed and saved

Historical Analyses specific to F/OSS data
repositories

Historical ANALYSIS on Aggregated Data from
Various Data Sources

13.7.1 Basic Metrics

ALL means bugs of all status

OPEN means bug of status open

Metric Tools

Numbers of issues whose title or description body
contains one of the words AUTHENTICATION
AUTHORIZATION or ACCESS CONTROL (possible
variations based on issues related to product, single
release, set of releases and based on status and
resolution flags) (Not a very reliable metric)

same issue tracking advanced search as for Failure
tolerance

Numbers of issues whose additional comment
contains one of the words AUTHENTICATION
AUTHORIZATION or ACCESS CONTROL (possible
variations based on issues related to product, single
release, set of releases and based on status and
resolution flags)

Number of sever vulnerabilities or exposures for all Advanced search of the National Vulnerability

99

QualOSS D1.3

Deliverable ID: D1.3

Page : 100 of 121

Version: 1.0
Date: Jun 22, 07

releases of a product (Argument: raw data can
provide overall information as to the expected level of
confidentiality one may expect from the product.)

Database
(http://nvd.nist.gov/nvd.cfm?advancedsearch)

Ratio of sever vulnerabilities with patch vs all for a
specific release of the product (Argument: Users want
to make sure the specific version in use (or to be
integrated) contains literally no known vulnerabilities
and exposures)

Advanced search of the National Vulnerability
Database
(http://nvd.nist.gov/nvd.cfm?advancedsearch)

13.7.2 Advanced Metrics

• Use of renown libraries/framework for authentication, authorization and access control (Argument: a know
access control framework simplify the integration the appropriate confidentiality in a product)

• Use of appropriate code and pattern to interact with an authentication, authorization and access control
framework (Argument for this analysis and the next one: On the top of using a framework, the code must
use it properly to avoid confidentiality leakage, for example, information streamed out of the application are
encrypted prior, ...)

• Use of appropriate code and pattern to encrypt data before streaming it out of the application.

• Test suite contains tests that attempt to gain access to the application or its data without appropriate rights)
(Argument: such test scripts would show that confidentiality is tested for)

• User Documentation explains how the software product handle authentication, authorization, access control,
and encryption. (Argument for this analysis and the next one: documentation that contains information
related to confidentiality shows that confidentiality is addressed by the software product.)

• Installation Manual explain how to setup the product to guarantee a high level of confidentiality

• Verify that patches are provided quickly after the initial report (for example, no later than a week after initial
report) (Argument: patch created promptly maintain a high confidence from users regarding low risk of
potential intrusion and confidentiality leaks)

13.8 PRODUCT ROBUSTESS – SECURITY – INTEGRITY

Integrity (ISO): The degree to which a system or component is able to protect the accuracy and completeness
of information and processing methods. This includes preventing unauthorised modification or destruction of
information (CNSS, 2006).

Data Source Data Type (= artifacts or = contains
artifacts)

Useful Analysis and tools

Product Distribution List (PDL)

Executable/Library Files ADVANCED – Single Instance
1. Use of renown libraries/framework for encryption and digital signature
(Argument: a know access control framework simplify the integration the
appropriate confidentiality in a product)

Source Files ADVANCED – Single Instance
1. Use of appropriate code and pattern to saving and checking data integrity
before streaming it in and out of the application. (Argument: On the top of using a
framework, the code must use it properly to guarantee integrity)

Test Files (input + scripts) ADVANCED – Single Instance
1. Test suite contains tests that attempt to corrupt data and to process corrupted
data) (Argument: such test scripts would show that integrity is tested for)

Documentation Files ADVANCED – Single Instance
1. Installation Manual explain how to setup the product to guarantee a high level
of integrity
(Argument: documentation that contains information related to integrity shows
that integrity is addressed by the software product. For example, how to setup the
product to use digital signature)
2. User Manuel explain to the user how to sign data (Argument: helping the user
sign data show a concern for integrity)
3. (not integrity of the product but integrity of the product download) Product
Distribution download packages provide their MD5 or other checksum.
(Argument: Providing a checksum show that the project consider integrity with
high priority)

Build Files

Historical Analyses specific to Product

100

QualOSS D1.3

Deliverable ID: D1.3

Page : 101 of 121

Version: 1.0
Date: Jun 22, 07

Distribution

Version Control Repository (VCR)

Time stamp (VC metadata)

Author (VC metadata)

Change Set (= file diff) (VC metadata)

Comment Log (VC metadata)

Check in/out programs (VC metadata)

Historical Analyses specific to Version
Control Data

Issue Tracking Database (ITD)

Request ID, Title, description BASIC – Set of Instances
(not a very reliable metric)
1. Numbers of issues whose title or description body contains one of the words
CORRUPTED CHECKSUM (possible variations based on issues related to
product, single release, set of releases and based on status and resolution flags)

Env. Spec related to Request (software
product, version, hardware, OS, etc.)

Request Reporter's name and email

Request Status, priority, severity

Request Assignee

Target Milestones

Attachments such as test cases for bugs,
scenario for enhancement.

Additional Participants' Comments BASIC – Set of Instances
1. Numbers of issues whose additional comment contains one of the words
CORRUPTED CHECKSUM (possible variations based on issues related to
product, single release, set of releases and based on status and resolution flags)

Historical Analyses specific to Issue
Tracking

Discussion Archive (DA)
(that is, Mailing List Archive, Discussion Forum
accessible via a Web or News server)

Name, email of poster

Original Message ID, Date, Subject

Target email and list of recipients

Text Content and Attachments

Thread of answers (fields above for
following up on original message: who,
when, what, where)

Historical Analyses specific to Mailing List
Data

Website Pages (WP)

Static Pages

Wiki Pages

Historical Analyses specific to Website
Data

IRC logs (ICR)

Discussion topic

Participants

Static text content

Historical Analyses specific to IRC Data

Security Databases (SD)

Vulnerability and Exposure ID, description

Date entered

Authors

Severity

Patch info (who, when, how large, how
impactful)

Historical Analyses specific to Security
Data

Publication Database (PD)

Publication

Type of publication

Popularity of publication

Historical Analyses specific to Publication
Data

General News sites (GN)

News Source, Article title and date

Visibility (Distribution Size)

Authors

Author recognition/credibility

Historical Analyses specific to General
News data

101

QualOSS D1.3

Deliverable ID: D1.3

Page : 102 of 121

Version: 1.0
Date: Jun 22, 07

F/OSS Research Databases (FRD)
(that is FLOSSMETRICS, SQO-OSS and
FLOSSMole)

Sample of data above plus eventual
additional measurements already
performed and saved

Historical Analyses specific to F/OSS data
repositories

Historical ANALYSIS on Aggregated Data from
Various Data Sources

13.8.1 Basic Metrics

ALL means bugs of all status

OPEN means bug of status open

Metric Tools

Numbers of issues whose title or description body
contains one of the words CORRUPTED CHECKSUM
(possible variations based on issues related to
product, single release, set of releases and based on
status and resolution flags)

same issue tracking advanced search as for Failure
tolerance

Numbers of issues whose additional comment
contains one of the words CORRUPTED CHECKSUM
(possible variations based on issues related to
product, single release, set of releases and based on
status and resolution flags)

same issue tracking advanced search as for Failure
tolerance

13.8.2 Advanced Metrics

• Use of renown libraries/framework for encryption and digital signature (Argument: a know access control
framework simplify the integration the appropriate confidentiality in a product)

• Use of appropriate code and pattern to encrypt data before streaming it out of the application.

• Test suite contains tests that attempt to corrupt data and to process corrupted data) (Argument: such test
scripts would show that integrity is tested for)

• Installation Manual explain how to setup the product to guarantee a high level of integrity (Argument:
documentation that contains information related to integrity shows that integrity is addressed by the software
product. For example, how to setup the product to use digital signature)

• User Manuel explain to the user how to sign data (Argument: helping the user sign data show a concern for
integrity)

• (not integrity of the product but integrity of the product download) Product Distribution download packages
provide their MD5 or other checksum. (Argument: Providing a checksum show that the project consider
integrity with high priority)

13.9 PRODUCT ROBUSTNESS – SECURITY – COMPLIANCE TO STANDARDS

Compliance to security standards: The degree to which a product complies with published security standards
that are relevant to its functionality.

13.10 MAPPING DATA SOURCES TO METRICS OF INTEREST

Data Source Data Type (= artifacts or = contains
artifacts)

Useful Analysis and tools

Product Distribution List (PDL)
Executable/Library Files ADVANCED – Single Instance

1. Are the security framework used to guarantee confidentiality and integrity

102

QualOSS D1.3

Deliverable ID: D1.3

Page : 103 of 121

Version: 1.0
Date: Jun 22, 07

renown for following X.509 standard, Kerberos, ...

Source Files ADVANCED – Single Instance
(For Server Application) 1. Are the security specifications (confidentiality, integrity)
found in product configuration files written in a renown language for specifying
security policies such as XACML

Test Files (input + scripts)

Documentation Files ADVANCED – Single Instance
1. Are documents mentioning that the software product has been used in systems
that are now certified Common Criteria level X (where is must be certified)

Build Files

Historical Analyses specific to Product
Distribution

Version Control Repository (VCR)

Time stamp (VC metadata)

Author (VC metadata)

Change Set (= file diff) (VC metadata)

Comment Log (VC metadata)

Check in/out programs (VC metadata)

Historical Analyses specific to Version
Control Data

Issue Tracking Database (ITD)

Request ID, Title, description

Env. Spec related to Request (software
product, version, hardware, OS, etc.)

Request Reporter's name and email

Request Status, priority, severity

Request Assignee

Target Milestones

Attachments such as test cases for bugs,
scenario for enhancement.

Additional Participants' Comments

Historical Analyses specific to Issue
Tracking

Discussion Archive (DA)
(that is, Mailing List Archive, Discussion Forum
accessible via a Web or News server)

Name, email of poster

Original Message ID, Date, Subject

Target email and list of recipients

Text Content and Attachments

Thread of answers (fields above for
following up on original message: who,
when, what, where)

Historical Analyses specific to Mailing List
Data

Website Pages (WP)

Static Pages ADVANCED – Set of Instances
1. Can we find reference to security standards on the webpage (for example, that
the product follow X.509 standard regarding digital certificates.

Wiki Pages

Historical Analyses specific to Website
Data

IRC logs (ICR)

Discussion topic

Participants

Static text content

Historical Analyses specific to IRC Data

Security Databases (SD)

Vulnerability and Exposure ID, description

Date entered

Authors

Severity

Patch info (who, when, how large, how
impactful)

Historical Analyses specific to Security
Data

Publication Database (PD)

Publication

Type of publication

Popularity of publication

Historical Analyses specific to Publication
Data

103

QualOSS D1.3

Deliverable ID: D1.3

Page : 104 of 121

Version: 1.0
Date: Jun 22, 07

General News sites (GN)

News Source, Article title and date ADVANCED – Set of Instances
1. Are they any announcement regarding the common criteria certification of a
system that uses or integrated the software product.

Visibility (Distribution Size)

Authors

Author recognition/credibility

Historical Analyses specific to General
News data

F/OSS Research Databases (FRD)
(that is FLOSSMETRICS, SQO-OSS and
FLOSSMole)

Sample of data above plus eventual
additional measurements already
performed and saved

Historical Analyses specific to F/OSS data
repositories

Historical ANALYSIS on Aggregated Data from
Various Data Sources

13.11 PRODUCT ROBUSTNESS – MATURITY – AGE

Definition: The time span over which a product has been developed.

Data Source Data Type (= artifacts or = contains
artifacts)

Useful Analysis and tools

Product Distribution List (PDL)

Executable/Library Files

Source Files

Test Files (input + scripts)

Documentation Files

Build Files

Historical Analyses specific to Product
Distribution

BASIC – Single Instance
1. Age of the first stable distribution release (as compare to present time)

Version Control Repository (VCR)

Time stamp (VC metadata) BASIC – Single Instance
1. Age of the oldest source file of the first stable release in the Version Control
Repository (as compare to present time)

Author (VC metadata)

Change Set (= file diff) (VC metadata)

Comment Log (VC metadata)

Check in/out programs (VC metadata)

Historical Analyses specific to Version
Control Data

Issue Tracking Database (ITD)

Request ID, Title, description

Env. Spec related to Request (software
product, version, hardware, OS, etc.)

Request Reporter's name and email

Request Status, priority, severity

Request Assignee

Target Milestones

Attachments such as test cases for bugs,
scenario for enhancement.

Additional Participants' Comments

Historical Analyses specific to Issue
Tracking

Discussion Archive (DA)
(that is, Mailing List Archive, Discussion Forum
accessible via a Web or News server)

Name, email of poster

Original Message ID, Date, Subject

Target email and list of recipients

Text Content and Attachments

Thread of answers (fields above for
following up on original message: who,
when, what, where)

Historical Analyses specific to Mailing List
Data

Website Pages (WP)
Static Pages ADVANCED

1. Age of the software product from its first closed source version (as compare to

104

QualOSS D1.3

Deliverable ID: D1.3

Page : 105 of 121

Version: 1.0
Date: Jun 22, 07

present time) (In case, the software product existed in closed source prior to its
FOSS release)

Wiki Pages

Historical Analyses specific to Website
Data

IRC logs (ICR)

Discussion topic

Participants

Static text content

Historical Analyses specific to IRC Data

Security Databases (SD)

Vulnerability and Exposure ID, description

Date entered

Authors

Severity

Patch info (who, when, how large, how
impactful)

Historical Analyses specific to Security
Data

Publication Database (PD)

Publication

Type of publication

Popularity of publication

Historical Analyses specific to Publication
Data

General News sites (GN)

News Source, Article title and date

Visibility (Distribution Size)

Authors

Author recognition/credibility

Historical Analyses specific to General
News data

F/OSS Research Databases (FRD)
(that is FLOSSMETRICS, SQO-OSS and
FLOSSMole)

Sample of data above plus eventual
additional measurements already
performed and saved

Historical Analyses specific to F/OSS data
repositories

Historical ANALYSIS on Aggregated Data from
Various Data Sources

13.11.1 Basic Metrics

Metric Tools

Age of the first stable distribution release (as compare
to present time)

None (visit website)

Age of the oldest source file of the first stable release
in the Version Control Repository (as compare to
present time)

(CVSAnaly)

13.11.2 Advanced Metrics

Age of the software product from its first closed
source version (as compare to present time) (In case,
the software product existed in closed source prior to
its FOSS release)

None (visit website)

105

QualOSS D1.3

Deliverable ID: D1.3

Page : 106 of 121

Version: 1.0
Date: Jun 22, 07

13.12 PRODUCT ROBUSTNESS – MATURITY – CONTINUITY

Definition: The regularity and intensity with which the product or information related to the product was created
or modified over the product's lifespan.

Data Source Data Type (= artifacts or = contains
artifacts)

Useful Analysis and tools

Product Distribution List (PDL)

Executable/Library Files

Source Files

Test Files (input + scripts)

Documentation Files

Build Files

Historical Analyses specific to Product
Distribution

Version Control Repository (VCR)

Time stamp (VC metadata) BASIC – Set of Instances
Tool: CVSAnaly
1. Number of Commits for all releases
2. Number of Commits for a specific release
3. Number of Commits for a specific set of releases (e.g. all minor releases under
a specific major release)

Author (VC metadata)

Change Set (= file diff) (VC metadata) BASIC – Set of Instances
Tool: CVSAnaly
1. Number of lines of code committed for a specific release
2. Number of lines of code committed for all releases
3. Number of lines of code committed for a specific set of releases (e.g. all minor
releases under a specific major release)

Comment Log (VC metadata)

Check in/out programs (VC metadata)

Historical Analyses specific to Version
Control Data

ADVANCED – Set of Instances
Tool: CVSAnaly + statistical Analysis (for all 7 metrics)
For the first 6 metrics below, the acceptable variation must be defined.
1. Historical variation of commits per month for all releases
2. Historical variation of commits for a specific release per month
3. Historical variation of commits for a specific set of releases (e.g. all minor
releases under a specific major release) per month
4. Historical variation of lines of code committed for all releases per month
5. Historical variation of lines of code committed for a specific release per month
6. Historical variation of lines of code committed for a specific set of releases (e.g.
all minor releases under a specific major release) per month
7. Prediction of lines of code growth as performed by SQO-OSS?

Issue Tracking Database (ITD)

Request ID, Title, description

Env. Spec related to Request (software
product, version, hardware, OS, etc.)

Request Reporter's name and email

Request Status, priority, severity

Request Assignee

Target Milestones

Attachments such as test cases for bugs,
scenario for enhancement.

Additional Participants' Comments

Historical Analyses specific to Issue
Tracking

Discussion Archive (DA)
(that is, Mailing List Archive, Discussion Forum
accessible via a Web or News server)

Name, email of poster

Original Message ID, Date, Subject

Target email and list of recipients

Text Content and Attachments

Thread of answers (fields above for
following up on original message: who,
when, what, where)

Historical Analyses specific to Mailing List
Data

Website Pages (WP)

Static Pages BASIC
(No Tools, simply visit the website)
1. Number of Major Releases
2. Number of stable releases (all, major and minor)

Wiki Pages

Historical Analyses specific to Website
Data

BASIC
(No Tools, simply visit the website and collect releases names numbers and
dates)
1. Number of Major Releases per year
2. Number of stable releases (all major and minor) per year

106

QualOSS D1.3

Deliverable ID: D1.3

Page : 107 of 121

Version: 1.0
Date: Jun 22, 07

IRC logs (ICR)

Discussion topic

Participants

Static text content

Historical Analyses specific to IRC Data

Security Databases (SD)

Vulnerability and Exposure ID, description

Date entered

Authors

Severity

Patch info (who, when, how large, how
impactful)

Historical Analyses specific to Security
Data

Publication Database (PD)

Publication BASIC – Set of Instances
Tool: Search on Amazon.com
1. Number of books published about the software product
Tool: Search on (http://liinwww.ira.uka.de/bibliography/)
2. Number of scientific article published related to the FOSS software product
(not just the project)

Type of publication

Popularity of publication

Historical Analyses specific to Publication
Data

ADVANCED – Set of Instances
Tool: Search on Amazon.com + collect publication dates for each book edition
1. Number of book on the software product published per year

General News sites (GN)

News Source, Article title and date

Visibility (Distribution Size)

Authors

Author recognition/credibility

Historical Analyses specific to General
News data

F/OSS Research Databases (FRD)
(that is FLOSSMETRICS, SQO-OSS and
FLOSSMole)

Sample of data above plus eventual
additional measurements already
performed and saved

Historical Analyses specific to F/OSS data
repositories

Historical ANALYSIS on Aggregated Data from
Various Data Sources

13.12.1 Interesting Question

It may be interesting to find whether levels of Activity (in community) and Continuity (of product) have a
relationship. Hence use one to predict the other. This could then be use to determine the health of a community
based on code contribution, for example, if there enough community interaction for the size of committed code.

13.13 PRODUCT ROBUSTNESS – MATURITY – ACTIVITY ON STABLE DEVELOPMENT BRANCH

Definition: The number and size of the contributions made to a product's stable development branch over a
certain period of time. High activity on a branch declared to be stable can be a sign of low product maturity.

Data Source Data Type (= artifacts or = contains
artifacts)

Useful Analysis and tools

Product Distribution List (PDL)

Executable/Library Files BASIC
No tools (visit website)
1. Number of children releases under a selected release/version number

Source Files

Test Files (input + scripts)

Documentation Files

Build Files

Historical Analyses specific to Product
Distribution

BASIC
No tools (visit website for links and dates)
1. Number of children releases under a selected release/version number per year

Version Control Repository (VCR)
Time stamp (VC metadata) BASIC: Set of Instances

Tool: CVSAnaly
1. Number of commits performed for all releases containing a given prefix in their

107

http://liinwww.ira.uka.de/bibliography/
http://liinwww.ira.uka.de/bibliography/
http://liinwww.ira.uka.de/bibliography/

QualOSS D1.3

Deliverable ID: D1.3

Page : 108 of 121

Version: 1.0
Date: Jun 22, 07

tag (assuming that children releases share a common prefix with their parent
release)

Author (VC metadata)

Change Set (= file diff) (VC metadata)

Comment Log (VC metadata)

Check in/out programs (VC metadata)

Historical Analyses specific to Version
Control Data

BASIC: Set of Instances
Tool: CVSAnaly + Statistical analysis
1. Historical variation, on a monthly basis, of the number of commits performed
for all releases containing a given prefix in their tag (assuming that children
releases share a common prefix with their parent release). This curve should fit
with the logarithmic function.

Issue Tracking Database (ITD)

Request ID, Title, description BASIC: Set of Instances
Tool: Advanced Search of Issue Tracking system
1. Number of issues reported for all children releases under a selected release
2. Number of issues whose resolution flag show an action took place vs. all
issues reported for a single selected release
3. Number of issues whose resolution flag show an action took place vs. all
issues reported for all children releases under a selected release.

NOTE: A resolution flag that indicates is, for example, FIX where as WONTFIX or
INVAL shows that no real action on the product took place in response to the
issue report.

Env. Spec related to Request (software
product, version, hardware, OS, etc.)

Request Reporter's name and email

Request Status, priority, severity

Request Assignee

Target Milestones

Attachments such as test cases for bugs,
scenario for enhancement.

Additional Participants' Comments

Historical Analyses specific to Issue
Tracking

ADVANCED – Set of Instances
Tool: Advanced Search of Issue Tracking system
1. Number of issues reported for all children releases under a selected release
per year
2. Number of issues whose resolution flag show an action took place vs. all
issues reported for a single selected release
3. Number of issues whose resolution flag show an action took place vs. all
issues reported for all children releases under a selected release

NOTE: A resolution flag that indicates is, for example, FIX where as WONTFIX or
INVAL shows that no real action on the product took place in response to the
issue report.

Discussion Archive (DA)
(that is, Mailing List Archive, Discussion Forum
accessible via a Web or News server)

Name, email of poster

Original Message ID, Date, Subject

Target email and list of recipients

Text Content and Attachments

Thread of answers (fields above for
following up on original message: who,
when, what, where)

Historical Analyses specific to Mailing List
Data

Website Pages (WP)

Static Pages

Wiki Pages

Historical Analyses specific to Website
Data

IRC logs (ICR)

Discussion topic

Participants

Static text content

Historical Analyses specific to IRC Data

Security Databases (SD)

Vulnerability and Exposure ID, description BASIC – Set of Instances
Tool: NVD advanced search webpage
1. Number of vulnerabilities and exposures in NVD for all releases of a software
product

ADVANCED – Set of Instances
Tool: NVD advanced search webpage
2. Number of vulnerabilities and exposures in NVD for a specific subset of
releases of a software product (for example all, 1.x... releases)

Date entered

Authors

Severity

108

QualOSS D1.3

Deliverable ID: D1.3

Page : 109 of 121

Version: 1.0
Date: Jun 22, 07

Patch info (who, when, how large, how
impactful)

Historical Analyses specific to Security
Data

ADVANCED – Set of Instances
Tool: NVD advanced search webpage + history analysis
1. Historical variation of number of vulnerabilities and exposures in NVD for a
specific proper subset of releases of a software product. (This curve should fit
with the logarithmic function)

Publication Database (PD)

Publication

Type of publication

Popularity of publication

Historical Analyses specific to Publication
Data

General News sites (GN)

News Source, Article title and date

Visibility (Distribution Size)

Authors

Author recognition/credibility

Historical Analyses specific to General
News data

F/OSS Research Databases (FRD)
(that is FLOSSMETRICS, SQO-OSS and
FLOSSMole)

Sample of data above plus eventual
additional measurements already
performed and saved

Historical Analyses specific to F/OSS data
repositories

Historical ANALYSIS on Aggregated Data from
Various Data Sources

109

QualOSS D1.3

Deliverable ID: D1.3

Page : 110 of 121

Version: 1.0
Date: Jun 22, 07

14. APPENDIX C: METRIC COLLECTION SHEETS

14.1 PRODUCT COMPLEXITY / ANALYZABILITY - URJC

Metrics • Complexity of the product delivered
• The cyclomatic complexity for entire sub tree (The metrics)

(Resource standard metrics C, C++, Java and C#)
• Detecting abusive # includes (DEPS)
• Depth of inheritance tree (AOPMetrics JAVA) (CCCC)
• Cyclomatic complexity (not in sub classes/functions) (The

metrics)
• Overal complexity (Resource standard metrics C, C++, Java and

C#)
• Package dependencies (AOPMetrics JAVA) (Java-

MetricsAnalyzer?)
• Lack of Cohesion in Methods, Chidamber-Kemerer (The Metrics)

(DEelphi-code-analyzer)
• Lack of Cohesion in Methods, Henderson-Sellers (The Metrics)
• Lack of Cohesion in operations (AOPMetrics)

Rationale If there are more complex programs, deficiencies will be more
complicated to diagnose, so we need clear code and bad programming
practices must be detected or prevented.

Metrics
• Stylistic verification (pylint)
• Coding standard enforcements (pylint)

Rationale If we need to change code, it will be easier if there is a clean code and
structured (modularized,...) program. it needs to be guided by styling
guides, standards and similar ideas.

Metrics • Processing of source code vulnerability scanners (Audit-Perl)
• Detecting potential security problems in C (C-Code Analyzer)

• array out of bound accesses
• potential bufferoverflow detection

• Others
• Number of the encoutered problems (pylint)

• Severity of the encountered problems (pylint)

Rationale Errors vulnerability scanners.

Metrics • Total files.(for multiple file metrics).
• Total lines. (SLOCCount) (CodeAnalyzer?) (VB.Net, Perl and C++

- CodeMetrics?) (Pythius) (perl-metrics)
• Code lines. (CodeAnalyzer?) (Java-MetricsAnalyzer?) (VB.Net,

Perl and C++ - CodeMetrics?)
• Comment lines. (CodeAnalyzer?) (Java-MetricsAnalyzer?)

(VB.Net, Perl and C++ - CodeMetrics?) (Pythius) (perl-metrics)
• Whitespace lines. (CodeAnalyzer?) (Java-MetricsAnalyzer?)

(VB.Net, Perl and C++ - CodeMetrics?) (Pythius) (perl-metrics)
• Functions (Pythius)
• Classes (Java-MetricsAnalyzer?)
• Cycles (Java-MetricsAnalyzer?)

Dependencies to and from (Java-MetricsAnalyzer?)

110

http://qualoss.libresoft.es/cgi-bin/trac.cgi/wiki/MetricsAnalyzer
http://qualoss.libresoft.es/cgi-bin/trac.cgi/wiki/MetricsAnalyzer
http://qualoss.libresoft.es/cgi-bin/trac.cgi/wiki/MetricsAnalyzer
http://qualoss.libresoft.es/cgi-bin/trac.cgi/wiki/MetricsAnalyzer
http://qualoss.libresoft.es/cgi-bin/trac.cgi/wiki/MetricsAnalyzer
http://qualoss.libresoft.es/cgi-bin/trac.cgi/wiki/MetricsAnalyzer
http://qualoss.libresoft.es/cgi-bin/trac.cgi/wiki/MetricsAnalyzer
http://qualoss.libresoft.es/cgi-bin/trac.cgi/wiki/MetricsAnalyzer
http://qualoss.libresoft.es/cgi-bin/trac.cgi/wiki/MetricsAnalyzer
http://qualoss.libresoft.es/cgi-bin/trac.cgi/wiki/CodeMetrics
http://qualoss.libresoft.es/cgi-bin/trac.cgi/wiki/CodeMetrics
http://qualoss.libresoft.es/cgi-bin/trac.cgi/wiki/CodeMetrics
http://qualoss.libresoft.es/cgi-bin/trac.cgi/wiki/MetricsAnalyzer
http://qualoss.libresoft.es/cgi-bin/trac.cgi/wiki/MetricsAnalyzer
http://qualoss.libresoft.es/cgi-bin/trac.cgi/wiki/MetricsAnalyzer
http://qualoss.libresoft.es/cgi-bin/trac.cgi/wiki/CodeAnalyzer
http://qualoss.libresoft.es/cgi-bin/trac.cgi/wiki/CodeAnalyzer
http://qualoss.libresoft.es/cgi-bin/trac.cgi/wiki/CodeAnalyzer
http://qualoss.libresoft.es/cgi-bin/trac.cgi/wiki/CodeMetrics
http://qualoss.libresoft.es/cgi-bin/trac.cgi/wiki/CodeMetrics
http://qualoss.libresoft.es/cgi-bin/trac.cgi/wiki/CodeMetrics
http://qualoss.libresoft.es/cgi-bin/trac.cgi/wiki/MetricsAnalyzer
http://qualoss.libresoft.es/cgi-bin/trac.cgi/wiki/MetricsAnalyzer
http://qualoss.libresoft.es/cgi-bin/trac.cgi/wiki/MetricsAnalyzer
http://qualoss.libresoft.es/cgi-bin/trac.cgi/wiki/CodeAnalyzer
http://qualoss.libresoft.es/cgi-bin/trac.cgi/wiki/CodeAnalyzer
http://qualoss.libresoft.es/cgi-bin/trac.cgi/wiki/CodeAnalyzer
http://qualoss.libresoft.es/cgi-bin/trac.cgi/wiki/CodeMetrics
http://qualoss.libresoft.es/cgi-bin/trac.cgi/wiki/CodeMetrics
http://qualoss.libresoft.es/cgi-bin/trac.cgi/wiki/CodeMetrics
http://qualoss.libresoft.es/cgi-bin/trac.cgi/wiki/MetricsAnalyzer
http://qualoss.libresoft.es/cgi-bin/trac.cgi/wiki/MetricsAnalyzer
http://qualoss.libresoft.es/cgi-bin/trac.cgi/wiki/MetricsAnalyzer
http://qualoss.libresoft.es/cgi-bin/trac.cgi/wiki/CodeAnalyzer
http://qualoss.libresoft.es/cgi-bin/trac.cgi/wiki/CodeAnalyzer
http://qualoss.libresoft.es/cgi-bin/trac.cgi/wiki/CodeAnalyzer
http://qualoss.libresoft.es/cgi-bin/trac.cgi/wiki/CodeMetrics
http://qualoss.libresoft.es/cgi-bin/trac.cgi/wiki/CodeMetrics
http://qualoss.libresoft.es/cgi-bin/trac.cgi/wiki/CodeMetrics
http://qualoss.libresoft.es/cgi-bin/trac.cgi/wiki/CodeAnalyzer
http://qualoss.libresoft.es/cgi-bin/trac.cgi/wiki/CodeAnalyzer
http://qualoss.libresoft.es/cgi-bin/trac.cgi/wiki/CodeAnalyzer
http://qualoss.libresoft.es/cgi-bin/trac.cgi/wiki/MetricsAnalyzer
http://qualoss.libresoft.es/cgi-bin/trac.cgi/wiki/MetricsAnalyzer
http://qualoss.libresoft.es/cgi-bin/trac.cgi/wiki/MetricsAnalyzer

QualOSS D1.3

Deliverable ID: D1.3

Page : 111 of 121

Version: 1.0
Date: Jun 22, 07

• Packages (Java-MetricsAnalyzer?)
• Average line length. (CodeAnalyzer?)
• Code/comments ratio. (CodeAnalyzer?)
• Code/whitespace ratio. (CodeAnalyzer?)
• Code/(comments + whitespace) ratio. (CodeAnalyzer?)
• subroutine_lines (perl-metrics)
• subroutines (perl-metrics)
• comment_lines (perl-metrics)
• pure_code (perl-metrics)
• non-subroutine lines (perl-metrics)
• code-to-comment ratio (perl-metrics)
• avg lines per subroutine (perl-metrics)
• longest subroutine (perl-metrics)
• Other basic metrics
• Other tools measuring the same or similar basic metrics:

• PyMetrics?
• The-Metrics
• Resource standard metrics (for C, C++, Java and C#) (in a more

detailed way)
• Delphi code analyzer
• Cstor

Rationale Basic metrics in order to obtain general information from the code.
Complex code is related to long functions, large classes, files with
numerous lines of code, and other similar ideas.

Addressed quality attributes Analyzability/Readability: The capability of the software product to be
diagnosed for deficiencies or causes of failures in the software, or for the
parts to be modified to be identified.

Metrics / Computation Look at metrics for each related tool.

Link to extended information Different indentation styles (whitespace) affect the readability of source
code. (Wikipedia)

14.2 COMMUNITY MATURITY - URJC

Metrics
• Number of changes made in the project. (CVSAnalY) (Wholine)
• Number of files changed in the project. (CVSAnalY) (Wholine)
• Number of developers making changes in the project.

(CVSAnalY)
• Number of non-active developers. (CVSAnalY)
• How much effort software may suppose to maintain it in the

future. (Carnarvon)
• Daily colaboration. (bloof)
• Number of lines added, removed or changed (counted as both

added and removed). (CVSAnalY) (Wholine)
• Number of commits. (CVSAnalY)
• Number of bugs, differentiating by status. (There is no tool for this

metric at the moment).
• Number of not yet fixed or closed bugs.(There is no tool for this

metric at the moment).
• Mean time elapsed to fix or to close a bug. Standard deviation.

(There is no tool for this metric at the moment).
• Activity (number of messages in a mail list). (MailingListStats?)
• Participation (number of people participating in a mail list).

(MailingListStats?)

111

http://qualoss.libresoft.es/cgi-bin/trac.cgi/wiki/MailingListStats
http://qualoss.libresoft.es/cgi-bin/trac.cgi/wiki/MailingListStats
http://qualoss.libresoft.es/cgi-bin/trac.cgi/wiki/MailingListStats
http://qualoss.libresoft.es/cgi-bin/trac.cgi/wiki/MailingListStats
http://qualoss.libresoft.es/cgi-bin/trac.cgi/wiki/MailingListStats
http://qualoss.libresoft.es/cgi-bin/trac.cgi/wiki/MailingListStats
http://en.wikipedia.org/wiki/Source_code
http://en.wikipedia.org/wiki/Source_code
http://en.wikipedia.org/wiki/Source_code
http://en.wikipedia.org/wiki/Source_code
http://en.wikipedia.org/wiki/Source_code
http://en.wikipedia.org/wiki/Source_code
http://en.wikipedia.org/wiki/Indentation_style
http://en.wikipedia.org/wiki/Indentation_style
http://en.wikipedia.org/wiki/Indentation_style
http://qualoss.libresoft.es/cgi-bin/trac.cgi/wiki/PyMetrics
http://qualoss.libresoft.es/cgi-bin/trac.cgi/wiki/PyMetrics
http://qualoss.libresoft.es/cgi-bin/trac.cgi/wiki/PyMetrics
http://qualoss.libresoft.es/cgi-bin/trac.cgi/wiki/CodeAnalyzer
http://qualoss.libresoft.es/cgi-bin/trac.cgi/wiki/CodeAnalyzer
http://qualoss.libresoft.es/cgi-bin/trac.cgi/wiki/CodeAnalyzer
http://qualoss.libresoft.es/cgi-bin/trac.cgi/wiki/CodeAnalyzer
http://qualoss.libresoft.es/cgi-bin/trac.cgi/wiki/CodeAnalyzer
http://qualoss.libresoft.es/cgi-bin/trac.cgi/wiki/CodeAnalyzer
http://qualoss.libresoft.es/cgi-bin/trac.cgi/wiki/CodeAnalyzer
http://qualoss.libresoft.es/cgi-bin/trac.cgi/wiki/CodeAnalyzer
http://qualoss.libresoft.es/cgi-bin/trac.cgi/wiki/CodeAnalyzer
http://qualoss.libresoft.es/cgi-bin/trac.cgi/wiki/CodeAnalyzer
http://qualoss.libresoft.es/cgi-bin/trac.cgi/wiki/CodeAnalyzer
http://qualoss.libresoft.es/cgi-bin/trac.cgi/wiki/CodeAnalyzer
http://qualoss.libresoft.es/cgi-bin/trac.cgi/wiki/MetricsAnalyzer
http://qualoss.libresoft.es/cgi-bin/trac.cgi/wiki/MetricsAnalyzer
http://qualoss.libresoft.es/cgi-bin/trac.cgi/wiki/MetricsAnalyzer

QualOSS D1.3

Deliverable ID: D1.3

Page : 112 of 121

Version: 1.0
Date: Jun 22, 07

• Number of people writing in the list over time. (MailingListStats?)
• The list of keywords could be obtained in a monthly basis.

(MailingListStats?)
• With a list of keyword for each month, we can find out which

topics were the most discussed and if the topics have evolved.
(MailingListStats?)

Rationale This idea is similar to third idea (continuity) but this is refered to
community. With actual tools we can not obtain really good metrics, but
we can measure basic metrics as activiy in the community (if the
community has great activity it can mean that the community has some
future).

Metric • Regeneration of developers.

Rationale In short in time projects, regeneration of developers is impossible to
measure, however, in projects as Evolution of something like that, it is
normal to have a difference in the core group during the life of a project. A
project and its community is robuster if there is a good regeneration of
developers (referring to core group)

Metric • Betweeness

Rationale In each project, during the life of the project, there are some specific
people which have important connections among different members of
the project. It is a social network metric and a vertex has a high
betweeness if it has loads of neighbours, so it mens this edge is among
big networks of people.
It is based on CVSAnalY results and using a script it converts BBDD from
CVSAnalY to Conan format. Conan is a tool which obtains different
metrics from a network, as a betweeness.

Addressed quality attributes Community Maturity: The capability of the project's community to support
the project over a specified amount of time. This includes, for example,
answering questions of users, delivering bug fixes, and evolving the
product.

Metrics / Computation Look at metrics for each related tool.

Link to extended information

14.3 STANDARD ADHERENCE - URJC

Metrics
• Stylistic verification (pylint)
• Coding standard enforcements (pylint)
• Patterns in contributions from developers

Rationale Companies usually create new standards and new specifications in order
to have easier ways to build software, thus tools are needed to check
code and results must be related to standards, laws, protocols and
others. For instance, in Java program language, there are some
standards to make comments, style specification, etc.

112

http://qualoss.libresoft.es/cgi-bin/trac.cgi/wiki/MailingListStats
http://qualoss.libresoft.es/cgi-bin/trac.cgi/wiki/MailingListStats
http://qualoss.libresoft.es/cgi-bin/trac.cgi/wiki/MailingListStats
http://qualoss.libresoft.es/cgi-bin/trac.cgi/wiki/MailingListStats
http://qualoss.libresoft.es/cgi-bin/trac.cgi/wiki/MailingListStats
http://qualoss.libresoft.es/cgi-bin/trac.cgi/wiki/MailingListStats
http://qualoss.libresoft.es/cgi-bin/trac.cgi/wiki/MailingListStats
http://qualoss.libresoft.es/cgi-bin/trac.cgi/wiki/MailingListStats
http://qualoss.libresoft.es/cgi-bin/trac.cgi/wiki/MailingListStats

QualOSS D1.3

Deliverable ID: D1.3

Page : 113 of 121

Version: 1.0
Date: Jun 22, 07

Addressed quality attributes Compliance / Standard adherence: The capability of the software product
to adhere to relevant standards, conventions or law regulations and
similar prescriptions, such as network protocols, standard file formats, or
design or architecture conventions.

Metrics / Computation Look at metrics for each related tool.

Link to extended information http://en.wikipedia.org/wiki/Compliance_%28regulation
%29
The link above is related to law environment, but
there are some useful ideas.

14.4 CONTINUITY - URJC

Metrics Regeneration of developers

Rationale In short in time projects, regeneration of developers is impossible to
measure, however, in projects as Evolution of something like that, it is
normal to have a difference in the core group during the life of a project. A
project and its community is robuster if there is a good regeneration of
developers (referring to core group)

Metrics Activity in mailing lists, control version systems.

Rationale It can be measured the activity during the life of a project. Concretely, if
last years of a project it is detected a lack of messages in mailing lists or
commits, it can mean that there is less activity in a project. Of course it
does not mean the project is dying, but it can say the project is not going
in a good way because in general there is less activity in tools related to
it.
It must be noticed that, for instance, there is less activity in a mailing list
because there are new mailing lists or there is less activity in a cvs
because the project is migrating to svn.

Addressed quality attributes Continuity: The prospect of the project to continue to be supported and
evolved in future by a dedicated community (or company, for proprietary
products).

Metrics / Computation Look at metrics for each related tool.

Link to extended information

14.5 GENERIC METRICS (ADVANCED ISSUES) - URJC

Metrics
• Stylistic verification (pylint)
• Coding standard enforcements (pylint)

Rationale We likely need clear code, it must be focused to respect standards,
modularity, unit tests and others.

Addressed quality attributes Testability: (1) According to ISO 9126, the capability of the software
product to enable modified software to be validated. (2) According to IEEE
610.12, the degree to which the module facilitates the establishment of
test criteria and the performance of tests to determine whether those

113

http://en.wikipedia.org/wiki/Compliance_(regulation)
http://en.wikipedia.org/wiki/Compliance_(regulation)

QualOSS D1.3

Deliverable ID: D1.3

Page : 114 of 121

Version: 1.0
Date: Jun 22, 07

criteria have been met. For QualOSS, we need to consider both aspects

Metrics / Computation

Link to extended information http://en.wikipedia.org/wiki/Testable
(Scientific ideas)

14.6 INTEROPERABILITY - URJC

Metrics
• The cyclomatic complexity for entire sub tree (The metrics)

(Resource standard metrics C, C++, Java and C#)
• Detecting abusive # includes (DEPS)
• Depth of inheritance tree (AOPMetrics JAVA) (CCCC)
• Cyclomatic complexity (not in sub classes/functions) (The

metrics)
• Overal complexity (Resource standard metrics C, C++, Java and

C#)
• Package dependencies (AOPMetrics JAVA) (Java-

MetricsAnalyzer?)
• Lack of Cohesion in Methods, Chidamber-Kemerer (The Metrics)

(DEelphi-code-analyzer)
• Lack of Cohesion in Methods, Henderson-Sellers (The Metrics)
• Lack of Cohesion in operations (AOPMetrics)

Rationale Some systems support a high level of interoperability with others. It
means that there are numerous interchange data operations between
them. It is normal to find that kind of interactions in complex systems with
loads of modules, thousand of lines of code and networks actions. A
developer needs a clear API, clear documentation and other similar ideas
in order to work faster, better and definitively in a good way to interact
with other tools. Thus, we measure ideas like "clean code", low
complexity, use of standards, not many includes between files.

Metrics • Stylistic verification (pylint)
• Coding standard enforcements (pylint)

Rationale In order to work easier, developers need special things as standards.

Addressed quality attributes Interoperability: The ability of two or more systems or components to
exchange information and to use the information that has been
exchanged. Related to compatibility.

Metrics / Computation Look at metrics for each related tool.

Link to extended information http://en.wikipedia.org/wiki/Interoperability
“Interoperability can be achieved in four ways: through product
engineering, industry/community partnership, access to technology and
IP, and implementation of standards.”

14.7 MAINTAINABILITY – CHANGEABILITY - URJC

Metrics Complexity of the product delivered
• The cyclomatic complexity for entire sub tree (The metrics)

(Resource standard metrics C, C++, Java and C#)
• Detecting abusive # includes (DEPS)
• Depth of inheritance tree (AOPMetrics JAVA) (CCCC)
• Cyclomatic complexity (not in sub classes/functions) (The

114

http://en.wikipedia.org/wiki/Interoperability
http://qualoss.libresoft.es/cgi-bin/trac.cgi/wiki/MetricsAnalyzer
http://qualoss.libresoft.es/cgi-bin/trac.cgi/wiki/MetricsAnalyzer
http://qualoss.libresoft.es/cgi-bin/trac.cgi/wiki/MetricsAnalyzer
http://en.wikipedia.org/wiki/Testable

QualOSS D1.3

Deliverable ID: D1.3

Page : 115 of 121

Version: 1.0
Date: Jun 22, 07

metrics)
• Overal complexity (Resource standard metrics C, C++, Java and

C#)
• Package dependencies (AOPMetrics JAVA) (Java-

MetricsAnalyzer?)
• Lack of Cohesion in Methods, Chidamber-Kemerer (The Metrics)

(DEelphi-code-analyzer)
• Lack of Cohesion in Methods, Henderson-Sellers (The Metrics)
• Lack of Cohesion in operations (AOPMetrics)
• Stylistic verification (pylint)
• Coding standard enforcements (pylint)

Rationale Again, we need to choose tools which measure complexity, guide styles
and standards in order to say that a software is easy to maintain. For this
purpose it is necessary clear documentation, clear code and it is
important to have a good development environment, it will help you to
make easier some common tasks, but we can not measure which
development environment was used, thus, we, again, must obtain metrics
from code.

Addressed quality attributes Maintainability/Changeability: The capability of the software product to be
modified. Modifications may include corrections, improvements or
adaptation of the software to changes in environment, and in
requirements and functional specifications. IEEE 610.12: Maintainability is
(1) The ease with which a software system or component can be modified
to correct faults, improve performance or other attributes, or adapt to a
changed environment. See also: extendability; flexibility. (2) The ease with
which a hardware system or component can be retained in, or restored to,
a state in which it can perform its required functions.

Metrics / Computation Look at metrics for each related tool.

Link to extended information http://en.wikipedia.org/wiki/Maintainability

14.8 PERFORMANCE - URJC

Metrics
• memory leak detection (C-code-analyzer)
• multiple/dangling free detection (C-code-analyzer)

Rationale There are some problems related to performance which are really
important in specific systems, as a real time systems, critical systems,
embedded systems (memory leak detection is very important and free
detection as well).

Addressed quality attributes Performance: The degree to which a system or component accomplishes
its designated functions within given constraints, such as speed,
accuracy, or memory usage.

Metrics / Computation
Look at metrics for each related tool.

Link to extended information http://en.wikipedia.org/wiki/Performance_testing
http://en.wikipedia.org/wiki/Performance_analysis
http://en.wikipedia.org/wiki/Performance_tuning
http://en.wikipedia.org/wiki/Performance_Engineering

115

http://en.wikipedia.org/wiki/Performance_Engineering
http://en.wikipedia.org/wiki/Performance_tuning
http://en.wikipedia.org/wiki/Performance_analysis
http://en.wikipedia.org/wiki/Performance_testing
http://en.wikipedia.org/wiki/Maintainability
http://qualoss.libresoft.es/cgi-bin/trac.cgi/wiki/MetricsAnalyzer
http://qualoss.libresoft.es/cgi-bin/trac.cgi/wiki/MetricsAnalyzer
http://qualoss.libresoft.es/cgi-bin/trac.cgi/wiki/MetricsAnalyzer

QualOSS D1.3

Deliverable ID: D1.3

Page : 116 of 121

Version: 1.0
Date: Jun 22, 07

14.9 PERFORMANCE- RESOURCE BEHAVIOUR - URJC

Metrics No metrics

Rationale

Addressed quality attributes Performance/Resource behaviour: The capability of the software product
to use appropriate amounts and types of resource when the software
performs its function under stated conditions

Metrics / Computation Look at metrics for each related tool.

Link to extended information

14.10 PERFORMANCE – TIME BEHAVIOUR - URJC

Metrics No metrics

Rationale

Addressed quality attributes Performance/Time behaviour: The capability of the software product to
provide appropriate response and processing times and throughput rates
when performances its function, under stated conditions

Metrics / Computation

Link to extended information

14.11 PROJECT MATURITY - URJC

Metrics
• Errors vulnerability scanners.
• Processing of source code vulnerability scanners (Audit-Perl)
• Detecting potential security problems in C (C-Code Analyzer)

• array out of bound accesses
• potential bufferoverflow detection
• Others

• Number of the encoutered problems (pylint)
• Severity of the encountered problems (pylint)

• Others
• How old the software is (Carnarvon)
• How much it has been maintained (Carnarvon)
• File age (bloof)

Rationale Maturity must be specified in maturity of code, or maturity of a community.
Here it refers to maturity of code. Generally speaking a project will be
good enough when it has had a long life with loads of proofs and it has
been running in production machines. However, it, sometimes, is
complicated to determine if a young project is mature enough or not.
There is a list of metrics and using them we will be able to say if a project
is mature or not, but we will need to compare with other products in order
to have as a “scale of maturity”.

Addressed quality attributes Product/Project maturity: The software product has been used for a long

116

QualOSS D1.3

Deliverable ID: D1.3

Page : 117 of 121

Version: 1.0
Date: Jun 22, 07

time by many users, and as a consequence, (most) faults have been
removed. According to ISO 9126, the capability of the software product to
avoid failure as a result of faults in the software. However, this definition is
counter-intuitive.

Metrics / Computation Look at metrics for each related tool.

Link to extended information

14.12 SAFETY/SECURITY - URJC

Metrics
• Errors vulnerability scanners.
• Processing of source code vulnerability scanners (Audit-Perl)
• Detecting potential security problems in C (C-Code Analyzer)
• Array out of bound accesses o potential bufferoverflow detection

o Others
• Number of the encoutered problems (pylint)
• Severity of the encountered problems (pylint)

Rationale If there are not vulnerabilities, software is safer.
In this quality attribute we are not considering problems related to social
engineering or similar problems. Only problems in code.

Addressed quality attributes Safety/Security: Security is the capability of the software product to
protect information and data so that unauthorized persons or systems
cannot read or modify them and authorized persons or systems are not
denied access to them. Safety (according to ISO 9126 a subcharacteristic
of quality in use) is the capability of the software product to achieve
acceptable levels of risk of harm to people, business, software, property
or the environment in a specified context of use.

Metrics / Computation Look at metrics for each related tool.

Link to extended information http://en.wikipedia.org/wiki/Computer_security
http://en.wikipedia.org/wiki/Computer_security#Secure
_Coding
http://en.wikipedia.org/wiki/Vulnerability_%28compute
r_science%29
http://en.wikipedia.org/wiki/Buffer_overflows
http://en.wikipedia.org/wiki/Format_string_vulnerabil
ities
http://en.wikipedia.org/wiki/Code_injection
http://en.wikipedia.org/wiki/Integer_overflow

14.13 STABILITY / RELIABILITY - URJC

Metrics
• Errors vulnerability scanners.
• Processing of source code vulnerability scanners (Audit-Perl)
• Detecting potential security problems in C (C-Code Analyzer)

• array out of bound accesses
• potential bufferoverflow detection
• Others

117

http://en.wikipedia.org/wiki/Integer_overflow
http://en.wikipedia.org/wiki/Code_injection
http://en.wikipedia.org/wiki/Format_string_vulnerabilities
http://en.wikipedia.org/wiki/Format_string_vulnerabilities
http://en.wikipedia.org/wiki/Buffer_overflows
http://en.wikipedia.org/wiki/Vulnerability_(computer_science)
http://en.wikipedia.org/wiki/Vulnerability_(computer_science)
http://en.wikipedia.org/wiki/Computer_security#Secure_Coding
http://en.wikipedia.org/wiki/Computer_security#Secure_Coding
http://en.wikipedia.org/wiki/Computer_security

QualOSS D1.3

Deliverable ID: D1.3

Page : 118 of 121

Version: 1.0
Date: Jun 22, 07

• Number of the encoutered problems (pylint)
• Severity of the encountered problems (pylint)
• Coding standard enforcements (pylint)

Rationale Again, we need clear code because developers must change code, and
with a clear code it will be easier to change code and to obtain stability. Of
course, tools related to error detection are very useful in this context.

Addressed quality attributes Stability/Reliability: Stability is defined (ISO 9126) as the capability of the
software product to avoid unexpected effects from modifications of the
software (--> subconstruct of maintainability in ISO 9126). Reliability is
defined (ISO 9126) as the capability of the software product to maintain a
specified level of performance when used under specific conditions; this
includes fault tolerance and recoverability.

Metrics / Computation Look at metrics for each related tool.

Link to extended information http://en.wikipedia.org/wiki/Fault-tolerant_system
(Looks at “See Also” section)

14.14 SUITABILITY - URJC

Metrics no metrics found.

Rationale We need metrics which were able to recognize requirements from user.
There are some environments which provide this feature, as Eiffel
language programming, however there are not metrics associated to that
kind of characteristics. Probably we will have to look for tools related to
Eiffel or those which provide Eiffel functionality.

Addressed quality attributes Suitability: The capability of the software product to provide an
appropriate set of functions for specified tasks and user objectives.

Metrics / Computation Look at metrics for each related tool.

Link to extended information

14.15 TESTABILITY - URJC

Metrics • Stylistic verification (pylint)
• Coding standard enforcements (pylint)

Rationale We need probably clear code, it must be focused to respect standards,
modularity, unit tests and other

Addressed quality attributes Testability: (1) According to ISO 9126, the capability of the software
product to enable modified software to be validated. (2) According to IEEE
610.12, the degree to which the module facilitates the establishment of
test criteria and the performance of tests to determine whether those
criteria have been met. For QualOSS, we need to consider both aspects

Metrics / Computation Look at metrics for each related tool.

Link to extended information

118

http://en.wikipedia.org/wiki/Fault-tolerant_system

QualOSS D1.3

Deliverable ID: D1.3

Page : 119 of 121

Version: 1.0
Date: Jun 22, 07

14.16 BUSINESS STRUCTURE AND PRODUCTIVITY MODEL (BSPM) - MERIT

Name Business structure and productivity model (BSPM)

Brief description of model There is no existing model for evaluating the quality of OSS projects
based on economic indicators such as business structure and
productivity. Therefore, we propose the development of a model based on
a number of indicators such as the productivity of developers, the
governance structure of the project, the nature and extent of involvement
of formal organisational structures such as foundations, companies,
universities and public sector organisations. Sustainability is indicated by
these factors, as well as the project's success at skills improvement
among developers to ensure continuity in leadership roles.

Addressed quality attributes Examples of quality attributes we plan to address are as follows:

Productivity: extent of code output, indicating improvements in software,
as a function of input in terms of developer time and effort.
Sustainability: likely sustainability of governance structures of project,
indicating the degree to which a project can adapt to non-technical risks
and changes, as well as set a roadmap for predictable growth.
Responsiveness: timely responsiveness to user needs (such as rapid bug
fixing, structural involvement of users in the software design process).

Constructs / Rationale This approach outlined above seems to be the most promising and fruitful
contribution by MERIT to Qualoss. It addresses issues not yet tackled by
the literature.
Below some references are listed, eventhough they are not directly on the
issue, the FLOSSIMPACT report has a section on productivity that we can
build further, and the other papers touches upon different community
aspects, as well as firm invovlement. These are just some starting points.

Link to extended information
UNU-MERIT report (2006) on the Economic impact of F/OSS on
innovation and competitiveness of the EU ICT sector

O'Mahony, Siobhan & Fabrizio Ferraro (2003) Managing
the Boundary of an ?Open? Project

Mockus, Audris & Roy T. Fielding & James Herbsleb
(2000) A Case Study of Open Source Software
Development: The Apache Server

Rossi, Cristina and Andrea Bonaccorsi (2005)
Intrinsic motivations and profit-oriented firms in
Open Source software. Do firms practise what they
preach?

Gregorio Robles and Jesús M. González-Barahona
Contributor Turnover in Libre Software Projects

Rishab Aiyer Ghosh and Paul A. David (2003) Analysis of
authorship clusters in the Linux Kernel Developer
community http://dxm.org/papers/licks1/licksresults.pdf

119

http://dxm.org/papers/licks1/licksresults.pdf
http://dxm.org/papers/licks1/licksresults.pdf
http://dxm.org/papers/licks1/licksresults.pdf
http://gsyc.escet.urjc.es/~grex/developer-turnover-14pages.pdf
http://gsyc.escet.urjc.es/~grex/developer-turnover-14pages.pdf
http://gsyc.escet.urjc.es/~grex/developer-turnover-14pages.pdf
http://gsyc.escet.urjc.es/~grex/developer-turnover-14pages.pdf
http://gsyc.escet.urjc.es/~grex/developer-turnover-14pages.pdf
http://gsyc.escet.urjc.es/~grex/developer-turnover-14pages.pdf
http://opensource.mit.edu/papers/rossi_motivations.pdf
http://opensource.mit.edu/papers/rossi_motivations.pdf
http://opensource.mit.edu/papers/rossi_motivations.pdf
http://opensource.mit.edu/papers/rossi_motivations.pdf
http://opensource.mit.edu/papers/rossi_motivations.pdf
http://opensource.mit.edu/papers/rossi_motivations.pdf
http://opensource.mit.edu/papers/rossi_motivations.pdf
http://opensource.mit.edu/papers/rossi_motivations.pdf
http://opensource.mit.edu/papers/rossi_motivations.pdf
http://opensource.mit.edu/papers/mockusapache.pdf
http://opensource.mit.edu/papers/mockusapache.pdf
http://opensource.mit.edu/papers/mockusapache.pdf
http://opensource.mit.edu/papers/mockusapache.pdf
http://opensource.mit.edu/papers/mockusapache.pdf
http://opensource.mit.edu/papers/mockusapache.pdf
http://opensource.mit.edu/papers/omahonyferraro.pdf
http://opensource.mit.edu/papers/omahonyferraro.pdf
http://opensource.mit.edu/papers/omahonyferraro.pdf
http://opensource.mit.edu/papers/omahonyferraro.pdf
http://opensource.mit.edu/papers/omahonyferraro.pdf
http://opensource.mit.edu/papers/omahonyferraro.pdf
http://opensource.mit.edu/papers/mockusapache.pdf
http://opensource.mit.edu/papers/mockusapache.pdf
http://opensource.mit.edu/papers/mockusapache.pdf
http://opensource.mit.edu/papers/mockusapache.pdf
http://opensource.mit.edu/papers/mockusapache.pdf
http://opensource.mit.edu/papers/mockusapache.pdf
http://opensource.mit.edu/papers/omahonyferraro.pdf
http://opensource.mit.edu/papers/omahonyferraro.pdf
http://opensource.mit.edu/papers/omahonyferraro.pdf
http://opensource.mit.edu/papers/omahonyferraro.pdf
http://opensource.mit.edu/papers/omahonyferraro.pdf
http://opensource.mit.edu/papers/omahonyferraro.pdf

QualOSS D1.3

Deliverable ID: D1.3

Page : 120 of 121

Version: 1.0
Date: Jun 22, 07

15. APPENDIX D: GLOSSARY

Defect: (Definition used in QUALOSS)

• IN QUALOSS, a defect is a product anomaly

• IEEE 982-1988 - A product anomaly. Examples include such things as (1) omissions and imperfections
found during early life cycle phases and (2) faults contained in software sufficiently mature for test or
operation. See also fault.

Error:

• IN QUALOSS, an error is the discrepancy between a computed, observed, or measured value or
condition and the true, specified, or theoretically correct value or condition. (As defined by ISO)

• IEEE 610.12 (IMPORTANT see following note for redefinition) - (1) The difference between a computed,
observed, or measured value or condition and the true, specified, or theoretically correct value or condition.
For example, a difference of 30 meters between a computed result and the correct result. (2) An incorrect
step, process, or data definition. For example, an incorrect instruction in a computer program. (3) An
incorrect result. For example, a computed result of 12 when the correct result is 10. (4) A human action that
produces an incorrect result. For example, an incorrect action on the part of a programmer or operator. Note:
While all four definitions are commonly used, one distinction assigns definition 1 to the word “error,”
definition 2 to the word “fault,” definition 3 to the word “failure,” and definition 4 to the word “mistake.” See
also: dynamic error; fatal error; indigenous error; semantic error; syntactic error; static error; transient error

• IEEE 982-1988 - Human action that results in software containing a fault. Examples include omission or
misinterpretation of user requirements in a software specification, incorrect translation, or omission of a
requirement in the design specification.

• ISO - A discrepancy between a computed, observed, or measured value or condition and the true, specified,
or theoretically correct value or condition. See: anomaly, bug, defect, exception, and fault

Fault:

• IN QUALOSS: A fault is An incorrect step, process, or data definition in a computer program. In other
word, a fault = a defect.

• IEEE 610.12 - (1) A defect in a hardware device or component; for example, a short circuit or broken wire.
(2) An incorrect step, process, or data definition in a computer program. Note: This definition is used
primarily by the fault tolerance discipline. In common usage, the terms “error” and “bug” are used to express
this meaning. See also: data-sensitive fault; program-sensitive fault; equivalent faults; fault masking;
intermittent fault.

• (Alternate Non-preferred definition for Failure) IEEE 982-1988 - (1) An accidental condition that causes a
functional unit to fail to perform its required function). (2) A manifestation of an error in software. A fault, if
encountered, may cause a failure. Synonymous with bug.

Failure:

• IEEE 610.12 - The inability of a system or component to perform its required functions within specified
performance requirements. Note: The fault tolerance discipline distinguishes between a human action (a
mistake), its manifestation (a hardware or software fault), the result of the fault (a failure), and the amount by
which the result is incorrect (the error). See also: crash; exception; failure mode; failure rate; hard failure;
incipient failure; random failure; soft failure.

• IN QUALOSS: a failure is the inability of a system or component to perform its required functions
within specified performance requirements. In many cases, a failure is due to the execution of a
fault.

120

QualOSS D1.3

Deliverable ID: D1.3

Page : 121 of 121

Version: 1.0
Date: Jun 22, 07

• (Alternate Non-preferred definition for Failure) IEEE 982-1988 - (1) The termination of the ability of a
functional unit to perform its required function. (definition 1 is similar to the one given in IEEE 729-1983) (2)
An event in which a system or system component does not perform a required function within specified
limits. A failure may be produced when a fault is encountered

121

	1.Introduction
	1.1Motivation
	1.2Goal
	1.3Strategy For Workpackage 1
	1.4Approach
	1.5Structure of the Deliverable

	2.QualOSS Prototype Model
	2.1Evolvability
	2.2Robustness

	3.Evolvability: Product Quality Model
	3.1Usefulness of Code Documentation
	3.1.1Actuality
	3.1.2Coverage
	3.1.3Code Documentation Standard Compliance

	3.2Usefulness of User Documentation
	3.2.1Actuality
	3.2.2Coverage
	3.2.3Internationalization
	3.2.4User Documentation Standard Compliance

	3.3Maintainability
	3.3.1Product Complexity
	3.3.2Architecture Flexibility
	3.3.3Fixability
	3.3.4Maintainability Standard compliance

	3.4Interoperability
	3.4.1Runtime Interoperability
	3.4.2Passive Interoperability

	3.5Portability
	3.5.1Platform Specificity
	3.5.2Portability Standard compliance

	4.Evolvability: Community Quality Model
	4.1Product Adoption
	4.1.1User Community Size
	4.1.2Mission Criticality
	4.1.3License permissiveness

	4.2Developer Community Liveliness
	4.2.1Developer Community Size
	4.2.2Developer Community Activity
	4.2.3Developer Community Heterogeneity
	4.2.4Developer Community Fluctuation

	4.3Process Maturity
	4.3.1Established Process Coverage
	4.3.2Process Automation
	4.3.3Popularization

	4.4Support Availabilty
	4.4.1Modification Support Availability
	4.4.2Deployment Support Availability
	4.4.3Backward Support

	5.Robustness: Product Quality Model
	5.1Reliability
	5.1.1Failure Tolerance
	5.1.2Fault / Error Tolerance
	5.1.3Recoverability
	5.1.4Availability

	5.2Maturity
	5.2.1Age
	5.2.2Continuity
	5.2.3Activity on stable development branch

	5.3Security
	5.3.1Confidentiality
	5.3.2Integrity
	5.3.3Security Standard compliance

	6.Robustness: Community Quality Model
	6.1Maturity of Security Processes
	6.1.1Compliance
	6.1.2Reaction Time
	6.1.3Inclusion of Preventive/Reactive Actions

	6.2Maturity of Reliability Processes
	6.2.1Compliance
	6.2.2Reaction Time
	6.2.3Inclusion of Preventive/Reactive Actions

	7.Process Assessment Aspects
	7.1Status and Next Steps
	7.2A Model for Process Maturity: CMMI
	7.3Evidence of Process Maturity in F/OSS Projects
	7.3.1Configuration Management
	7.3.2Requirements Management
	7.3.3Project Planning
	7.3.4Validation
	7.3.5Technical Solution

	7.4Sample Analysis

	8.Evaluation of documentation in Open Source Software
	8.1Different Type of Documentation: Documentation Completeness
	8.1.1Design Documentation
	8.1.2Product Documentation
	8.1.3Manual Users documentation / Online Help or online documentation

	8.2Document quality
	8.2.1Document Structure
	8.2.2Documentation Standards

	8.3Study for the case of Functional Description Documentation

	9.Issues for the QualOSS Advanced Quality Model
	10.Interpretation Guide / QualOSS User Manual
	11.Summary and Conclusions
	12.Appendix A: Product Metrics Tables
	12.1Metrics
	12.1.1Simple Analysis
	12.1.2Advanced Analysis

	13.Appendix B: Product Robustness
	13.1Reliability – Fault Tolerance – Failure Tolerance
	13.2Mapping Data sources to Metrics of interest
	13.3Details on Metrics
	13.3.1Basic Metrics
	13.3.2Advanced Metrics

	13.4Product Robustness – Reliability – Fault Tolerance – Error Tolerance
	13.5Product Robustness – Reliability – Recoverability
	13.5.1Basic Metrics
	13.5.2Advanced Metrics

	13.6Product Robustness – Reliability – Availability
	13.6.1Basic Metrics
	13.6.2Advanced Metrics

	13.7Product Robustness – Security – Confidentiality
	13.7.1Basic Metrics
	13.7.2Advanced Metrics

	13.8Product Robustess – Security – Integrity
	13.8.1Basic Metrics
	13.8.2Advanced Metrics

	13.9Product Robustness – Security – Compliance to Standards
	13.10Mapping Data sources to Metrics of interest
	13.11Product Robustness – Maturity – Age
	13.11.1Basic Metrics
	13.11.2Advanced Metrics

	13.12Product Robustness – Maturity – Continuity
	13.12.1Interesting Question

	13.13Product Robustness – Maturity – Activity on Stable development branch

	14.Appendix C: Metric Collection Sheets
	14.1Product Complexity / Analyzability - URJC
	14.2Community Maturity - URJC
	14.3Standard Adherence - URJC
	14.4Continuity - URJC
	14.5Generic Metrics (Advanced issues) - URJC
	14.6Interoperability - URJC
	14.7Maintainability – Changeability - URJC
	14.8Performance - URJC
	14.9Performance- Resource behaviour - URJC
	14.10Performance – Time behaviour - URJC
	14.11Project Maturity - URJC
	14.12Safety/Security - URJC
	14.13Stability / Reliability - URJC
	14.14Suitability - URJC
	14.15Testability - URJC
	14.16Business structure and productivity model (BSPM) - MERIT

	15.Appendix D: Glossary

