
(contract # 033547)
Sponsored through Framework Programme Sixth (Call 5) by

Document Information

Version: 2.0
Date : Feb 1, 08
Pages : 76

Owning Partner:
CETIC

Author(s):
Jean-Christophe DEPREZ (CETIC),
Jose Ruiz (ADACORE), Israel
HERRAIZ (URJC), Carlos GARCIA
CAMPOS (URJC)

Reviewer(s):
Fraunhofer IESE

To:
CONSORTIUM

Purpose of distribution:
Ready for submission to E.C.

The QUALOSS Consortium consists of: CETIC (BE), Facultés
Universitaires Notre Dame de la Paix à Namur (BE),
Universidad Rey Juan Carlos (ES), Fraunhofer IESE (DE), ZEA
Partners (BE), MERIT (NL), AdaCore (FR), PEPITe (BE)

Printed
on 02/01/08 at 11:47:00
AM

Status: Confidentiality:

[
[
[
[

 X

]
]
]
]

 Draft
 To be reviewed
 Proposal
 Final/Released

[
[
[

X]
]
]

 Public
 Restricted
 Confidenti
al

- Intended for public use
- Intended for QUALOSS consortium
only
- Intended for individual partner
only

Deliverable ID: D1.1

Title:

Evaluation Report on Existing Tools and Existing F/OSS
repositories

 Copyright Jean-Christophe DEPREZ (CETIC), Jose Ruiz (ADACORE), Israel HERRAIZ
(URJC) and Carlos GARCIA CAMPOS (URJC)

(contract #033547)

Evaluation Report on Existing Tools and
Existing F/OSS repositories

Deliverable ID: D1.1

Page : 2 of 76

Version: 2.0
Date: Feb 1, 08

Status : Proposal
Confid : Public

Deliverable: D1.1

Title: Evaluation Report on Existing Tools and Existing F/OSS repositories

Executive Summary:

The strategic objective of the QUALOSS project is to enhance the competitive position
of the European software industry by providing methodologies and tools for improving
their productivity and the quality of their software products. To this end, QUALOSS plan
on developing a tooled method for assessing the evolvability and robustness of Free
libre Open-Source Software (FlOSS). In turn, this will facilitate the integration and
acquisition process of FlOSS in existing systems.

This first workpackage (WP1) performs requirements analysis through prototyping. In
particular, requirements analysis is approached from two directions, top-down and
bottom-up. task 1.2 is top down, while task 1.1 takes a bottom up angle. The results of
tasks 1.1 and 1.2 will later be merged during tasks 1.3, which identifies how to
measure the quality characteristics highlighted in task 1.2 using the tools and
techniques identified in tasks 1.1. This deliverable describes the outcome of task 1.1.

After an introduction in Section 1, a short glossary is presented in Section 2.

Section 3 enumerates different sources containing data related to FlOSS projects.
Beside FlOSS product releases, version control repositories, and bug tracking data,
several other lesser known sources are presented such as mailing list archives and
vulnerability databases.

Section 4 reviews existing tools for analyzing the data from the source mentioned in
Section 3.

Section 5 presents advanced analysis of potential interest for the QUALOSS quality
models.

Concluding remark are in Section 6.

2

(contract #033547)

Evaluation Report on Existing Tools and
Existing F/OSS repositories

Deliverable ID: D1.1

Page : 3 of 76

Version: 2.0
Date: Feb 1, 08

Status : Proposal
Confid : Public

Deliverable: D1.1

3

(contract #033547)

Evaluation Report on Existing Tools and
Existing F/OSS repositories

Deliverable ID: D1.1

Page : 4 of 76

Version: 2.0
Date: Feb 1, 08

Status : Proposal
Confid : Public

CHANGE LOG

Ver. Date Author Description
0.1 18/09/2006 Jean-Christophe DEPREZ Initial Proposal for

Structure (section
assignment and timeline)

0.2 24/10/2006 Jose RUIZ Add Ada tool names
0.3 23/11/2006 Israel HERRAIZ Section 2 updated and

finished. Needs to be
reviewed

0.4 01/12/2006 Carlos GARCIA CAMPOS Repository-Data Analysis
Tools section finished
(section 3.2)

0.5 15/02/2007 Jose RUIZ Update static analysis
tools for Ada

0.6 16/02/2007 Jose RUIZ Update dynamic analysis
tools for Ada

0.7 01/03/2007 Jean-Christophe DEPREZ Added C++, Python
0.7 12/03/2007 Marcus CIOLKOWSKI, Martín SOTO First Review
0.8 17/03/2007 Jean-Christophe DEPREZ Added Sections 5 on

advanced analyses +
conclusion and Exec
Summary

0.9 19/03/2007 Martín SOTO Second Review
0.10 20/03/2007 Jean-Christophe DEPREZ Integrated Comments from

Second Review
0.11 21/03/2007 Carlos GARCIA CAMPOS Filled some missing fields

in Section 4.2
1.0 21/03/2007 Jean-Christophe DEPERZ Final check to make

deliverable ready for
submission

1.1 21/01/2008 Israel HERRAIZ Some more references and
comments for the
Advanced Analysis section

1.2 31/01/2008 Jean-Christophe DEPREZ Review of references and
comments added By Israel.

4

(contract #033547)

Evaluation Report on Existing Tools and
Existing F/OSS repositories

Deliverable ID: D1.1

Page : 5 of 76

Version: 2.0
Date: Feb 1, 08

Status : Proposal
Confid : Public

TABLE OF CONTENTS

1. Introduction6
1.1 Motivation of Task 1.16
1.2 Objectives of Task 1.1..7
1.3 Structure of the Deliverable7

2. Glossary .. .8

3. F/OSS Repositories Data..10
3.1 F/OSS Project Releases..10
3.2 Version Control Systems..11
3.3 Bug Tracking Systems..12
3.4 Mailing List Archives...13
3.5 Other Data Sources Internal to a F/OSS Project..13
3.6 Data Sources External to a F/OSS Project...14

4. Existing Analysis Tools...16
4.1 Code Analysis Tools ..16

4.1.1 Language Independent Analysis Tools..17
4.1.1.1 SLOCCount...17

4.1.2 Ada Static Analysis Tools..19
4.1.2.1 GNATmetric... ...19
4.1.2.2 GNATstack..22
4.1.2.3 GNATcheck...24
4.1.2.4 AdaControl..26

4.1.3 C/C++ Static Analysis Tools ..28
4.1.3.1 SISSy (-cpp)...28
4.1.3.2 CCCC...30

4.1.4 Java Static Analysis Tools...32
4.1.4.1 SQUAL...32
4.1.4.2 CheckStyle...33
4.1.4.3 JDepend...35

4.1.5 Python Static Analysis Tools ..36
4.1.5.1 PyMetrics..36
4.1.5.2 PyLint.. .38
4.1.5.3 The Metrics (for Python)...40

4.1.6 Dynamic Analysis..42
4.1.6.1 GCOV..42
4.1.6.2 GNATmem..44
4.1.6.3 Emma...46

4.2 Analysis Tools for Other Repository-Data ...47
4.2.1 Version Control Analysis Tools..47

4.2.1.1 CVSAnaly..47
4.2.1.2 GlueTheos...49
4.2.1.3 Wholine..50
4.2.1.4 Carnarvon...51
4.2.1.5 CvsGraph..52

4.2.2 Mailing Lists Archives Analysis Tools..53

5

(contract #033547)

Evaluation Report on Existing Tools and
Existing F/OSS repositories

Deliverable ID: D1.1

Page : 6 of 76

Version: 2.0
Date: Feb 1, 08

Status : Proposal
Confid : Public

4.2.2.1 MailingListStats..53
4.2.2.2 SEAL...55

5. Advanced Analysis Tools and Techniques...56
5.1 F/OSS-Product-Release Advanced Analysis...56

5.1.1 Advanced Static Analysis...56
5.1.2 Advanced Dynamic Analysis..58
5.1.3 Hybrid Analysis..58
5.1.4 Analysis of Build-Install Mechanism..59
5.1.5 Analysis of Product-Release Documentation...59

5.2 Version-Control Advanced Analysis..59
5.2.1 Historical Analysis of Version-Controlled Files...59
5.2.2 Version Control Metadata Analysis...60

5.3 Bug Tracking Advanced Analysis ...61
5.4 Mailing List Archives Advanced Analysis..62
5.5 Advanced Analysis on Other Data Internal to a F/OSS Project..............................62

5.5.1 Analysis of On-Line Documentation ...62
5.5.2 Analysis of Web and Wiki Pages...62
5.5.3 Analysis of IRC Logs...63

5.6 Advanced Analysis on Other Data External to a F/OSS Project.............................63
5.6.1 Analysis of FlOSS Data Provided by Other Projects ..63
5.6.2 Analysis of Vulnerability Databases ...63
5.6.3 Analysis of Publication Databases ...64
5.6.4 Analysis of News Websites and Archives ...64

5.7 Multiple Data Source Analysis..64

6. Conclusion..66

7. References...67

6

(contract #033547)

Evaluation Report on Existing Tools and
Existing F/OSS repositories

Deliverable ID: D1.1

Page : 7 of 76

Version: 2.0
Date: Feb 1, 08

Status : Proposal
Confid : Public

1. INTRODUCTION
The strategic objective of the QUALOSS project is to enhance the competitive position of
the European software industry by providing methodologies and tools for improving their
productivity and the quality of their software products.

To achieve this objective, QUALOSS notes that many organizations integrate Free libre
Open Source Software (FlOSS) in their systems. However, there is currently no objective,
comprehensive method for assessing FlOSS quality. Hence, QUALOSS plans on
developing a tooled method for assessing the robustness and evolvability of FlOSS .

This first workpackage (WP1) performs requirements analysis through prototyping while
the other scientific workpackages (WP2-4) improve on the functional prototype build in
WP1. The first three tasks of WP1 (T1.1, T1.2 and T1.3) perform requirements analysis
while the remaining three tasks (T1.4, T1.5, and T1.6) build the functional prototype and
validate the approach.

Requirements analysis is approached in two directions, top-down and bottom-up. In
particular, task 1.2 is top down, it starts from our two main quality criteria of interest,
evolvability and robustness and investigates how to refine them based on narrower,
more specific quality characteristics. On the other hand, Task 1.1 takes a bottom up
angle. Independent from the activities of Task 1.2, Task 1.1 reviews the existing tools
and techniques that could be of interest for measuring quality characteristics. The
results of tasks 1.1 and 1.2 are merged in tasks 1.3, which identifies how to measure the
quality characteristics highlighted in task 1.2 using the tools and techniques identified in
tasks 1.1.

1.1 MOTIVATION OF TASK 1.1
Assessing the evolvability and robustness of FlOSS requires automation as there is too
much data available for a complete-manual treatment. Thanks to the use of tools, our
assessment will be able to evaluate FlOSS on most of its data limiting the manual
assessment of small data samples to very specific quality estimation.

Reviewing the quality of existing tools will also help identify where additional efforts are
needed to implement new tools or even increase the reliability and robustness of these
existing tools. As expected, there exist many tools that perform the same measures on
the same kind of data, for example, many tools produce the count of lines of code for
the same programming language. In turn, Task 1.1 must identify those worth using vs
those to discard.

Before identifying tools, it is also important to identify the kind of data available in FlOSS
repositories. In fact, it is only useful to inventory tools that can treat data available in
FlOSS repositories or other sources of reliable information. Although the types of data
available may vary among FlOSS projects, trends have emerge due to the use of well-
known forges such as SourceForge that provide access to particular tool sets. In
addition, some FlOSS communities decided to host their own forge such as Apache or
AdaCore, a QUALOSS partner. Usually, these groups propose an even broader type of
data, although some may not be available publicly. For example, AdaCore's test suite is

7

(contract #033547)

Evaluation Report on Existing Tools and
Existing F/OSS repositories

Deliverable ID: D1.1

Page : 8 of 76

Version: 2.0
Date: Feb 1, 08

Status : Proposal
Confid : Public

not public due to the presence of sensitive data in tests provided by AdaCore's
customers.

The systematic inventory of available data and existing tools will help spot missing
parts. In particular, we may discover that a tool does not exist for a particular dataset. If
Task 1.2 and 1.3 further show that such a tool is useful for measuring a quality
characteristic, the tool will need to be implemented.

1.2 OBJECTIVES OF TASK 1.1
This deliverable has the following objectives:
• Determine the type of data found in FlOSS repositories and other reliable sources of

information related to FlOSS
• Determine the tools and techniques available to analyze FlOSS project data

1.3 STRUCTURE OF THE DELIVERABLE
Section 2 contains a glossary of FlOSS related terminologies as used in QUALOSS.

Section 3 describes the different types of data found in repositories of FlOSS projects
and other reliable sources of information on FlOSS projects. Furthermore, for each type
of repository, we define its content, that is, the different datatypes contained in the
repository.

We also give a rough estimate on how often FlOSS projects collect each datatype and
also check it for validity.

Section 4 inventories analysis tools studied and selected for use in the QUALOSS
platform. General information of each tool is presented along with the analyses
computed.

Section 5 introduces advanced analysis and techniques for the data sources mentioned
in Section 3 and Section 6 presents concluding remarks.

8

(contract #033547)

Evaluation Report on Existing Tools and
Existing F/OSS repositories

Deliverable ID: D1.1

Page : 9 of 76

Version: 2.0
Date: Feb 1, 08

Status : Proposal
Confid : Public

2. GLOSSARY
This section presents a glossary of FlOSS related terminologies. We note that this
glossary varies slightly from Section 7.0 of the DoW (Description of Work), which, among
other things, defines FlOSS related terminology.

FlOSS:
Definition: FlOSS is short for Free/Open-Source Software.

Note: FlOSS refers to any software licensed under terms compliant with the Free
Software Foundation definition of “free software”, and the Open Source Initiative
definition of “open source software”, thus avoiding the controversy between
those two terms. In fact, QUALOSS does not aim at studying the variation
between Free Software and Open Source Software.

FlOSS license:
Definition: FlOSS license is a license listed by the Open Source Initiative (OSI
url:www.osi.org) or a license that is legally compatible with a license listed by the
OSI.

Note: QUALOSS does not study legal issues of license. However, if necessary,
license types may somehow participate in the quality models defined by
QUALOSS.

FlOSS project:
Definition: FlOSS project is a software project that is released under the terms of a
FlOSS license.

Example: GNAT Pro, Zope, Linux, Eclipse, CVS are all FlOSS projects.

FlOSS forge:

Definition: A FlOSS forge presents a large container where FlOSS projects publish
the product of their development (i.e. software) and also store the archives of
communication and development interactions to produce that software.

Example: SourceForge (www.sourceforge.org) , GNU Software site (www.gnu.org),
Eclipse site (www.eclipse.org) are three different FlOSS repositories.

Although most FlOSS forges have a web front where many different types of
information are accessible, it is also possible for a FlOSS forge to be mostly
private, releasing publicly only the data required by the FlOSS license used. The
QUALOSS project is mostly interested in FlOSS forges and FlOSS projects that
publicly release information of different types.

FlOSS project repository:

9

http://www.eclipse.org/
http://www.eclipse.org/
http://www.eclipse.org/
http://www.gnu.org/
http://www.gnu.org/
http://www.gnu.org/
http://www.sourceforge.org/
http://www.sourceforge.org/
http://www.sourceforge.org/
http://www.osi.org/
http://www.osi.org/
http://www.osi.org/

(contract #033547)

Evaluation Report on Existing Tools and
Existing F/OSS repositories

Deliverable ID: D1.1

Page : 10 of 76

Version: 2.0
Date: Feb 1, 08

Status : Proposal
Confid : Public

Definition: FlOSS project repository refers to a particular type of data repository
that a FlOSS project may use to manage project data. Common types of
repositories used by FlOSS projects are version control repository, bug tracking
repository, mailing list archive, software release repository, a repository of Web
pages, or of documentation. Repositories can be categorized according to the
kind and structure of the data they contain, in particular structured, semi-
structured, or unstructured.

Example: The Tomcat project (http://tomcat.apache.org/) uses several types of
repositories: a SVN repository, a bug tracking repository, a mailing list archive
repository, a software release repository, a repository for documentation, etc.
When discussing the general case of any FlOSS project, we refer to one of these
repositories as a FlOSS project repository.

10

http://subversion.tigris.org/
http://subversion.tigris.org/
http://subversion.tigris.org/

(contract #033547)

Evaluation Report on Existing Tools and
Existing F/OSS repositories

Deliverable ID: D1.1

Page : 11 of 76

Version: 2.0
Date: Feb 1, 08

Status : Proposal
Confid : Public

3. F/OSS REPOSITORIES DATA

Most FlOSS projects use the same tools to support the development and management of
the community. All these development tools can be used as data sources for research
purposes since they usually contain historical information about both the software
product and processes. Moreover, other reliable sources of information may also show
useful in measuring the quality or impact of a FlOSS project.

In summary, the main available data sources are the following:
● FlOSS project releases
● Version control system. Typically CVS or Subversion, although some other

systems are used by some projects.
● Bug tracking systems. Typically Bugzilla, GNATS.
● Mailing list archives. Forum data.
● Other data sources internal to a FlOSS project, such as web (or wiki) pages,

documentation accompanying a release, IRC logs, forums data.
● Other data sources external to a FlOSS project. For example, FLOSSMole or

FLOSSMETRICS databases, the Common Vulnerability Database and the National
Vulnerability Database, Amazon's book database, FlOSS News website such as
FLOSSplanet, Slashdot, etc.

Many projects are stored in forges. The most well know forge site is SourceForge.net.
This site offers hosting for web pages and files, CVS and Subversion (the two most used
version control systems in the FlOSS world), trackers for bugs and other issues, forums,
mailing lists, release management, categorization of projects, etc. There are some
initiatives that are studying these sites for software research purposes. For instance,
FLOSSMole1 scans SourceForge every six months but it also collects information for
other FlOSS forges such as FreshMeat, ObjectWeb, Free Software Foundation. The
FLOSSMole database records many different types of data in a fixed database schema.
This facilitates measuring and analyzing some software quality properties. Examples of
information collected are project name, description, project donors, project license,
project operating systems, programming languages and type of user interface. In
addition FLOSSMole also provides few statistics about a FlOSS project such as its activity
rank, number of downloads, number of opened or closed bugs. The complete schema of
FLOSSMole is given at http://ossmole.sourceforge.net/datamodel/ossmole_schemaspy.

In the following subsections, we describe the data sources considered for our quality
analysis.

3.1 F/OSS PROJECT RELEASES

The release of a FlOSS project contains several types of information ranging from binary
distribution for several platforms, the source code used to generate the binaries,
documentation, tests to verify the proper installation and even a regression test suite.

The notion of release is important because it highlights the important dates for a FlOSS
project. Moreover, the release numbers provide additional information; for example,
whether a new release is just a minor or a major release. Usually, the notation uses the

1http://ossmole.sf.net
11

http://ossmole.sourceforge.net/datamodel/ossmole_schemaspy
http://ossmole.sourceforge.net/datamodel/ossmole_schemaspy
http://ossmole.sourceforge.net/datamodel/ossmole_schemaspy

(contract #033547)

Evaluation Report on Existing Tools and
Existing F/OSS repositories

Deliverable ID: D1.1

Page : 12 of 76

Version: 2.0
Date: Feb 1, 08

Status : Proposal
Confid : Public

convention “Major.Minor”, for example, 1.4 indicates major release 1 and minor release
4. It is also frequent to have a third release number, which usually accounts for bug fixes
and minor improvements, e.g. 1.4.528 where 528 indicates a unique number to which
bug fixes and small improvements are associated.

One particular interesting set of data available in a release is the source code. There are
two advantages of using source code releases over the code in the version control
system for certain studies. First, the source code in the version control system may
contain code not ready to be delivered; sometimes, this code is removed from the
source code tree before the release is offered to the public. Second, the code is only
released when the developers think (and even sometimes test) that the project is ready
to be released. The release schedule can be studied to guess the periodicity in the
growth curves of the project. However, we must also take into account that some
projects have a fixed schedule for releases. For instance, they release every six months.

Beside source code, a product release often contain binaries, usually for the MS
Windows platform. In some cases, binaries may be a work product of interest usable by
analysis tools such as instrumentation tools for dynamic analysis mention in Section 4.

Usually, dynamic analysis requires the presence of tests so as to monitor system
execution during test runs. Although complete test suites are rarely distributed as part
of a release, they are sometimes available in the version control system of a FlOSS
project. In turn, it may be possible to check out from the version control repository a test
suite for the given release date. If not available that way, we may still be able to obtain
a test suite for a particular release by asking a FlOSS developer community if they could
provide it.

3.2 VERSION CONTROL SYSTEMS

Most FlOSS projects use a version control system. Among FlOSS communities, the most
used and well known systems are CVS and Subversion.

Version control systems keep track of changes to all registered files. They identify
changes with a unique number assigned to each modified files. Along with a change,
valuable information is recorded, mainly, the date of change, the full path where the
change occurred, username of the developer who is committing the change, and a
comment written by the developer explaining the change.

The two version control system of interest for QUALOSS are CVS and Subversion. CVS is
older than Subversion. It has been used for many years by many FlOSS projects, and it
is still in use. Subversion was born as an alternative to CVS. CVS has a big drawback: it
works on a file basis. For example, if a developer has to change several files to make
logical changes in the project, CVS will store this as a set of changes (one change per
file). On the other hand, Subversion stores this logical change as one only change to the
system. This logical changes are usually known as modification requests in the research
community. In addition, Subversion can work with binary files.

In addition to these two version control systems, there exist other alternatives, among
others, Bitkeeper, and GIT. However, they are not very popular in FlOSS projects, so
QUALOSS does not currently plan to build tools to study them. Nonetheless, it is worth

12

(contract #033547)

Evaluation Report on Existing Tools and
Existing F/OSS repositories

Deliverable ID: D1.1

Page : 13 of 76

Version: 2.0
Date: Feb 1, 08

Status : Proposal
Confid : Public

noting that some very important FlOSS projects, such as Linux and MySQL, use these
less conventional version control systems, in particular, MySQL uses Bitkeeper and Linux
uses GIT.

From the version control systems, we can obtain two different types of data:
● Source code, at any date, written by any developer
● Meta information that consists of timestamp of commit, person who performed

the commit, the log texts associated to a commit, the unique revision number
(and eventual branch information) assigned by the version control system.

3.3 BUG TRACKING SYSTEMS

Bug tracking systems are very popular among FlOSS projects. These systems are
typically used to report and discuss defects (usually known as bugs). Some projects also
use them for feature requests. Usually, bug tracking tools such as Bugzilla allow the user
to classify her request as either a bug or a feature requests.

The most popular system is Bugzilla. This system has a web interface. Users can register
to gain access to the bug tracking system. There are different profiles, the most
common are: users who report and comment bugs, and developers who modify the
status of reports and assign them to others developers.

Bug reports are available via web and also as XML. XML files are the best option to parse
the bug reports. Usually, anyone can see the bug reports, although in some cases, users
have to be registered.

Although fields may vary from one installation to another, common fields of Bugzilla bug
reports are:

● Bug number and alias
● Product, component, hardware, operating system and version
● Reporter name and e-mail address
● Status, priority, resolution, severity
● Person to whom the bug is assigned
● Target milestone
● Summary and keywords
● Attachments (usually test cases)
● Additional comments by the reporter
● Additional comments by the owner or other users or developers

Furthermore, whenever a change in the report occurs, the date and time of the change
is recorded.

The life cycle of a bug report is usually as follows:
● The bug is reported. A test case is attached. The status is set to UNCONFIRMED.
● The bug is tested by one of the developers. If the bug is confirmed, it is set to

NEW; in addition,if it is assigned to one of the developers, and set to ASSIGNED. If
it is not confirmed, the status is usually set to CLOSED.

● If the bug has been already reported, it is marked as DUPLICATED, including the
number of the original bug, and it is closed.

13

(contract #033547)

Evaluation Report on Existing Tools and
Existing F/OSS repositories

Deliverable ID: D1.1

Page : 14 of 76

Version: 2.0
Date: Feb 1, 08

Status : Proposal
Confid : Public

● Other users or developers comment on the bug. If it was closed and other users
observe the same bug, it can be reopen.

● A user can propose a patch, or the bug can be fixed by a developer. If a patch is
proposed, it is tested by one of the developers, and eventually added to the
source code tree. Then the bug is set to FIXED. The patch is attached to the
report. If the code has been added to the version control system, the number of
the revision is usually included in the report.

Other popular system is the tracker of SourceForge.net (SF.net). In the essential points,
it is very similar to Bugzilla. The main difference is that the SF.net tracker is used not
only for bugs, but also for petitions of new features and other inquiries coming from the
users.

3.4 MAILING LIST ARCHIVES

Mailing lists are the main communication channel between developers and users. Every
message sent to a mailing list stores information that allows to study the relationships
and the communication channels between the communities of a FlOSS project. Among
other, the following information is found in emails:

● Name of the poster
● E-mail address of the poster
● Date when the message was sent by the poster, and received in the mailing list

server
● Subject of the message
● Mailing list address (where the message was sent to)
● Name and e-mail addresses of other recipients different of the list (for example,

other people include in the CC field of the message)
● Unique identification tag for the message in the mailing list
● Identification tag of the original message if the message is a reply
● Content of the message, including attachments
● Name of the program used to write the message

All this information is stored in the header tags of the message (also the content and
attachments). Although the content of the message itself could be a source of
information, the information obtained in the headers is much more interesting. The
obvious information that can be obtained is related to the activity (number of messages)
and participation (number of people participating in the list) in the mailing list. This
information is a good indicator of the activity and participation in the project, but there
is much more interesting information to be obtained. If we cross correlate the
information in every message with the information in other messages, we can
reconstruct the networks of communication between the participants in the list. With
these networks, information about how the communication flows in the project can be
obtained. For example, we can identify members of the community who join subgroups
within the community. A very important point to ensure the health of the project is the
communication between users and developers. FlOSS projects are community-driven
projects, and so the feedback obtained from the different communities is essential to
ensure the survival and future of the project. Therefore, analysis of community

14

(contract #033547)

Evaluation Report on Existing Tools and
Existing F/OSS repositories

Deliverable ID: D1.1

Page : 15 of 76

Version: 2.0
Date: Feb 1, 08

Status : Proposal
Confid : Public

interaction should be further developed and used to study whether or not required
communication is indeed occurring in a FlOSS project.

Not all mailing lists are stored in the same format. The most usual format is RFC8222,
which is also the main standard in the Internet to format e-mail messages. However,
some projects strip out some headers, leaving just the name, address, subject and date
sent. Sometimes even the e-mail address is obfuscated or masked. When the archives
are stripped out of the headers, the information that can be obtained from them is much
poorer and almost uninformative.

In general, fully automated email analysis is hard to achieve because information may
be stripped or even because email titles may be changed in a reply chain

3.5 OTHER DATA SOURCES INTERNAL TO A F/OSS PROJECT

Other data created by the community of a FlOSS project includes:
• on-line documentation, (reference manual, user guide, installation guide, quick start

guide, etc.)
• Web and Wiki pages
• IRC logs

These sources of information are completely unstructured and therefore much harder to
process automatically. Moreover, the history of changes is not always available and only
the most current version is kept, older version being overwritten or erased.

Nonetheless, it seems important to keep in mind the presence of these data sources as
they may be useful for measuring certain quality characteristics. For example, the
presence of a “good” website is likely to indicate an active and robust community.
Furthermore, the structure and the information available on the website is likely to
provide some insight into the structure of leadership of the community.

For example, does the community have a explicit procedure to follow when a patch is
proposed? Is there a charter that specifes the roles of FlOSS project leaders? What kind
of documentation is available on-line? is it the same as that distributed with the latest
release?

3.6 DATA SOURCES EXTERNAL TO A F/OSS PROJECT

In addition to the information provided by the communities connected to a FlOSS
project, there exist several other useful sources of information potentially interesting to
gauge the current robustness and potential future of a FlOSS project. Currently, three
external kinds of data sources have been identified:

• FlOSS data provided by other projects such as FLOSSMETRICS or FLOSSMOLE
• Vulnerability Databases such as the Common Vulnerability Enumeration (CVE) and the

National Vulnerability Database
• Book and publication databases such as Amazon, or bibliography databases
• News websites and archives such as slashdot or FLOSSPlanet

2http://en.wikipedia.org/wiki/RFC_822
15

(contract #033547)

Evaluation Report on Existing Tools and
Existing F/OSS repositories

Deliverable ID: D1.1

Page : 16 of 76

Version: 2.0
Date: Feb 1, 08

Status : Proposal
Confid : Public

The Common Vulnerability and Exposures (CVE) is a MITRE dictionary of many
vulnerabilities experience and reported by users. In addition, the National Vulnerability
Database (NVD) is an effort by the NIST that ranks CVE vulnerabilities on a scale from 1
to 10. The procedure for attributing a severity score to a vulnerability is well
documented and objective.

Many FlOSS projects appear in CVE and their vulnerabilities have been assigned scores
in NVD. Although CVE and NVD inventory vulnerabilities in all software products, not
only FlOSS, they still provide important information to gauge robustness of FlOSS
projects. In turn, they seem to be an important data source to consider for QUALOSS. For
example, it may seem important for a particular minor release to improve over time so
as to increase the confidence of users. Similarly, a new major release may suffer few
more bugs but it must still be above a particular threshold so as to encourage migration
to the newer version.

Amazon provide records on books published in relation to a particular technology,
including FlOSS technologies. Many books have been published on a particular FlOSS
technology or mention FlOSS technologies. FlOSS technologies that increase in
popularity are likely to be advertised in books, even if a complete book is not dedicated
to a single FlOSS technology, a chapter may be dedicated to it. Other publication
databases such as The Collection of Computer Science Bibliographies
(http://liinwww.ira.uka.de/bibliography/), citeseer (http://citeseer.ist.psu.edu/), or google
scholar (http://scholar.google.com/) can also contribute, although it is yet undetermined
how these scientific publications can help gauge evolvability or robustness of FlOSS
projects.

Other sources of information available on renowned FlOSS news sites and archives may
reveal a increased level of professionalism from certain FlOSS communities. In fact, as it
is true for all products, advertisement in the press is an important factor to guarantee
sustainability in the future, hence it may be a mark of evolvability. It therefore seems to
be a potentially interesting source of information.

Additional data sources may be identified at later stages of the project. However, if
complex processing is required to retrieve and treat the data to turn it into usable
information, we require that such data sources be identified within the first year of the
project.

16

http://scholar.google.com/
http://scholar.google.com/
http://scholar.google.com/
http://citeseer.ist.psu.edu/
http://citeseer.ist.psu.edu/
http://citeseer.ist.psu.edu/
http://liinwww.ira.uka.de/bibliography/
http://liinwww.ira.uka.de/bibliography/
http://liinwww.ira.uka.de/bibliography/

(contract #033547)

Evaluation Report on Existing Tools and
Existing F/OSS repositories

Deliverable ID: D1.1

Page : 17 of 76

Version: 2.0
Date: Feb 1, 08

Status : Proposal
Confid : Public

4. EXISTING ANALYSIS TOOLS

This section reviews existing tools for analyzing the different data sources mentioned in
section 3. Code analysis tools dominate the field and are therefore presented in their
own Subsection 4.1. In fact, Section 4.1 is itself partitioned into static and dynamic
analysis tools for the different languages of interest in QUALOSS, namely, Ada, C, C++,
Java and Python. Section 4.2 describes tools for analyzing other data sources, in
particular, version control and mailing list archives.

4.1 CODE ANALYSIS TOOLS
The code analysis tools studied in Section 4.1 focus on a snapshot of the code of a
project at a selected point in time; they do not compare multiple version of source code.
It is however likely that the QUALOSS platform makes such a feature available in order
to measure certain quality characteristics, if this should prove necessary. Tools such as
GlueTheos described in Section 4.2 already address this problem in part.

This subsection only presents tools that were analyzed and that have met our
expectations in terms of bringing new functionality, and reaching an acceptable level of
reliability and efficiency. For example, four static analysis tools for Python were tested:
PyMetrics, PyLint, PyChecker and Pythuis. However, only PyMetrics and PyLint made it to
our list simply because PyChecker only computed a subset of the PyLint functionality
and Pythuis proved to be quite unstable and lacking documentation.

Each tool analyzed in Section 4.1 is presented based on the template below. It contains
five main sections: General Information, Input Information, Output Information,
Technical and Operational Information, and Tests.

Tool name

General Information

Version: Licenses:

Authors: Maturity:

URL: Dependencies:

Description:

Constraints:

Input/Output Information

Language
Analyzed:

Input Types Input Formats

Output Types Output Formats

Other I/O
comments

Technical Information

Devel. Lang: Documentation:

Information
Computed:

Extensibility:

Technical
Constraints:

17

(contract #033547)

Evaluation Report on Existing Tools and
Existing F/OSS repositories

Deliverable ID: D1.1

Page : 18 of 76

Version: 2.0
Date: Feb 1, 08

Status : Proposal
Confid : Public

Test Performed

Reliability:

Performance:

4.1.1 Language Independent Analysis Tools

4.1.1.1 SLOCCount

SLOCCount

General Information

Version: 2.26 Licenses: GNU General Public License (GPL)

Authors: David A.
Wheeler

Maturity: Stable

URL: http://www.dwheeler.co
m/sloccount/

Dependencie
s:

Flex (for compilation of
sloccount)

Description: SLOCCount is a suite of programs for counting physical source lines of
code (SLOC) in possibly large software systems. It can count physical
SLOC for a wide number of languages. It can take a large set of files and
automatically categorize their types using a number of different
heuristics, and also comes with analysis tools.

General
Constraint:

Many projects are programmed in more than one language. Using
SLOCCount, it is possible to quickly assess the percentage of source
lines of code for each language used.

Input/Output Information

Language
Analyzed:

Ada, Assembly, AWK, Bourne shell and relatives, C, C++, C#, COBOL,
Expect, Fortran, Haskell, Java, lex, LISP, Scheme, makefile, ML, Modula3,
Objective-C, Pascal, Perl, PHP, Python, Ruby, sed, sql, TCL, yacc

Input Types Source Code Input Formats Directory containing source code files

Output Types Text Output Formats dumps reports on stdout

Other I/O
comments

Technical Information

Devel. Lang: mainly:
Perl, C, sh

Documentation: Installation, reference manual and user
documentation explaining the
application of COCOMO (available at
http://www.dwheeler.com/sloccount/sloc
count.html)

Information
Computed:

SLOCCount computes the physical source lines of code for each
language encountered in a given directory (and its subdirectories)

It also computes the estimated effort based on a COCOMO estimate. It

18

http://www.dwheeler.com/sloccount/sloccount.html
http://www.dwheeler.com/sloccount/sloccount.html
http://www.dwheeler.com/sloccount/sloccount.html
http://www.dwheeler.com/sloccount/sloccount.html
http://www.dwheeler.com/sloccount/sloccount.html
http://www.dwheeler.com/sloccount/sloccount.html
http://www.adacore.com/
http://www.adacore.com/

(contract #033547)

Evaluation Report on Existing Tools and
Existing F/OSS repositories

Deliverable ID: D1.1

Page : 19 of 76

Version: 2.0
Date: Feb 1, 08

Status : Proposal
Confid : Public

is possible to customize COCOMO parameters on the command line.

Extensibility: Done by modifying SLOCCount source code

Technical
Constraints:

The application of the COCOMO model is fairly basic as it directly infers
effort from the line counts (independent of programming languages
used). Nonetheless due to its ability to read many languages and treat
input in a consistent manner, SLOCCount may provide valuable
information. If nothing else, lines count for each programming
languages used in a project.

Test Performed

Reliability: Currently no bugs are found. Count Physical Lines of Source code fairly
accurately

Performance: SLOCCount was tested on distributions of Inkscape , Azeurus, SISSy,
CCCC. It computed its results in just a few seconds even for Inkscape
for which wc counts more than 400K lines.

19

(contract #033547)

Evaluation Report on Existing Tools and
Existing F/OSS repositories

Deliverable ID: D1.1

Page : 20 of 76

Version: 2.0
Date: Feb 1, 08

Status : Proposal
Confid : Public

4.1.2 Ada Static Analysis Tools

4.1.2.1 GNATmetric

GNATmetric

General Information

Version: 6.0.1 Licenses: GNU General Public License (GPL)

Authors: AdaCore Maturity: Mature

URL: http://www.adacore.co
m

Dependencie
s:

GNAT Pro compiler

Description: The GNATmetric tool analyzes source code to calculate a set of
commonly used industry metrics that allow developers to estimate the
size and better understand the structure of the source code. This
information also facilitates satisfying the requirements of certain
software development frameworks.

General
Constraint:

The input Ada sources must be compilable.

Input/Output Information

Language
Analyzed:

Ada

Input Types Source Code Input Formats List of files or project description file

Output Types Files Output Formats Textual and XML formats

Other I/O
comments

NONE

Technical Information

Devel. Lang: Ada Documentation: Documentation is available as part of
the GNAT Pro User's Guide (available at
http://www.adacore.com/category/devel
opers-center/reference-
library/documentation).

Information
Computed:

For any (legal) source file, and for each of its eligible local program
units, GNATmetric computes the following metrics:

● the total number of lines
● the total number of code lines (i.e., non-blank lines that are not

comments)
● the number of comment lines
● the number of code lines containing end-of-line comments
● the number of empty lines and lines containing only space

characters and/or format effectors (blank lines)
If GNATmetric is invoked on more than one source file, it sums the
values of the line metrics for all the files being processed and then

20

http://www.adacore.com/
http://www.adacore.com/

(contract #033547)

Evaluation Report on Existing Tools and
Existing F/OSS repositories

Deliverable ID: D1.1

Page : 21 of 76

Version: 2.0
Date: Feb 1, 08

Status : Proposal
Confid : Public

generates the cumulative results.

GNATmetric computes various syntactic metrics for the outermost unit
and for each eligible local unit:

● LSLOC ("Logical Source Lines Of Code"). The total number of
declarations and the total number of statements.

● Maximal static nesting level of inner program units. According to
Ada Reference Manual, 10.1(1), "A program unit is either a
package, a task unit, a protected unit, a protected entry, a
generic unit, or an explicitly declared subprogram other than an
enumeration literal."

● Maximal nesting level of composite syntactic constructs. This
corresponds to the notion of the maximum nesting level in the
GNAT built-in style checks.

For the outermost unit in the file, GNATmetric additionally computes the
following metrics:

● Public subprograms. This metric is computed for package
specifications. It is the number of subprograms and generic
subprograms declared in the visible part (including in nested
packages, protected objects, and protected types).

● All subprograms. This metric is computed for bodies and
subunits. The metric is equal to a total number of subprogram
bodies in the compilation unit. Neither generic instantiations nor
renamings-as-a-body nor body stubs are counted. Any
subprogram body is counted, independently of its nesting level
and enclosing constructs. Generic bodies and bodies of protected
subprograms are counted in the same way as "usual"
subprogram bodies.

● Public types. This metric is computed for package specifications
and generic package declarations. It is the total number of types
that can be referenced from outside this compilation unit, plus
the number of types from all the visible parts of all the visible
generic packages. Generic formal types are not counted. Only
types, not subtypes, are included.
Along with the total number of public types, the following types
are counted and reported separately:

● Abstract types
● Root tagged types (abstract, non-abstract, private, non-

private). Type extensions are not counted.
● Private types (including private extensions)
● Task types
● Protected types

● All types. This metric is computed for any compilation unit. It is
equal to the total number of the declarations of different types
given in the compilation unit. The private and the corresponding
full type declaration are counted as one type declaration.
Incomplete type declarations and generic formal types are not
counted. No distinction is made among different kinds of types

21

(contract #033547)

Evaluation Report on Existing Tools and
Existing F/OSS repositories

Deliverable ID: D1.1

Page : 22 of 76

Version: 2.0
Date: Feb 1, 08

Status : Proposal
Confid : Public

(abstract, private etc.); the total number of types is computed
and reported.

For a program unit that is an executable body (a subprogram body
(including generic bodies), task body, entry body or a package body
containing its own statement sequence) GNATmetric computes the
following complexity metrics:

● McCabe cyclomatic complexity
● McCabe essential complexity
● maximal loop nesting level

The McCabe complexity metrics are defined in
http://www.mccabe.com/pdf/nist235r.pdf
According to McCabe, both control statements and short-circuit control
forms should be taken into account when computing cyclomatic
complexity. For each body, we compute three metric values:

● the complexity introduced by control statements only, without
taking into account short-circuit forms,

● the complexity introduced by short-circuit control forms only, and
● the total cyclomatic complexity, which is the sum of these two

values.
When computing cyclomatic and essential complexity, GNATmetric
skips the code in the exception handlers and in all the nested program
units.

Extensibility: Done by modifying GNATmetric source code

Technical
Constraints:

It is possible to generate project-wise metrics by means of defining the
project and the metrics associated to the project in a project file.

Test Performed

Reliability: Currently no bugs are found

Performance: It takes less than 1 minute to compute all line syntax, and complexity
metrics for a project with more than 200000 lines of code and nearly
300 units, generating a 5 MB size report. The test has been driven with
a Pentium M 2,1 GHz.

22

(contract #033547)

Evaluation Report on Existing Tools and
Existing F/OSS repositories

Deliverable ID: D1.1

Page : 23 of 76

Version: 2.0
Date: Feb 1, 08

Status : Proposal
Confid : Public

4.1.2.2 GNATstack

GNATstack

General Information

Version: 6.0.1 Licenses: GNU General Public License
(GPL)

Authors: AdaCore Maturity: Mature

URL: http://www.adacore.co
m

Dependencies
:

GNAT Pro compiler

Description: The GNATstack tool statically computes the maximum stack space
required by every stack entry point (including tasks) in an application.
The computed bounds can be used to ensure that sufficient space is
reserved, thus guaranteeing safe execution with respect to stack usage.

Constraints: The input Ada project must be compiled with specific options.

Input/Output Information

Language
Analyzed:

Ada

Input Types Object Code Input Formats List of object files that make up
the project

Output Types Files or GUI Output
Formats

Textual and VCG (Visualization
of Compiler Graphs) formats.

Other I/O
comments

Technical Information

Devel. Lang: Ada Documentatio
n:

Documentation is available as
part of the GNATstack User's
Guide.

Information
Computed:

GNATstack will report the accumulated stack usage information for
every entry point. In addition, it will provide the information about the
call chain that make up the worst-case paths. Additionally, GNATstack
can generate a list of subprograms requiring the biggest local stack
usage.
GNATstack can also generate a file (in VCG format) containing the
annotated call graph.
GNATstack can also indicate the list of subprograms that make indirect
calls, all subprograms that are reachable from any entry point for
which we do not have any stack or call graph information, all
subprograms that are reachable from any entry point with unbounded
stack requirements, and all the cycles in the call graph.

GNATstack can also perform four additional types of analysis:
● Indirect (including dispatching) calls. The tool indicates the

23

http://www.adacore.com/
http://www.adacore.com/

(contract #033547)

Evaluation Report on Existing Tools and
Existing F/OSS repositories

Deliverable ID: D1.1

Page : 24 of 76

Version: 2.0
Date: Feb 1, 08

Status : Proposal
Confid : Public

number of indirect calls made from any subprogram.
● External calls. The tool displays all subprograms that are

reachable from any entry point for which we do not have any
stack or call graph information.

● Unbounded frames. The tool displays all subprograms that are
reachable from any entry point with an unbounded stack
requirements. The required stack size depends on the arguments
passed to the subprogram.

● Cycles. The tool can detect all cycles in the call graph. These
cycles represent potential recursion and hence potentially
unbounded stack consumption.

Extensibility: By modifying the code of GNATstack

Technical
Constraints:

Test Performed

Reliability: Currently no bugs are found

Performance: It takes less than 18 seconds to compute all call paths together with the
accumulated stack usage, list of subprograms that make indirect calls,
all subprograms that are reachable from any entry point for which we
do not have any stack or call graph information, all subprograms that
are reachable from any entry point with unbounded stack requirements,
and all the cycles in the call graph, for a program containing more than
17000 subprograms and more than 108000 calls. The test has been
driven with a Pentium M 2,1 GHz.

24

(contract #033547)

Evaluation Report on Existing Tools and
Existing F/OSS repositories

Deliverable ID: D1.1

Page : 25 of 76

Version: 2.0
Date: Feb 1, 08

Status : Proposal
Confid : Public

4.1.2.3 GNATcheck

GNATcheck

General Information

Version: 6.0.1 Licenses: GNU General Public License
(GPL)

Authors: AdaCore Maturity: mature

URL: http://www.adacore.co
m

Dependencie
s:

GNAT Pro complier

Description: The GNATcheck tool is an ASIS-based utility that checks properties of
Ada source files according to a given set of semantic rules.

Constraints: The input Ada sources must be compilable.

Input/Output Information

Language
Analyzed:

Ada

Input Types Source code Input Formats List of source files in a project.

Output Types Files Output
Formats

Text

Other I/O
comments

NONE

Technical Information

Devel. Lang: Ada Documentatio
n

Documentation is available as
part of the GNAT Pro User's
Guide (available at
http://www.adacore.com/catego
ry/developers-center/reference-
library/documentation).

Information
Computed:

Rules implemented in GNATcheck are subdivided into local rules and
global rules. A local rule is a rule that is formulated for a well-localized
fragment of a program text and that can be checked by analyzing only
this fragment (the analysis may use the semantic information related to
the components of this fragment). A global rule requires analysis of
some global properties of the whole program (mostly related to the
program call graph).

GNATcheck can detect the use of: abstract types, anonymous subtypes,
block statements, relation operations on boolean types, ceiling priority
consistency, controlled types, block statements with local declarations,
default expressions for subprogram parameters, derived type
declarations that does not have a record extension part, calls to the
predefined equality operations for floating point types, declarations of
record types with discriminants, exit statements containing a loop

25

(contract #033547)

Evaluation Report on Existing Tools and
Existing F/OSS repositories

Deliverable ID: D1.1

Page : 26 of 76

Version: 2.0
Date: Feb 1, 08

Status : Proposal
Confid : Public

name that is not the name of the immediately enclosing loop, goto
statements, library level subprograms (including subprogram
instantiations), local packages in package and generic package specs,
protected entries that can be called more then one task, protected
objects with more than one entry, function declarations with operator
symbols as a defining designators, return statement in procedure
bodies, non-qualified aggregates, recursion, the use of some names,
functions with side effect, expanded loop names in exit statements,
slices, SPARK restrictions, functions returning unconstrained arrays,
discrete ranges that are a part of index constraint, constrained array
definition, or for-loop parameter specification, and that have both
bounds of the universal type integer type, unused subprograms, use
package clauses, and volatile object that does not have an address
clause, anonymous array types in object declarations, actual
parameters for a formal that has a default initialization if this
parameter is in positional association, bad discrete ranges, non-named
block statements, level of nesting of control structures, use of a range
of enumeration literals as a choice in a case statement, exceptions that
are raised and handled in the same subprogram body, procedures that
can be rewritten as functions, generic units in supbrograms, implicit IN
mode in formal parameter specification, exit statements that do not
contain the name of the loop being exited, checks if the BEGIN keyword
in package body is marked by the trailing comment containing the
package name, numeric literals, use of OTHERS choice in extension
record and array aggregates, OTHERS choice in a case statement,
OTHERS choice in a exception handler, subprogram and entry
declarations where the formal parameters are not properly ordered,
positional parameter or element association, use of specified pragmas,
explicit use of any name of a predefined numeric type or subtype
defined in package Standard, raising predefined exceptions, generic
instantiations that are done in library package specifications and in
subprogram bodies, visibility of exceptions, and use of non-short-circuit
boolean operators.

Extensibility: By modifying the code of GNATcheck

Technical
Constraints:

A number of rules are predefined in GNATcheck and are described later
in this chapter. New rules can be added by modifying the GNATcheck
code and rebuilding the tool. In order to add a simple rule making some
local checks, a small amount of straightforward ASIS-based
programming is usually needed.

Test Performed

Reliability: Currently no bugs are found

Performance: The use of ASIS semantics queries makes the application to consume a
lot of resources (processor, disk, and memory).

26

(contract #033547)

Evaluation Report on Existing Tools and
Existing F/OSS repositories

Deliverable ID: D1.1

Page : 27 of 76

Version: 2.0
Date: Feb 1, 08

Status : Proposal
Confid : Public

4.1.2.4 AdaControl

AdaControl

General Information

Version: 1.6r8 Licenses: GNU General Public License
(GPL)

Authors: Adalog Maturity: Mature

URL: http://www.adalog.fr/ad
acontrol2.htm

Dependencies
:

AdaControl is distributed only
as source, so it needs an Ada
compiler and ASIS (Ada
Semantic Interface
Specification) library.

Description: AdaControl is an Ada rules controller. It is used to control that Ada
software meets the requirements of a number of parameterizable rules.
It is not intended to supplement checks made by the compiler, but
rather to search for particular violations of good-practice rules, or to
check that some rules are obeyed project-wide.

Constraints: The input Ada sources must be compilable.

Input/Output Information

Language
Analyzed:

Ada

Input Types Source code Input Formats List of source files in a project.

Output Types File Output
Formats

Text

Other I/O
comments

Technical Information

Devel. Lang: Ada Documentatio
n:

Documentation is available as
part of the AdaControl User
Guide (available at
http://www.adalog.fr/compo/ada
control_ug.html).

Information
Computed:

AdaControl can check: functions without a return or a raise statement,
dynamic allocations, properties of array types and array objects
declarations, expressions used in barriers of protected entries, sizings in
case statements, the occurrence in the source file of control characters,
the usage of certain Ada declarations, subprogram calls or generic
instantiations that use (or conversely do not use) the default value for
the indicated parameter, global variables that are accessed outside of
dedicated callable entities, uses of indicated entities, exception
handlers that contain references to one or several Ada entities specified
as parameters, subprograms, tasks, or all declarations that can

27

http://www.adacore.com/
http://www.adacore.com/

(contract #033547)

Evaluation Report on Existing Tools and
Existing F/OSS repositories

Deliverable ID: D1.1

Page : 28 of 76

Version: 2.0
Date: Feb 1, 08

Status : Proposal
Confid : Public

propagate exceptions, usage of certain forms of expressions, access to
global variables from several entities, header comments, usage of if
statements that could be replaced by case statements, instantiations of
generics, parameters passed in positional notation, local declarations
that hide outer declarations, instantiations in local scopes, number of
consecutive blank lines, depth of subprograms (or entry) calls, length of
source lines, level of nesting of declarative constructs, number of
parameters in subprograms, nesting of compound statements,
statements that can be moved outside accept statements, naming
convention, variables and/or out parameters that are not safely
initialized, non-static expressions, elaboration calls, aliased use of
variables in subprogram calls, semantic dependencies, potentially
blocking operations from within protected operations, use of specific
pragmas, declarations that could be moved to some inner scope, usage
of representation clause, functions returning complex objects,
subprogram calls or generic instantiations where different actual
parameters call functions known to have side effects, exception
handlers that can cause exceptions to silently disappear, expressions
that can be simplified, comments that match one of the given patterns,
usage of certain Ada statements, Ada coding style, tasks that can
terminate, missing units, unnecessary use clauses, calls to operations
that are normally paired, use of Unchecked_Conversion, use of certain
entities, and usage of with and use clauses.

Extensibility:

Technical
Constraints:

Test Performed

Reliability: Currently no bugs are found

Performance: The use of ASIS semantics queries makes the application consume a lot
of resources (processor, disk, and memory).

28

(contract #033547)

Evaluation Report on Existing Tools and
Existing F/OSS repositories

Deliverable ID: D1.1

Page : 29 of 76

Version: 2.0
Date: Feb 1, 08

Status : Proposal
Confid : Public

4.1.3 C/C++ Static Analysis Tools

4.1.3.1 SISSy (-cpp)

SISSy (-cpp)

General Information

Version: 0.40 Licenses: LGPL

Authors: Adrian Trifu, Mircea
Trifu, Olaf Seng, and
Peter Sulzman

Maturity: Stable

URL: http://sissy.fzi.de/SISSy/
CMS/index_html

Dependencies: ANTLR, JArgs, jTDS,
PostgreSQL-jdbc, Recoder (The
required libraries are
distributed with SISSy)

Description: (taken from the documentation of the SISSy distribution)
The tool for structural investigation of software systems (SISSy) is an
open-source platform for the automated detection of structural flaws. It
was designed to be integrated in the build process in order to regularly
provide reports on the internal quality of the developed system. If in the
course of development, problems arise in the structure, they are
immediately identified and reported, giving developers the opportunity
to fix them before they get unmanageable.

Constraints: SISSy works out of the box on MS Windows systems but small changes
to the code had to be performed so it ran on Linux.

Input/Output Information

Language
Analyzed:

C and C++

Input Types Source Input Formats root directory containing
source files

Output Types Text, Database
(postgres or MS SQL)

Output
Formats

database records for divers
source code elements,
problematic partner in text
files, clone analysis in text files

Other I/O
comments

SISSY also analyzes source code in Java (up to 1.4) and Delphi. Clone
Analysis is run separately from the other analyses
SISSy performs clone analysis as well as a range of pattern analyzes
looking for bad programming patterns in the code. Bad patterns
analysis can be requested via the command line option -queries or the
actual SQL queries may also be run on the exported database records.

Technical Information

Devel. Lang: Java Documentatio
n:

Reference manual

29

http://sissy.fzi.de/SISSy/CMS/index_html
http://sissy.fzi.de/SISSy/CMS/index_html
http://sissy.fzi.de/SISSy/CMS/index_html
http://sissy.fzi.de/SISSy/CMS/index_html
http://sissy.fzi.de/SISSy/CMS/index_html
http://sissy.fzi.de/SISSy/CMS/index_html

(contract #033547)

Evaluation Report on Existing Tools and
Existing F/OSS repositories

Deliverable ID: D1.1

Page : 30 of 76

Version: 2.0
Date: Feb 1, 08

Status : Proposal
Confid : Public

Information
Computed:

SISSy performs Clone analysis and Pattern Analysis for 52 poor
programming styles. Additional queries to compute traditional metrics
could easily be implemented in SQL queries and run against the
database of code elements created by SISSy.

Extensibility: Additional analysis can easily be implemented by accessing SISSy's
result stored in a database.
It is also possible to modify SISSy's source code so it performs
additional analyses

Technical
Constraints:

Test Performed

Reliability: SISSy was tested on three C++ systems, namely, wgrep3, inkscape
0.45, and 7Zip. wgrep3 is a small application consisting of 3 files, 1 .h
and 2 .cpp with just under 1600 lines (as reported by wc). Inkscape is a
large application with 1448 files (.cpp, .hpp, .c and .h). wc reports
432.819 lines in these files. 7Zip is a MS C++ application whose wc
counts around 128KLOC in .cpp, .c and .h files.

SISSy's parsing reliability outperforms that of CCCC. Furthermore, SISSy
allows for more control as include.txt enable specifying a list of header
files and definitions.prop allows specifying macro definition for the
preprocessing of source code to account for during parsing.

SISSy is based on a CDT parser. Our test shows that it handles C++ for
gcc and for MS C++.

Performance: SISSy took around 3 hours to analyze inkscape and insert all the data in
the database when provided a long list of header files in include.txt.
This analysis was performed on a laptop with 1MB of RAM and a CPU
clock at 1.8 Ghz.
SISSy took just under 15 minutes to analyze 7Zip without specifying an
include.txt file pointing to headers from libraries.

30

(contract #033547)

Evaluation Report on Existing Tools and
Existing F/OSS repositories

Deliverable ID: D1.1

Page : 31 of 76

Version: 2.0
Date: Feb 1, 08

Status : Proposal
Confid : Public

4.1.3.2 CCCC

CCCC

General Information

Version: 3.1.4 Licenses: GNU General Public License
(GPL)

Authors: Tim Littlefair Maturity: Stable but Inactive

URL: http://cccc.sourceforge.
net

Dependencies
:

PCCTS (Purdue Compiler
Construction Toolset (Terence
Parr). PCCTS is an old version
of the renowned parser
generator ANTLR. However,
CCCC distribution includes the
needed PCCTS code.

Description: CCCC (C and C++ Code Counter) analyzes and reports measurements
on source code written in C, C++, and Java. Metrics supported include
lines of code, McCabe's complexity and metrics proposed by
Chidamber&Kemerer and Henry&Kafura.

Constraints: Although the MS Windows distribution comes in binaries, CCCC must be
recompiled on POSIX. In this test, CCCC was compiled with gcc 4.1.2.
The compilation did not produce problems.

Input/Output Information

Language
Analyzed:

C, C++

Input Types Source code in C and
C++

Input Formats list of files (specified on the
command line)

Output Types files in a directory
(.cccc by default)

Output
Formats

xml and html

Other I/O
comments

Other Input-related information:
CCCC can also handle Java (up to 1.4) but we did not test that
functionality.
CCCC understands wild card (*) such as *.cpp

CCCC also generate a internal cccc.db files to store results across runs

Technical Information

Devel. Lang: C++ Documentatio
n:

“cccc –help” provides the
generic help message that
explains how to specify
information on the command
line.

cccc accepts wildcards on the

31

http://cccc.sourceforge.net/
http://cccc.sourceforge.net/

(contract #033547)

Evaluation Report on Existing Tools and
Existing F/OSS repositories

Deliverable ID: D1.1

Page : 32 of 76

Version: 2.0
Date: Feb 1, 08

Status : Proposal
Confid : Public

command line however, every
directory containing code must
be listed with wildcards in
order to read in all the input
files.

readme.txt that comes with the
CCCC distribution only contains
general information about the
tools and does not provide any
useful help.

Information
Computed:

CCCC computes the following metrics: Number of Modules, Lines of
Code, Lines of Comments, an approximation of McCabe's Cyclomatic
Complexity, Information Flow (coupling between modules), Weighted
Method per Class, Depth of Inheritance, Number of Children, Coupling
between Objects, Fan In and Fan out.

Extensibility: it is possible for another tool to interact with cccc based on the output
xml files or even reading .db and .opt files

Technical
Constraints:

CCCC reports the number of lines rejected by the compiler
The results computed as McCabe Cyclomatic Complexity does not
follow the traditional definition, in particular, CCCC increase McCabe CC
by 1 for each return statement, unlike the original definition.
Furthermore, as documented in cccc_tok.cpp, the computation for
switch statements is correct only if every case statement is terminated
by a beak statement.

Test Performed

Reliability: CCCC was tested on two C++ systems, namely, wgrep3 and inkscape
0.45. wgrep3 is a small application consisting of 3 files, 1 .h and 2 .cpp
with just under 1600 lines (as reported by wc). Inkscape is a large
application with 1448 files (.cpp, .hpp, .c and .h). wc reports 432.819
lines in these files.

Even when it cannot treat the whole input, CCCC still produces an
output for the input parts analyzed Beside reports on metrics, it also
mentions the number of lines rejected by the parser, for our two
examples, around 10% of the code was rejected by the parser. For the
90% rate of processed input, the measurements are accurate on the
samples investigated.

Performance: CCCC analyzed wgrep in just a few seconds while the analysis of
inkscape 0.45 took around 5 minutes on a laptop with 1MB of RAM and
a CPU clock at 1.8 Ghz.

32

(contract #033547)

Evaluation Report on Existing Tools and
Existing F/OSS repositories

Deliverable ID: D1.1

Page : 33 of 76

Version: 2.0
Date: Feb 1, 08

Status : Proposal
Confid : Public

4.1.4 Java Static Analysis Tools

4.1.4.1 SQUAL

SQUAL

General Information

Version: 0.4 Licenses: GPL and LGPL

Authors: CETIC Maturity: Beta but quite stable

URL: http://www.cetic.be Dependencies
:

ANTLR

Description: SQUAL is a lightweight and easy pluggable workflow engine written in
Python. Its current purpose is a source code analysis tool for Java and
C#.

Constraints: The analysis is memory consuming

Input/Output Information

Language
Analyzed:

Java 1.1 to 1.6

Input Types Source code Input Formats Directory structure, zip file, cvs
or subversion repository

Output Types File, Database Output
Formats

Csv, MySQL, XML, Text

Other I/O
comments

Technical Information

Devel. Lang: Python Documentatio
n:

Installation and User manual

Information
Computed:

More than 100 metrics, mainly:
– NumberOfClasses, NumberOfInterfaces of Packages
– LinesOfCode, LinesOfComments, CommentsPercentage of

Methods, Classes, Packages
– AfferentCoupling, EfferentCoupling, CyclomaticComplexity,

NumberOfAttributes, NumberOfMethods,
NumberOfInnerClasses of Classes

– EfferentCoupling, CyclomaticComplexity, Parameters,
LocalVariables of Methods

– MaximumDepthOfInheritance, NomberOfSubclasses of
Classes

Extensibility: The workflow engine is highly configurable.
New metrics can be defined by the user in Python.

Technical
Constraints:

Memory consuming, mainly due to the use of the psyco optimizer
(psyco does not work on 64bit architectures)

33

http://www.cetic.be/

(contract #033547)

Evaluation Report on Existing Tools and
Existing F/OSS repositories

Deliverable ID: D1.1

Page : 34 of 76

Version: 2.0
Date: Feb 1, 08

Status : Proposal
Confid : Public

Test Performed

Reliability: Beta version, but ran on large projects reaching 1 million lines of code.

Performance: Limited by the fact that python is an interpreted language, however
thanks to psyco performance is quite reasonable. Squal analyzes
200KLOC in about 15 minutes.

4.1.4.2 CheckStyle

Checkstyle

General Information

Version: 4.2 Licenses: GNU Library or Lesser General
Public License (LGPL)

Authors: Oliver Burn Maturity: Mature

URL: http://checkstyle.sourc
eforge.net

Dependencies
:

None (beside JVM install)

Description: Checkstyle is a development tool to help programmers write Java code
that adheres to a coding standard. It automates the process of checking
Java code to spare humans this boring (but important) task. This makes
it ideal for projects that want to enforce a coding standard.
Checkstyle is highly configurable and can be made to support almost
any coding standard. An example configuration file is supplied
supporting the Sun Code Conventions. Other sample configuration files
are supplied for other well known conventions.

Constraints:

Input/Output Information

Language
Analyzed:

Java (including Java 5)

Input Types Source Code Input Formats The command line accepts
access paths to a file or to a
directory (using the -r option)

Output Types Files Output
Formats

Text and XML

Other I/O
comments

Checkstyle can also be invoke from Ant scripts

Output files can become quite large, for example, the size of the XML”
file generated by Checkstyle when analyzing the source code of
Azureus (500 KLOC) is about 100MBytes.

Technical Information

Devel. Lang: Java Documentatio
n:

User manual available at the
URL above

34

http://checkstyle.sourceforge.net/
http://checkstyle.sourceforge.net/

(contract #033547)

Evaluation Report on Existing Tools and
Existing F/OSS repositories

Deliverable ID: D1.1

Page : 35 of 76

Version: 2.0
Date: Feb 1, 08

Status : Proposal
Confid : Public

Information
Computed:

The checks made by checkstyle are dealing with Javadoc Comments,
Naming Conventions, Headers, Imports, Size Violations, Whitespace,
Modifiers, Block Checks, Coding, Class Design, Duplicate Code, Metrics,
Miscellaneous, J2EE Checks.

Extensibility: It is possible to write checks and configuration files. The existing checks
can also be modified.

Technical
Constraints:

Checkstyle only performs pattern matching, it does not perform type
resolution hence rules cannot check for type information.

Test Performed

Reliability: Currently no bugs are found.

Performance: For example the Azureus project (about 500 kloc) takes 5 minutes to
produce 100MByte size output. The test has been conducted on a
Pentium 4 1.5GHz.

35

(contract #033547)

Evaluation Report on Existing Tools and
Existing F/OSS repositories

Deliverable ID: D1.1

Page : 36 of 76

Version: 2.0
Date: Feb 1, 08

Status : Proposal
Confid : Public

4.1.4.3 JDepend

JDepend

General Information

Version: 2.9.1 Licenses: BSD License

Authors: Mike Clark Maturity: Mature

URL: http://clarkware.com/so
ftware/JDepend.html

Dependencies
:

JVM

Description: JDepend traverses Java class file directories and generates design
quality metrics for each Java package. JDepend allows you to
automatically measure the quality of a design in terms of its
extensibility, reusability, and maintainability to manage package
dependencies effectively.

Constraints: JDepend need to be build with ANT. (the “build.xml” is provided)

Input/Output Information

Language
Analyzed:

Java

Input Types java bytecode (.class or
.jar)

Input Formats Path to a directory containing
java source files or java “.class”
files

Output Types Files, GUI Output
Formats

Text, XML, and GUI

Other I/O
comments

JDepend analyzes java classes or sources. It sometimes encounters
problems with the sources (documentation is missing to explain the
limitation).

Technical Information

Devel. Lang: Java Documentatio
n:

User documentation is
available on the web site but
information is missing
concerning the analysis of Java
sources.

Information
Computed:

JDepend traverses Java class file directories and generates design
quality metrics for each Java package, including: Number of Classes and
Interfaces, Afferent Couplings, Efferent Couplings, Abstractness,
Instability, Distance from the Main Sequence (This metric is an indicator
of the package's balance between abstractness and stability), Package
Dependency Cycles.

Extensibility: An analysis can be customized through the properties file so as to apply
filters on the package to consider.
JDepend task may be invokes in Ant script

Technical
Constraints:

For unknown reasons, when analyzing source code, the analysis works
in some cases and not in others.

36

http://checkstyle.sourceforge.net/
http://checkstyle.sourceforge.net/

(contract #033547)

Evaluation Report on Existing Tools and
Existing F/OSS repositories

Deliverable ID: D1.1

Page : 37 of 76

Version: 2.0
Date: Feb 1, 08

Status : Proposal
Confid : Public

Test Performed

Reliability: Currently no bugs are found

Performance: Analyzing a 1MLOC project took 7 minutes and produced 4Mbyte of
output. The test was performed on a Pentium 4 1,5ghz.

37

(contract #033547)

Evaluation Report on Existing Tools and
Existing F/OSS repositories

Deliverable ID: D1.1

Page : 38 of 76

Version: 2.0
Date: Feb 1, 08

Status : Proposal
Confid : Public

4.1.5 Python Static Analysis Tools

4.1.5.1 PyMetrics

PyMetrics

General Information

Version: 0.7.6 Licenses: GNU General Public License
(GPL)

Authors: Reginald B. Charney
(Project Administrator)

Maturity: Stable but inactive

URL: http://sourceforge.net/p
rojects/pymetrics/

Dependencies
:

Python interpreter

Description: PyMetrics produces metrics for Python programs. Metrics include
McCabe's Cyclomatic Complexity metric, LoC, %Comments, etc. Users
can also define their own metrics using data from PyMetrics. PyMetrics
outputs SQL command files and CSV output.

Constraints:

Input/Output Information

Language
Analyzed:

Python

Input Types Source Code Input Formats Lists of Files

Output Types Text Files Output
Formats

text with csv or SQL commands

Other I/O
comments

Technical Information

Devel. Lang: Python Documentatio
n:

 -h option displays reference
manual

Information
Computed:

2 Types of information are provided:
The information about each file parsed

● Basic Metrics (blockCount, numClasses, numComment,
numFunction, ... comment associated with a methods, a class)
● McCabe Complexity Metric
● Sources lines of code (SLOC) from Cocomo 2's

The information about each token parsed
● each token is identified as (operator, new line, name,
identifiant,...) and basic metrics are computed (blocknum,
blockDepth, fctDepth,...)

Extensibility: By modifying the source code

Technical
Constraints:

38

http://checkstyle.sourceforge.net/
http://checkstyle.sourceforge.net/

(contract #033547)

Evaluation Report on Existing Tools and
Existing F/OSS repositories

Deliverable ID: D1.1

Page : 39 of 76

Version: 2.0
Date: Feb 1, 08

Status : Proposal
Confid : Public

Test Performed

Reliability: Currently no bugs are found

Performance: 3500 lines of code took 10 seconds to produce its output on a Pentium
4 1,5ghz

l

39

(contract #033547)

Evaluation Report on Existing Tools and
Existing F/OSS repositories

Deliverable ID: D1.1

Page : 40 of 76

Version: 2.0
Date: Feb 1, 08

Status : Proposal
Confid : Public

4.1.5.2 PyLint

PyLint

General Information

Version: 0.12.2 Licenses: GPL

Authors: Alexandre Fayolle Maturity: Stable and Active

URL: http://www.logilab.org Dependencie
s:

logilab-astng and logilab-
common packages. They should
be compatible with python
version greater than 2.2.0
(python 2.2 users will have to
install the optik package).

Description: Pylint is a tool that checks for errors in python code, tries to enforce a
coding standard and looks for code smells. This is similar but
nevertheless different from what pychecker_ provides, especially since
pychecker explicitly does not bother with coding style. Pylint will display
a number of errors and warnings as it analyzes the code, as well as
some statistics about the number of warnings and errors found in
different files. If you run pylint twice, it will display the statistics from
the previous run together with the ones from the current run, so that
you can see if the code has improved or not.

Constraints:

Input/Output Information

Language
Analyzed:

Python

Input Types Source Code Input Formats List of files

Output Types text or html Output
Formats

stdout

Other I/O
comments

Technical Information

Devel. Lang: Python Documentati
on:

Installation and User guide
included in the PyLint
distribution

Information
Computed:

PyLint generates two output sections, a source code section and a
report section.
The source code section identifies problems in Python source code. For
each problem it gives the type, the line, the object and the message.
The message type can be: [R]efactor for a "good practice" metric
violation, [C]onvention for coding standard violation, [W]arning for
stylistic problems, or minor programming issues, [E]rror for important
programming issues (i.e. most probably bug) or [F]atal for errors which

40

http://www.logilab.org/

(contract #033547)

Evaluation Report on Existing Tools and
Existing F/OSS repositories

Deliverable ID: D1.1

Page : 41 of 76

Version: 2.0
Date: Feb 1, 08

Status : Proposal
Confid : Public

prevented further processing.

Reports Section list the following information:
● Duplication code + difference between current and previous
version
● Raw metrics: (code, docstring, comment, empty) +
difference between current and previous version
● External dependencies
● Statistics by type (module, class, method, function) +
difference between current and previous version
● Messages by category (convention, refactor, warning, error)
+ difference between current and previous version
● % errors / warnings by module
● Global evaluation (rate of the program)

Extensibility: By modifying the code, it is possible to add new checkers

Technical
Constraints:

Test Performed

Reliability: Currently no bugs are found

Performance: PyLInt took 110 seconds to produce the output 3500 lines of Python
code on a Pentium 4 1,5ghz.

41

(contract #033547)

Evaluation Report on Existing Tools and
Existing F/OSS repositories

Deliverable ID: D1.1

Page : 42 of 76

Version: 2.0
Date: Feb 1, 08

Status : Proposal
Confid : Public

4.1.5.3 The Metrics (for Python)

The Metrics (for Python)

General Information

Version: 1.0 Licenses: GPL

Authors: annelih, Anders
Storsveen, Morten
Svendsen, Rune E. J.,
Thomas Oesterlie

Maturity: Stable but Inactive

URL: http://sourceforge.net/p
rojects/pythonmetric

Dependencies
:

Python

Description: This program will calculate and output metrics on code written in
Python.

• Metrics with different levels of granularity : class, function,
module

• Reports can be generated in text or XML-files.
• A plug-in system lets new metrics be added to the program.
• Includes Cyclomatic complexity, Lack of Cohesion from

Chidamber-Kemerer and from Henderson-Sellers

Constraints:

Input/Output Information

Language
Analyzed:

Python

Input Types Source Code Input Formats File or Directory

Output Types text and xml Output
Formats

file in directory (the directory
by default is named
defaultreport)

Other I/O
comments

It only analyzes a single file or a single directory

Technical Information

Devel. Lang: Python Documentatio
n:

python Main.py serves as
reference manual

Information
Computed:

Number of Classes, Number of functions per Class, funtion Cyclomatic
complexity, Lack of Cohesion of Classes based on definitions from
Chidamber-Kemerer and from Henderson-Sellers.
The Metrics and PyMetrics have a subset of common metrics. However
The Metrics computes lack of cohesion, which is not provided by
PyMetrics

Extensibility: Metrics are plugged-in so new metrics can be added to The Metrics by
coding them in Python and including the Python file in the Plugin
directory.

42

http://sourceforge.net/projects/pythonmetric
http://sourceforge.net/projects/pythonmetric
http://sourceforge.net/projects/pythonmetric
http://sourceforge.net/projects/pythonmetric
http://sourceforge.net/projects/pythonmetric
http://sourceforge.net/projects/pythonmetric

(contract #033547)

Evaluation Report on Existing Tools and
Existing F/OSS repositories

Deliverable ID: D1.1

Page : 43 of 76

Version: 2.0
Date: Feb 1, 08

Status : Proposal
Confid : Public

The output reports are available in XML hence output can easily be read
for further processing

Technical
Constraints:

Each metrics computed as code in the Plugin directory

Test Performed

Reliability: The Metrics run on all input provided. The Metrics compute metrics as
documented in the text file in the Plugin directory.

Performance: The Metrics was used to analyze a few modules in the Zope
Dependencies directory. For each module, it took less than 2 seconds
for the analysis although modules were fairly small less than 2KLOC.
However, Python code always tend to be small and compact compare to
other programming languages.

43

(contract #033547)

Evaluation Report on Existing Tools and
Existing F/OSS repositories

Deliverable ID: D1.1

Page : 44 of 76

Version: 2.0
Date: Feb 1, 08

Status : Proposal
Confid : Public

4.1.6 Dynamic Analysis
We present fewer dynamic analysis tools hence there is less of a need to separate them
on a language basis. Currently, we are still actively searching for tools that perform
dynamic analysis on Python. There exist a few tools (PyCover) or python modules
(coverage.py)

4.1.6.1 GCOV

GCOV

General Information

Version: 4.1.2 Licenses: GNU General Public License
(GPL)

Authors: Free Software
Foundation

Maturity: Mature

URL: http://gcc.gnu.org Dependencie
s:

GCOV must be used in
conjunction with the GCC
backend.

Description: GCOV is a test coverage program that analyzes the number of times
each line of a program is executed during a run. It generates binary-
level code instrumentation and results are given at the source level
(annotated source code).

Constraints: The program to analyze must be compiled with specific options.

Input/Output Information

Language
Analyzed:

Ada, C, C++, Objective-C, Fortran.

Input Types Object Code Input Formats Executable files

Output Types Annotated source files
containing how often
each file is executed.

Output
Formats

Text

Other I/O
comments

Technical Information

Devel. Lang: C Documentati
on:

Reference manual is available
as part of the GCC Manual
available at
http://gcc.gnu.org/onlinedocs/gc
c.

Information
Computed:

GCOV produces annotated source files with the following basic
information:

● how often each line of code executes
● which lines of code are actually executed
● how much computing time each section of code uses (needs

44

http://gcc.gnu.org/onlinedocs/gcc
http://gcc.gnu.org/onlinedocs/gcc
http://gcc.gnu.org/onlinedocs/gcc
http://gcc.gnu.org/onlinedocs/gcc
http://gcc.gnu.org/onlinedocs/gcc
http://gcc.gnu.org/onlinedocs/gcc
http://www.adacore.com/

(contract #033547)

Evaluation Report on Existing Tools and
Existing F/OSS repositories

Deliverable ID: D1.1

Page : 45 of 76

Version: 2.0
Date: Feb 1, 08

Status : Proposal
Confid : Public

gprof)
● branch frequencies

Results can be cumulative against several executions of the same
executable, or against execution of several executables using the same
objects (test suites).

Extensibility:

Technical
Constraints:

Test Performed

Reliability: Currently no bugs are found

Performance: The execution time of the instrumented program is slightly increased
(around 7%). The postprocessing of the generated information (in order
to produce the final report) is very fast.

45

(contract #033547)

Evaluation Report on Existing Tools and
Existing F/OSS repositories

Deliverable ID: D1.1

Page : 46 of 76

Version: 2.0
Date: Feb 1, 08

Status : Proposal
Confid : Public

4.1.6.2 GNATmem

GNATmem

General Information

Version: 6.0.1 Licenses: GNU General Public License
(GPL)

Authors: AdaCore Maturity: Mature

URL: http://www.adacore.co
m

Dependencies
:

GNAT Pro compiler

Description: The GNATmem utility monitors dynamic allocation and deallocation
activity in a program, and displays information about incorrect
deallocations and possible sources of memory leaks.

Constraints: Available only on AIX, HP-UX, GNU/Linux, Solaris and Windows
NT/2000/XP (x86).

Input/Output Information

Language
Analyzed:

Ada

Input Types Executable Code Input Formats Files

Output Types Text Output
Formats

report on Stdout

Other I/O
comments

Technical Information

Devel. Lang: Ada Documentatio
n:

Reference Manual and User
documentation is available as
part of the GNAT Pro User's
Guide available at
http://www.adacore.com/catego
ry/developers-center/reference-
library/documentation).

Information
Computed:

The GNATmem utility monitors dynamic allocation and deallocation
activity in a program, and displays information about incorrect
deallocations and possible sources of memory leaks. It provides three
types of information:

• General information concerning memory management, such as
the total number of allocations and deallocations, the amount of
allocated memory and the high water mark, i.e. the largest
amount of allocated memory in the course of program execution.

• Backtraces for all incorrect deallocations, that is to say
deallocations which do not correspond to a valid allocation.

• Information on each allocation that is potentially the origin of a
memory leak.

46

http://www.adacore.com/
http://www.adacore.com/

(contract #033547)

Evaluation Report on Existing Tools and
Existing F/OSS repositories

Deliverable ID: D1.1

Page : 47 of 76

Version: 2.0
Date: Feb 1, 08

Status : Proposal
Confid : Public

Extensibility:

Technical
Constraints:

Test Performed

Reliability: Currently no bugs are found

Performance: The execution time of the instrumented program can be several times
slower if dynamic memory is used extensively. The postprocessing of
the generated information (in order to produce the final report) is also
slow.

47

(contract #033547)

Evaluation Report on Existing Tools and
Existing F/OSS repositories

Deliverable ID: D1.1

Page : 48 of 76

Version: 2.0
Date: Feb 1, 08

Status : Proposal
Confid : Public

4.1.6.3 Emma

Emma

General Information

Version: 2.1.5320 Licenses: CPL v1.0

Authors: Vlad Roubtsov Maturity: Stable

URL: http://emma.sourceforge.
net

Dependencies
:

JVM

Description: EMMA is an open-source toolkit for measuring and reporting Java code
coverage. EMMA can instrument classes for coverage either offline
(before they are loaded) or on the fly (using an instrumenting
application classloader). It supports coverage types at the level of class,
method, line, basic block. EMMA can detect when a single source code
line is covered only partially. Coverage stats are aggregated at method,
class, package, and "all classes" levels. Output report types: plain text,
HTML, XML. All report types support drill-down, to a user-controlled
detail depth. The HTML report supports source code linking. Output
reports can highlight items with coverage levels below user-provided
thresholds. Coverage data obtained in different instrumentation or test
runs can be merged together.

Constraints:

Input/Output Information

Language
Analyzed:

Java

Input Types java bytecode Input Formats .class and .jar files

Output Types Text, html, and XML Output
Formats

coverage report in a file

Other I/O
comments

Technical Information

Devel. Lang: Java Documentatio
n:

Reference manual, User
Guide, Quick Start, Sample
Report (on website and in
distribution)

Information
Computed:

Emma reports on the coverage of classes, methods, and basic block.
Reports are generated presented at the level of methods, classes,
packages and “all classes”.

Extensibility: Extension can only be implemented by modifying the source code

Technical
Constraints:

Test Performed

48

http://emma.sourceforge.net/
http://emma.sourceforge.net/

(contract #033547)

Evaluation Report on Existing Tools and
Existing F/OSS repositories

Deliverable ID: D1.1

Page : 49 of 76

Version: 2.0
Date: Feb 1, 08

Status : Proposal
Confid : Public

Reliability: Emma was tested on two large proprietary Java applications of between
200 and 200 KLOC. The coverage information were reported accurately.

Performance: Target program instrumented by Emma are a bit slower (less than 20%
slower). Report generation is quite fast and is accounted for in the 20%
overhead.

49

(contract #033547)

Evaluation Report on Existing Tools and
Existing F/OSS repositories

Deliverable ID: D1.1

Page : 50 of 76

Version: 2.0
Date: Feb 1, 08

Status : Proposal
Confid : Public

4.2 ANALYSIS TOOLS FOR OTHER REPOSITORY-DATA
In this section, we include a set of tools that are available on the Internet to analyze the
repositories mentioned in section 3. Tools are divided into different categories,
depending on the kind of repository data they analyze:

● Version Control
● Mailing lists archives

All tools mentioned are released under a FlOSS license.

4.2.1 Version Control Analysis Tools

4.2.1.1 CVSAnaly

CVSAnaly

General Information

Version: 0.9.3 Licenses: GPL

Authors: Alvaro Navarro,
Gregorio Robles

Maturity: Stable

URL: http://cvsanaly.tigris.or
g

Dependencies
:

cvs,mysql-server, python,
python-mysql, python-mysqldb,
python-imaging, gnuplot,
ploticus.

Description: CVSAnalY is a tool that extracts statistical information out of CVS (and
recently Subversion) repository logs and transforms it in database SQL
formats. It has a web interface - called CVSAnalYweb - where the results
can be retrieved and analyzed in an easy way.

Constraints: Some features included for CVS are not included yet for SVN.

Input/Output Information

Language
Analyzed:

Not Applicable

Input Types CVS or Subversion
module

Input Formats CVS or Subversion repository

Output Types Graphics Output
Formats

PNG

Other I/O
comments

CVSAnaly is executed as follows.
$ python cvsanaly.py

Technical Information

Devel. Lang: Python Documentatio
n:

Reference manual at
http://cvsanaly.tigris.org/servlet
s/ProjectDocumentList

50

http://cvsanaly.tigris.org/servlets/ProjectDocumentList
http://cvsanaly.tigris.org/servlets/ProjectDocumentList
http://cvsanaly.tigris.org/servlets/ProjectDocumentList
http://cvsanaly.tigris.org/servlets/ProjectDocumentList
http://cvsanaly.tigris.org/servlets/ProjectDocumentList
http://cvsanaly.tigris.org/servlets/ProjectDocumentList
http://cvsanaly.tigris.org/
http://cvsanaly.tigris.org/

(contract #033547)

Evaluation Report on Existing Tools and
Existing F/OSS repositories

Deliverable ID: D1.1

Page : 51 of 76

Version: 2.0
Date: Feb 1, 08

Status : Proposal
Confid : Public

Information
Computed:

Code repository log data: commits, committers, etc.

Extensibility: Extension can only be implemented by modifying the source code

Technical
Constraints:

Test Performed

Reliability: Stable and reliable

Performance: Good, it carries out the analysis quite fast

51

(contract #033547)

Evaluation Report on Existing Tools and
Existing F/OSS repositories

Deliverable ID: D1.1

Page : 52 of 76

Version: 2.0
Date: Feb 1, 08

Status : Proposal
Confid : Public

4.2.1.2 GlueTheos

GlueTheos

General Information

Version: rev. 4907 Licenses: GPL

Authors: Gregorio Robles, Jesus
M. Gonzalez-Barahona

Maturity: Beta

URL: http://libresoft.urjc.es/T
ools/GlueTheos

Dependencies
:

python, mysql, cvs, gnuplot,
sloccount, textutils

Description: GlueTheos has been developed to coordinate other tools to implement
the methodology. It extracts snapshots from the CVS repository at
several points in the past, and use the other tools to analyze them. It
also normalizes information in an XML format, suitable for use as a
detailed description of a project. From that format, it can get statistical
data, graphical information and other formats (for instance, SQL tables)
for further analysis. In addition, new applications can be added easily to
obtain new data.

Constraints:

Input/Output Information

Language
Analyzed:

Not Applicable

Input Types CVS module Input Formats CVS repository

Output Types Graphics and database Output
Formats

PNG, SQL

Other I/O
comments

• Execution mode:
• Edit configuration file "config.py"
• Execute: gluetheos.py

Technical Information

Devel. Lang: python, sh Documentatio
n:

File "README" and "REQUIRES"
included in the repository.

Information
Computed:

Code repository log data: commits, committers, etc

Extensibility: Extension can only be implemented by modifying the source code

Technical
Constraints:

• Unable to make diffs between distinct revisions of the project
• Does not include rsync option for first downloading repository

locally
• Only works with CVS repository
• Does not generate graphs

Test Performed

Reliability: Poor

52

http://libresoft.urjc.es/Tools/GlueTheos
http://libresoft.urjc.es/Tools/GlueTheos

(contract #033547)

Evaluation Report on Existing Tools and
Existing F/OSS repositories

Deliverable ID: D1.1

Page : 53 of 76

Version: 2.0
Date: Feb 1, 08

Status : Proposal
Confid : Public

Performance: Low

53

(contract #033547)

Evaluation Report on Existing Tools and
Existing F/OSS repositories

Deliverable ID: D1.1

Page : 54 of 76

Version: 2.0
Date: Feb 1, 08

Status : Proposal
Confid : Public

4.2.1.3 Wholine

Wholine

General Information

Version: Licenses: GNU General Public License
(GPL)

Authors: Jorge Gascón Maturity: Stable

URL: https://svn.libresoft.es/
svn/projects/trunk/whol
ine2

Dependencies
:

python, cvs, subversion

Description: Wholine2 is a tool which analyzes a CVS/SVN repository, obtains all
revisions of one repository and does an intensive analysis of the
modifications of each line of code.

Constraints:

Input/Output Information

Language
Analyzed:

Not Applicable

Input Types CVS/SVN module Input Formats CVS/SVN repository

Output Types Output
Formats

Files with Statistics and graphs
in the “Results” directory. Each
repository is in a directory.

Other I/O
comments

• Execution mode:
• python wholine project_name protocol protocol_project_url

[OPTIONS]
• $ python wholine wholine svn

https://svn.libresoft.es/svn/projects/trunk/wholine2

Technical Information

Devel. Lang: Python Documentatio
n:

reference manual at
https://svn.libresoft.es/svn/proj
ects/trunk/wholine2/Doc/

Information
Computed:

Code repository log data and differences between files: commits,
committers, etc

Extensibility: Extension can only be implemented by modifying the source code

Technical
Constraints:

• If we need to run Wholine again with the same project we have to
delete "wholine2/Results/<nombre proyecto>/log/*" files
manually.

Test Performed

Reliability: Stable and reliable

Performance: Good

54

https://svn.libresoft.es/svn/projects/trunk/wholine2/Doc/
https://svn.libresoft.es/svn/projects/trunk/wholine2/Doc/
https://svn.libresoft.es/svn/projects/trunk/wholine2/Doc/
https://svn.libresoft.es/svn/projects/trunk/wholine2/Doc/
https://svn.libresoft.es/svn/projects/trunk/wholine2/Doc/
https://svn.libresoft.es/svn/projects/trunk/wholine2/Doc/
https://svn.libresoft.es/svn/projects/trunk/wholine2
https://svn.libresoft.es/svn/projects/trunk/wholine2
https://svn.libresoft.es/svn/projects/trunk/wholine2
https://svn.libresoft.es/svn/projects/trunk/wholine2
https://svn.libresoft.es/svn/projects/trunk/wholine2
https://svn.libresoft.es/svn/projects/trunk/wholine2

(contract #033547)

Evaluation Report on Existing Tools and
Existing F/OSS repositories

Deliverable ID: D1.1

Page : 55 of 76

Version: 2.0
Date: Feb 1, 08

Status : Proposal
Confid : Public

55

(contract #033547)

Evaluation Report on Existing Tools and
Existing F/OSS repositories

Deliverable ID: D1.1

Page : 56 of 76

Version: 2.0
Date: Feb 1, 08

Status : Proposal
Confid : Public

4.2.1.4 Carnarvon

Carnavron

General Information

Version: Licenses: GNU General Public License
(GPL)

Authors: Alvaro Navarro, Carlos
González

Maturity: Stable

URL: http://carnarvon.tigris.o
rg

Dependencies
:

python, cvs, subversion,
python-2.x-MySQLdb, gnuplot.

Description: Carnarvon analyzes how old the software system is on a per-line basis
and extracts figures and indexes that make it possible to identify how
`old' the software is, how much it has been maintained and how much
maintenance effort it may undergo in the future.

Constraints:

Input/Output Information

Language
Analyzed:

Not Applicable

Input Types CVS/SVN modules Input Formats CVS/SVN repository

Output Types HTML including Graphs Output
Formats

Directory of HTML files

Other I/O
comments

• Execution mode:
• Install: python setup.py install
• Configure: carnarvon -w my.conf
• Run: carnarvon my.conf
• Analysis: After carnarvon finishes the analysis of the given

project, run the other 40 tools in order to get graphs and a
nice website: carnarvon2web my.conf

Technical Information

Devel. Lang: Python Documentatio
n:

Quick Start Guide available at
http://carnarvon.tigris.org/docu
mentation/quick-guide.html

Information
Computed:

Extensibility: Extension can only be implemented by modifying the source code

Technical
Constraints:

• May be interesting that Carnarvon can do the repository check
out by itself. But, authors say that this is a feature.

Test Performed

Reliability: Stable and reliable

56

http://carnarvon.tigris.org/documentation/quick-guide.html
http://carnarvon.tigris.org/documentation/quick-guide.html
http://carnarvon.tigris.org/documentation/quick-guide.html
http://carnarvon.tigris.org/documentation/quick-guide.html
http://carnarvon.tigris.org/documentation/quick-guide.html
http://carnarvon.tigris.org/documentation/quick-guide.html
http://carnarvon.tigris.org/
http://carnarvon.tigris.org/

(contract #033547)

Evaluation Report on Existing Tools and
Existing F/OSS repositories

Deliverable ID: D1.1

Page : 57 of 76

Version: 2.0
Date: Feb 1, 08

Status : Proposal
Confid : Public

Performance: Good

57

(contract #033547)

Evaluation Report on Existing Tools and
Existing F/OSS repositories

Deliverable ID: D1.1

Page : 58 of 76

Version: 2.0
Date: Feb 1, 08

Status : Proposal
Confid : Public

4.2.1.5 CvsGraph

CvsGraph

General Information

Version: 1.6.1 Licenses: GPL

Authors: B. Stultiens Maturity: Stable

URL: http://www.akhphd.au.
dk/~bertho/cvsgraph

Dependencies
:

yacc, libgd2

Description: CvsGraph is a utility to make a graphical representation of all revisions
and branches of a file in a CVS/RCS repository. It has been inspired by
the 'graph' option in WinCVS, but I could not find a stand-alone version
of this graph code.

Constraints:

Input/Output Information

Language
Analyzed:

Not Applicable

Input Types CVS module and file Input Formats CVS repository

Output Types Image Output
Formats

png file

Other I/O
comments

• Execution mode:
• cvsgraph [options] <file>
• i.e: cvsgraph ­r /home/to/repository ­m module ­o

mygraph.png myfile.c,v

Technical Information

Devel. Lang: C Documentatio
n:

Installation and reference
manual at
http://www.akhphd.au.dk/~bert
ho/cvsgraph

Information
Computed:

Graph showing the change history of a file in a CVS repository

Extensibility: Extension can only be implemented by modifying the source code

Technical
Constraints:

Test Performed

Reliability:

Performance:

58

http://www.akhphd.au.dk/~bertho/cvsgraph
http://www.akhphd.au.dk/~bertho/cvsgraph
http://www.akhphd.au.dk/~bertho/cvsgraph
http://www.akhphd.au.dk/~bertho/cvsgraph
http://www.akhphd.au.dk/~bertho/cvsgraph
http://www.akhphd.au.dk/~bertho/cvsgraph
http://www.akhphd.au.dk/~bertho/cvsgraph
http://www.akhphd.au.dk/~bertho/cvsgraph

(contract #033547)

Evaluation Report on Existing Tools and
Existing F/OSS repositories

Deliverable ID: D1.1

Page : 59 of 76

Version: 2.0
Date: Feb 1, 08

Status : Proposal
Confid : Public

4.2.2 Mailing Lists Archives Analysis Tools

4.2.2.1 MailingListStats

MailingListStats

General Information

Version: 0.3.1 Licenses: GNU General Public License

Authors: Israel Herraiz Maturity: Stable

URL: https://svn.libresoft.es/
svn/projects/trunk/maili
ngListStat/

Dependencies
:

python, MySQL

Description: MailingListStats is a tool for mapping mbox files of any mailing list to a
database.

Constraints:

Input/Output Information

Language
Analyzed:

Not Applicable

Input Types URL or mboxes Input Formats URLS of each mailing list or a
directory with the mboxes of
each mailing list separated by
directories.

Output Types Database Output
Formats

MySQL Database

Other I/O
comments

A database with information about headers of each parsed mbox and its
mailing list

Technical Information

Devel. Lang: Python, MySQL Documentatio
n:

HOW-TO guide (=quick start
guide) available at
https://svn.libresoft.es/svn/proj
ects/trunk/mailingListStat/doc/
MLS_Howto.txt

Information
Computed:

Mboxes from public mailing lists

Extensibility: Extension can only be implemented by modifying the source code

Technical
Constraints:

• We can not update the database of one mailing list without re-
parsing all mailing list again.

• Duplicated information is introduced in the database when
running the tool on the same mbox several times. Thus, the
database must be emptied before running updated mboxes.

• No error tolerance: MLS can not resume its work when the a
system shutdown is unannounced. We have to run MLS from the

59

https://svn.libresoft.es/svn/projects/trunk/mailingListStat/doc/MLS_Howto.txt
https://svn.libresoft.es/svn/projects/trunk/mailingListStat/doc/MLS_Howto.txt
https://svn.libresoft.es/svn/projects/trunk/mailingListStat/doc/MLS_Howto.txt
https://svn.libresoft.es/svn/projects/trunk/mailingListStat/doc/MLS_Howto.txt
https://svn.libresoft.es/svn/projects/trunk/mailingListStat/doc/MLS_Howto.txt
https://svn.libresoft.es/svn/projects/trunk/mailingListStat/doc/MLS_Howto.txt
https://svn.libresoft.es/svn/projects/trunk/mailingListStat/doc/MLS_Howto.txt
https://svn.libresoft.es/svn/projects/trunk/mailingListStat/doc/MLS_Howto.txt
https://svn.libresoft.es/svn/projects/trunk/mailingListStat/doc/MLS_Howto.txt
https://svn.libresoft.es/svn/projects/trunk/mailingListStat/
https://svn.libresoft.es/svn/projects/trunk/mailingListStat/
https://svn.libresoft.es/svn/projects/trunk/mailingListStat/

(contract #033547)

Evaluation Report on Existing Tools and
Existing F/OSS repositories

Deliverable ID: D1.1

Page : 60 of 76

Version: 2.0
Date: Feb 1, 08

Status : Proposal
Confid : Public

beginning for all projects(mailing lists) because MLS does not
support resume and then we could find consistency problems in
MLS database.

Test Performed

Reliability: Stable and reliable

Performance: Good

60

(contract #033547)

Evaluation Report on Existing Tools and
Existing F/OSS repositories

Deliverable ID: D1.1

Page : 61 of 76

Version: 2.0
Date: Feb 1, 08

Status : Proposal
Confid : Public

4.2.2.2 SEAL

SEAL

General Information

Version: Licenses: GNU General Public License

Authors: Gregorio Robles,
Roberto Andradas
Izquierdo

Maturity: Alpha

URL: https://svn.libresoft.es/
svn/projects/branches/i
mprovedSeal

Dependencies
:

Python, MySQL

Description: SEAL is a tool for identifying people in a mailing list conserving their
privacy.

Constraints:

Input/Output Information

Language
Analyzed:

Not Applicable

Input Types Files Input Formats XML

Output Types Database MySQL Output
Formats

records in db MySQL

Other I/O
comments

Execution Mode:
• Export data about a mailing list from MailingListStat? database:

python xx2xml.py > data.xml (xx2xml.py is a python script which
must be configured in order to connect to the MLS database)

• Run SEAL as follows: $ python seal-feed.py data.xml

Technical Information

Devel. Lang: Python, MySQL Documentatio
n:

reference manual available at
https://svn.libresoft.es/svn/proje
cts/branches/improvedSeal/REA
DME

Information
Computed:

Personal identities (Name, email, etc.)

Extensibility: Extension can only be implemented by modifying the source code

Technical
Constraints:

• SEAL has to recalculate all matches (related identities) each time
new identities are introduced. However, this task is not slow.

• No error tolerance: SEAL can not resume its work when the
system crashes. In other words, SEAL does not support a resume
operation.

Test Performed

Reliability: Medium

61

https://svn.libresoft.es/svn/projects/branches/improvedSeal/README
https://svn.libresoft.es/svn/projects/branches/improvedSeal/README
https://svn.libresoft.es/svn/projects/branches/improvedSeal/README
https://svn.libresoft.es/svn/projects/branches/improvedSeal/README
https://svn.libresoft.es/svn/projects/branches/improvedSeal/README
https://svn.libresoft.es/svn/projects/branches/improvedSeal/README
https://svn.libresoft.es/svn/projects/branches/improvedSeal/README
https://svn.libresoft.es/svn/projects/branches/improvedSeal/README
https://svn.libresoft.es/svn/projects/branches/improvedSeal/README
http://flossmetrics.libresoft.es/cgi-bin/trac.cgi/wiki/MailingListStat
http://flossmetrics.libresoft.es/cgi-bin/trac.cgi/wiki/MailingListStat
http://flossmetrics.libresoft.es/cgi-bin/trac.cgi/wiki/MailingListStat
https://svn.libresoft.es/svn/projects/branches/improvedSeal/
https://svn.libresoft.es/svn/projects/branches/improvedSeal/
https://svn.libresoft.es/svn/projects/branches/improvedSeal/

(contract #033547)

Evaluation Report on Existing Tools and
Existing F/OSS repositories

Deliverable ID: D1.1

Page : 62 of 76

Version: 2.0
Date: Feb 1, 08

Status : Proposal
Confid : Public

Performance: Good

62

(contract #033547)

Evaluation Report on Existing Tools and
Existing F/OSS repositories

Deliverable ID: D1.1

Page : 63 of 76

Version: 2.0
Date: Feb 1, 08

Status : Proposal
Confid : Public

5. ADVANCED ANALYSIS TOOLS AND TECHNIQUES

This section identifies techniques and tools for more advanced processing of FlOSS data.
In several cases, the existing tools provide building blocks for producing information
useful for QUALOSS quality models while in other case, analysis are currently conceptual
and tools will have to be implemented during WP2. We further note that current tools for
advanced analysis often compute results too imprecise to be directly used in QUALOSS
quality models. Before using these results, we must then find ways to improve their
precision or alternatively conduct several studies to show that even when imprecise,
these results can still provide valuable information for quality models. Furthermore, we
highlight the work by Gasser et al. (2004) on the requirements of empirical studies of
software repositories. Basically, those requirements are (1) direct reflection of the
reality, (2) adequate coverage, (3) examination of representative levels of variance, (4)
demonstration of adequate statistical significance, (5) comparability across projects, (6)
repeatability and (7) testability and evaluability of results. For the case of the empirical
validation of the QUALOSS model, those requirements should be taken in account.

Our presentation follows the same topic break down as Section 3, that is, based on
types of data sources. We describe advanced tools and techniques for FlOSS product
release in Section 5.1, for version control data in 5.2, for Mailing List Archives in 5.3, for
other data internal to FlOSS project repositories in 5.4, and for external data in 5.5.
Finally, we added Section 5.6 to discuss potential analysis based on data from multiple
sources.

5.1 F/OSS-PRODUCT-RELEASE ADVANCED ANALYSIS

A product release always includes the source code. Furthermore, it often makes
available binaries, different types of documentation and possibly, regression tests at the
unit and system levels are also distributed as part of a product release. Below we
describe advanced analysis for measuring the source code statically and dynamically,
i.e., using test runs. We also suggest analyses of potential interest for documentation.

5.1.1 Advanced Static Analysis
By definition of FlOSS, a product release includes a snapshot of the source code at a
given release date. Based on tools mentioned in Section 4.1, basic metrics can be
obtained. In addition to these measurements, techniques have been developed to
search code for more advanced information such as:
• deadlock,
• buffer overflow,
• array out-of-bound,
• pointer dereferencing,
• memory leaks,
• problematic allocation and deallocation of memory,
• different code smells, etc.

A good summary of the available tools and techniques to study potential problems in
source code (like those mentioned above) is the third chapter of Spinellis (2007).

63

(contract #033547)

Evaluation Report on Existing Tools and
Existing F/OSS repositories

Deliverable ID: D1.1

Page : 64 of 76

Version: 2.0
Date: Feb 1, 08

Status : Proposal
Confid : Public

Identifying these problems in a product release could be used to estimate quality
characteristics related to robustness and even evolvability. For example, a product
release with higher density of potential deadlocks may be considered less robust or
particular code smells may reveal rigidity hence code less evolvable. Evidence of this
could be corroborated by bug reports or feature requests stored in the bug tracking
system.

There exists an extensive list of FlOSS tools to check for the problems listed above,
among others,
• Jlint (http://jlint.sourceforge.net/) checks for thread synchronization problems in Java

bytecode.
• Flawfinder (http://www.dwheeler.com/flawfinder) checks for code smells likely to

introduce vulnerabilities in the code.
• C-Code Analyzer (http://www.drugphish.ch/~jonny/cca.html) also highlights code

issues likely to expose software components to vulnerabilities.
• Bandera (http://bandera.projects.cis.ksu.edu/) perform model checking on Java code

to identify potential deadlock and buffer overflow
• ESC/Java (http://secure.ucd.ie/products/opensource/ESCJava2) uses a theorem proofer

to identifie potential runtime error due to potential null pointers or arrays out-of-
bound.

• FindBugs (http://findbugs.sourceforge.net) and PMD (http://pmd.sourceforge.net) both
scan the code for bad smells that are likely bugs or will likely lead to bugs in the
future.

The main challenge in using results from these tools is the lack of precision. That is,
detecting all real possibilities of dead lock, buffer overflow, etc. in any given program is
an undecidable problem. Thus, these tools usually limit their scope. Due to different
trade-offs in their algorithms (for decreasing false positives while not eliminating true
negative), these tools produce different warnings even when performing similar checks
(Rutal et al. 2004).

Rutal et al. propose a meta-checker that combines results from different tools. QUALOSS
could use a similar approach by studying if measures based on counts of common
warnings across several tools provide more accurate quality indicators.

In addition to analyses to solve the problem mentioned above, indicators related to
software architecture may also provide interesting information regarding the
evolvability or robustness of a product release (Whitmire 1997). The assumption is that
software architectural information will help to highlight evolvability and also robustness
since architectural patterns propose proven solutions to particular software design
problems. However, not every pattern applies to every FlOSS project, for example, the
software architecture of a device driver is based on different constraints than the
architecture of a web server. So the challenge in using architectural information in
QUALOSS quality models is to determine what patterns benefit what software. This
information is needed in order to transform software architectural data into dependable
data to use in quality models. Since QUALOSS plans on developing quality models based
on the Goal Question Metric paradigm, we may also ask stakeholders if and why
software architecture information is important with respect to evolvability and
robustness. Of course, not all FlOSS integrators may care about or have enough

64

http://pmd.sourceforge.net/
http://pmd.sourceforge.net/
http://pmd.sourceforge.net/
http://findbugs.sourceforge.net/
http://findbugs.sourceforge.net/
http://findbugs.sourceforge.net/
http://secure.ucd.ie/products/opensource/ESCJava2
http://secure.ucd.ie/products/opensource/ESCJava2
http://secure.ucd.ie/products/opensource/ESCJava2
http://bandera.projects.cis.ksu.edu/
http://bandera.projects.cis.ksu.edu/
http://bandera.projects.cis.ksu.edu/
http://www.drugphish.ch/~jonny/cca.html
http://www.drugphish.ch/~jonny/cca.html
http://www.drugphish.ch/~jonny/cca.html
http://www.dwheeler.com/flawfinder
http://www.dwheeler.com/flawfinder
http://www.dwheeler.com/flawfinder
http://jlint.sourceforge.net/
http://jlint.sourceforge.net/
http://jlint.sourceforge.net/

(contract #033547)

Evaluation Report on Existing Tools and
Existing F/OSS repositories

Deliverable ID: D1.1

Page : 65 of 76

Version: 2.0
Date: Feb 1, 08

Status : Proposal
Confid : Public

expertise on architectural data. Those most likely to provide valuable feedback
regarding software architecture are FlOSS developers or technical FlOSS integrators
who, as part of their business, customize FlOSS components to clients' needs.

Another static analysis consists in studying copyright ownership of source code files.
Depending on the FlOSS license used by a project, copyright ownership could provide
interesting information as to the risk for a FlOSS project to turn into a proprietary
project. For example, certain licenses allow copyright owners to switch the license of
code segments they wrote. In turn, software product copyrighted by just a few people
would show a higher risk to turn into a proprietary project in the future. COOD is a tool
that extracts code copyright ownership (http://vipul.net/perl).

The static analysis mentioned above attempts to be fully automated. Conversely, some
source code analysis could be performed manually. However, due to the size of source
code, manual analysis would only inspect small source code samples. An important
factor related to manual analysis is that it must remain objective to eliminate the human
factor as much as possible. In turn, such analyses must therefore rest on specific
procedures and checklists. Given the use of GQM, it might be possible to let users tailor
QUALOSS models by adapting checklists to their needs however, the actual manual
procedure for selecting code samples and for applying the manual analyses must be
strictly imposed and respected.

Currently, we envisage using manual analysis to verify the quality of source code
comments. Comment quality may influence code robustness and evolvability. In
addition to randomly verifying source code comments, we may also perform more
advanced manual checks such as select a few bugs in the bug tracking system and then
verify that code modifications related to bug correction have comments including the
unique bug report numbers of these bugs.

5.1.2 Advanced Dynamic Analysis
Section 4.1 describes tools performing the simplest kind of dynamic analysis i.e., code
coverage. Although simple, this analysis often provides very important indicators on the
quality of testing, which in turn helps in estimating robustness. In addition to coverage,
it is possible to perform more advanced dynamic analysis. In order to do so, we may
have to develop custom instrumentations for monitoring specific aspect of execution.

Software code may be instrumented at different levels, the most common being source
code and bytecode. For Java technology, there exists several interesting bytecode
instrumenting tools. These tools are BCEL (http://jakarta.apache.org/bcel), SOOT
(http://www.sable.mcgill.ca/soot), and JavaAssist
(http://www.csg.is.titech.ac.jp/~chiba/javassist). For instrumenting various types of
languages such as Java, C, C++, Python, there is TAU, which also provides an
instrumentation API (http://www.cs.uoregon.edu/research/tau/home.php).

The exact kind of instrumentation useful to the QUALOSS quality models is currently
unknown. However, if, from the work of task 1.3, it is determined that a certain
instrumentation would help in measuring certain quality metrics then the tools above
will provide the needed building block.

65

http://www.cs.uoregon.edu/research/tau/home.php
http://www.cs.uoregon.edu/research/tau/home.php
http://www.cs.uoregon.edu/research/tau/home.php
http://www.csg.is.titech.ac.jp/~chiba/javassist/
http://www.csg.is.titech.ac.jp/~chiba/javassist/
http://www.csg.is.titech.ac.jp/~chiba/javassist/
http://www.sable.mcgill.ca/soot
http://www.sable.mcgill.ca/soot
http://www.sable.mcgill.ca/soot
http://jakarta.apache.org/bcel/
http://jakarta.apache.org/bcel/
http://jakarta.apache.org/bcel/
http://vipul.net/perl/
http://vipul.net/perl/
http://vipul.net/perl/

(contract #033547)

Evaluation Report on Existing Tools and
Existing F/OSS repositories

Deliverable ID: D1.1

Page : 66 of 76

Version: 2.0
Date: Feb 1, 08

Status : Proposal
Confid : Public

Most of the analysis mentioned in the previous subsection on advanced static analysis
have also been approached using dynamic analysis, for instance, (Ruwase-Lam 2004).
Dynamic approaches for identifying deadlock buffer over flow, memory leaks, etc. are
usually more precise, in the sense that errors discovered are real problems. However,
these dynamic analyses are usually unsafe since they do not identify all problems in the
code but only those highlighted in test runs.

5.1.3 Hybrid Analysis
Hybrid analysis consists in combining static and dynamic analyses. It is usually applied
in one of two ways: (1) a static analysis is performed on an entire program and then
dynamic analyses are used to prune or prioritize results or (2) dynamic analysis is first
performed to identify a few code subcomponents on which static analysis needed to be
computed.

Many hybrid analysis efforts have been applied to the problem of buffer overflow,
deadlock detection, pointer dereferencing, and other (Artho-Biere 2005), (Aggrawal-
Jalote 2006). In (Ernst 2003), Ernst presents possible synergies between static and
dynamic analysis tools.

Beside these advanced hybrid analysis, QUALOSS could definitely benefit from even
much simple checks, for example, by dynamically measuring the most executed
segments of code during regression testing and then statically verifying that these code
segments are well documented and display a low complexity.

5.1.4 Analysis of Build-Install Mechanism
A product release often comes with binaries, commonly for MS Windows systems.
However for many other operating-system platforms, a FlOSS product release must be
built from sources. It is therefore fundamental that the product release can be build
automatically and easily.

Automated analysis of the simplest kind could scan for the common build files such as
configure, makefile, and build.xml then run the traditional appropriate command to build
the product. such as configure; make potentially followed by make test; make
install; make clean.

If required, more thorough analysis of the content of build files could be developed to
verify their range of applicability.

5.1.5 Analysis of Product-Release Documentation
Beside code and test suite, a product release often includes a series of documentation
documents. It is paramount to verify that documentation is available for the specific
product release, and that it is up to date and reaches a certain level of quality. It may be
quite hard to automate such verification. However, it is feasible to develop a standard
manual procedure to measure documentation quality.

Although measuring documentation quality seems more related to usability, it also has
an impact on evolvability and robustness. For example, the documentation may explain
extensively how to tune the product release to improve its robustness. In addition, the

66

(contract #033547)

Evaluation Report on Existing Tools and
Existing F/OSS repositories

Deliverable ID: D1.1

Page : 67 of 76

Version: 2.0
Date: Feb 1, 08

Status : Proposal
Confid : Public

robustness and evolvability of documentation itself may be considered. For example, is
the user guide broken down logically in small independent subsections?, does it avoid
redundancy and are cross references between related sections of the documentation
explicitly stated so as to ease documentation maintenance? Are there different types of
documentation to address the concerns of new users as well as users familiar with
previous product releases?

5.2 VERSION-CONTROL ADVANCED ANALYSIS

Section 3.2 specifies that version control systems keep track of two different types of
data:

● Files under version control such as source code files
● Meta information about commits

Analysis on both types of data are discussed below.

5.2.1 Historical Analysis of Version-Controlled Files
Regarding Source Code Files, a version control system makes it possible to obtain
the whole code history from the beginning of the project until the present day. A version
control system also allows obtaining source code files for a given date.

Section 4.1 already presented tools to measure source code and Section 5.1 also
mentions different advanced analysis that could be performed on source code at a
selected point in time. What version control data brings is the ability to study historical
evolution of source code. Some effort have already studied the evolution of size and
complexity of FlOSS projects (Godrey and Tu, 2000; Robles et al., 2005; Koch, 2005).
Moreover, size was also used to estimate the cost of substitution of the project3 (Amor
et al., 2005). QUALOSS can leverage on the information produced by these works and
even take them one step further by applying advanced analysis over time and verifying
whether a selected FlOSS project shows improving or regressing trends.

One particular interesting study could verify whether or not it is common for large,
popular FlOSS projects to go through phases of reengineering, refactoring or rewrites at
various moments of their life.

Regarding other files, version control may also contain test suite data such as unit
tests and system tests. It is possible to use these tests for the dynamic analysis
mentioned previously. It is also possible to study the historical growth of the test suite.

FlOSS projects may also store documentation files in version control systems. In such
cases, the historical evolution of documentation may reveal interesting patterns. For
example, do we see that documentation files are brought up to date before a product
release? If not, this could indicate mismatch between the system and its documentation.

5.2.2 Version Control Metadata Analysis
Version control system metadata allows to obtain very valuable information about the
activity in the different parts of the source code tree, about the productivity of the
3The cost of substitution is the amount of money that a company should spend to
develop a program of the same size in a “closed” environment.

67

(contract #033547)

Evaluation Report on Existing Tools and
Existing F/OSS repositories

Deliverable ID: D1.1

Page : 68 of 76

Version: 2.0
Date: Feb 1, 08

Status : Proposal
Confid : Public

developers, about code ownership. Furthermore, when related to other data source such
as mailing list archives or bug tracking data, it is also possible to reconstruct the
interactions among community members of a FlOSS project in order to discover the
existence of sub-communities or sub-groups (Lopez-Fernandez et al., 2006).

Log texts in commits have traditionally been used to identify bug fixes. When a commit
is a bug fix, a given pattern is supposed to appear in the log text. For instance, the
number of the bug report, the words “bug fixing”, etc. Log texts have also been used to
classify the changes in the version control system, using the least common words in
English which appear in the text, and clustering analysis to identify the different
categories. (Amor et al., 2006)

Meta information and source code logs recorded by version control systems may also be
used to study project turnover and takeover aka generation analysis. By measuring the
activity of the core group of a FlOSS project over time, we can determine if a
generational relay has occurred in the project. This finding is important, because a
generational relay is supposed to be needed in healthy projects. In other words, the
project needs new people to take leadership; it can not rely on the shoulders of “code
gods” (Robles and Gonzalez-Barahona, 2006).

Meta information can also be used to categorize committers as coders, translators or
artists depending on the types of files they edit and modify. It is also possible to study
code ownership at the level of files, directories or modules.

Zimmerman and Weissberger propose a methodology to deal with the particularities of
CVS when empirically studying such repositories (Zimmerman and Weissberger 2004) .
In particular, the quality of results is heavily influenced by how the data is preprocessed
before preforming analysis on it. The commonly performed 4 preprocessing steps are:
(1) data extraction, (2) transaction recovery, (3) mapping of changes to fine grained
entities (e.g. mapping changes to other code entities that files such as functions,
classes, etc.) and (4) data cleaning. The QUALOSS methodology will carefully consider
how each of these steps is performed when analyzing CVS repositories so as to obtain
high quality data from the preprocessing phase. This will be crucial in order to obtain
reliable measurements on the metrics mentioned hereafter.

For step 1, we will use CVSAnaly, a tool developed by URJC that has reach a good level
of maturity when performing extraction for CVS and also Subversion.

Concerning the step 2 of CVS preprocessing, the meta information associated to every
commit can be used to reconstruct the modification requests made to several files. In
particular, algorithms have been proposed for this purpose (German, 2004).

Step 3 will depend on the metrics selected by QUALOSS and step 4 may in certain cases
require interaction with community members of the select FlOSS projects so as to
validate how to clean the data or even validate the already cleaned data (knowing the
cleaning operation performed on it.)

Below, we enumerate metrics obtained from the analysis of version control system
metadata, All the proposed metrics are intended to be measured over time, for instance

68

(contract #033547)

Evaluation Report on Existing Tools and
Existing F/OSS repositories

Deliverable ID: D1.1

Page : 69 of 76

Version: 2.0
Date: Feb 1, 08

Status : Proposal
Confid : Public

on a monthly basis or on a product-release-time basis. It is worth noting that in many
cases, the evolution of measurements gives more interesting indicators than
measurements only taken at a single point in time.

• Number of developers making changes to the project
• Number of non-active developers
• Number of changes made to the project
• Number of modules present in the project
• Number of modules changed in the project
• Number of files present in the project
• Number of files changed in the project
• Relationships between developers at various granularity level (Files and

Modules)
• Relationships between modules
• Generation analysis

All the proposed metrics could be measured discriminated by file type using the meta
information associated to every commit.

Comparison of source code modifications between two or more product releases not
using version control data enables studying trends in source code evolution. However,
using the finer grain data found in version control systems, the study of changes can be
performed at a much lower level. At this low level, interesting interaction patterns may
become observable, for example, interaction between developers, or systematic
modifications of a group of files.

5.3 BUG TRACKING ADVANCED ANALYSIS
Data obtained from bug tracking systems is fundamental for performing quality analysis.
Below is a list of metrics automatically extractable from bug tracking systems. It is
actually more meaningful to study the evolution of these metrics over time; for example,
in the last six months or in the period since the last major or minor release:

● Number of bugs, differentiate by status
● Number of bugs fixed vs opened
● Mean and standard deviation of time elapsed to fix or to close a bug.
● Number of comments in the bug report.
● Number of reporters (number of people who found and reported at least one bug)
● Number of developers attending to bugs

In addition to the simple metrics above, the complexity of bugs resolution can also be
studied almost automatically when a patch for fixing the bug is attached to the final bug
report.

The relationships between users reporting bugs and developers attending those reports
could provide information concerning the procedure followed by the community.
Techniques could be developed to discover the actual the communication paths between
users and developers, (are there clusters of developers related to cluster of users?)

Also, correlations between bug tracking reports and other data sources such as mailing
list archives are likely to yield interesting information for QUALOSS quality models

69

(contract #033547)

Evaluation Report on Existing Tools and
Existing F/OSS repositories

Deliverable ID: D1.1

Page : 70 of 76

Version: 2.0
Date: Feb 1, 08

Status : Proposal
Confid : Public

(Herraiz et al., 2005). Another interesting cross correlation is to try to track the
relationships among bug reports and changes in the source code repository. This
problem has been already addressed by Mockus et al. (Mockus et al. 2002) and German
and Mockus (German and Mockus 2003) with partial results.

Beside fully automated measurements of bug tracking data, it may be interesting to
study the semantic quality of bug reports. This analysis is likely to be performed
manually hence only small representative samples can be verified feasibly. An example
of an interesting point to check is whether or not bug reports initially well detailed and
explained have more chances to be addressed by developers compared to brief bug
reports. For instance, reports automatically generated when an application crashes are
often very precise including system information and potentially a memory snapshot. So
are these report taken into account and their bugs fixed faster?

5.4 MAILING LIST ARCHIVES ADVANCED ANALYSIS

As mentioned in Section 3.4, when mailing list archives are stored in RFC822 format and
are not stripped out then the following metrics can be obtained automatically:

● Number of messages over time
● Number of people writing in the list over time
● SNA methods to study the flow of information within the community and their

evolution over time
● Mean and standard deviation of length of the threads over time.
● Statistics of usage of the different programs in the mailing list

Extracting common words from the content of email messages could also help to
identify topics discussed by the community. Studies comparing keywords evolution may
reveal important reoccurring topics. Correlating topics with people involved in the
discussion of those topics may also augment existing analysis related to the discovery of
social networks within the community of a FlOSS project.

Manual analysis of message content may also provide interesting information. For
example, how helpful are email messages for answering a support question. Obviously,
there are usually too many messages in an archive to analyze them all by hand
however, a small, representative sample of emails in the archives may provide valuable
information for QUALOSS quality models.

5.5 ADVANCED ANALYSIS ON OTHER DATA INTERNAL TO A F/OSS PROJECT

Section 3.5 list three other sources of data commonly found in FlOSS project:
• On-line documentation
• Web and Wiki pages
• IRC logs

5.5.1 Analysis of On-Line Documentation
Analysis of documentation was already discussed as part of Section 5.1. Similar analyses
could be performed on on-line documentation. It may also be interesting to verify that
different version of on-line documentation match each product release, and not just
documentation for the most recent version.

70

(contract #033547)

Evaluation Report on Existing Tools and
Existing F/OSS repositories

Deliverable ID: D1.1

Page : 71 of 76

Version: 2.0
Date: Feb 1, 08

Status : Proposal
Confid : Public

5.5.2 Analysis of Web and Wiki Pages
Simple analysis of web sites may possibly be automated, for example, an analysis to
verify the graph of page reachability to guarantee that information can be obtained with
an acceptable number of clicks. In other words, such an analysis would ensure that a
website follows the recognized website guidelines. However, given the unstructured
nature of websites, advanced analysis are likely to be manual.

Website Analysis will also have to take into account the age of project. In fact, initially, it
may be acceptable for small, young FlOSS projects not to provide much information on
their website. However, as they grow in popularity, their websites will mostly need to
grow. To ensure a healthy growing community, popular projects are expected to present
certain information explicitly, for example, transparency in vision, management
decision. Web and wiki pages often reflect such information by having pages dedicated
to the mission statement, the structure of the steering committee of a FlOSS project,
and many other data.

5.5.3 Analysis of IRC Logs
IRC logs widely vary in their content. In some cases, they are used for support or tutorial
session while in other managerial issues may discussed; yet in other cases, design
decisions may be addressed. Analysis of IRC logs will likely have to be manual to be of
any value.

When IRC logs hold the results of decisions, it may be interesting to verify who
participates in the IRC session and whether the decision making process respected the
procedure decided by the leadership of a FlOSS project (for example, as it is stated in
the decision-making procedures on the website of the FlOSS project.)

Due to the unstructured nature of information found in IRC logs, it is unlikely that
QUALOSS finds a way to formalize the use of such information. However, this a priori
expectation may not reflect the real world usage of IRC and, in turn, thorough
investigation of IRC log content is need before deciding whether or not QUALOSS quality
models can use their information.

5.6 ADVANCED ANALYSIS ON OTHER DATA EXTERNAL TO A F/OSS PROJECT

Beside the data collected and shared by a FlOSS project, several other sources of
information mentioned in Section 3.6 also provide interesting FlOSS project data.
Potential analysis on data of alternate sources currently identified are discussed in the
subsections below.

5.6.1 Analysis of FlOSS Data Provided by Other Projects
FLOSSMOLE (Howison et. al, 2006) is a project that collects a series of information about
FlOSS projects available on SourceForge, FreshMeat, and Savannah. FLOSSMETRICS is
another project that will also provide a similar repository of FlOSS projects data.

We currently anticipate a much stronger collaboration with FLOSSMETRICS since several
FLOSSMETRICS partners are also involved in QUALOSS. This creates a feedback
mechanism between the two projects. In other words, QUALOSS may influence the
database schema created by FLOSSMETRICS. Such a feedback does not exist with

71

(contract #033547)

Evaluation Report on Existing Tools and
Existing F/OSS repositories

Deliverable ID: D1.1

Page : 72 of 76

Version: 2.0
Date: Feb 1, 08

Status : Proposal
Confid : Public

FLOSSMOLE. However, FLOSSMOLE data may still be of interest either to validate
FLOSSMETRICS data or because it provides data not collected by FLOSSMETRICS.

FLOSSMETRICS data are interesting because they provide filtered information. In many
cases, version control repositories, bug tracking data and email archives are cluttered
with noisy data. Thanks to FLOSSMETRICS, a first level of filtering will improve data
quality. When possible, measurements may be obtained directly from FLOSSMETRICS
data. In other cases, FLOSSMETRICS data will provide valuable information so that
QUALOSS tools can access relevant, valid data in FlOSS project repositories avoiding
noisy, erroneous data.

QUALOSS may also provide tools to FLOSSMETRICS so that certain analyses can be
computed in the scope of FLOSSMETRICS enabling QUALOSS to simply retrieve results.

5.6.2 Analysis of Vulnerability Databases
Currently, two related, open data sources inventorying vulnerabilities have been
identified, namely, the Common Vulnerability Enumeration (CVE) hosted by MITRE
Corporation at http://cve.mitre.org/cve and the National Vulnerability Database (NVD)
hosted by the National Institute of Standards and Technology (NIST) and searchable at
http://nvd.nist.gov/nvd.cfm?advancedsearch.

NVD augments CVE vulnerabilities with a series of information such as severity score,
created based on explicit and objective procedures. It also posts patches when made
available by the vulnerable product representatives. Furthermore, NIST has developed a
language called OVAL to define new vulnerabilities and to facilitate the search of the
OVAL repository for particular vulnerabilities.

Information about vulnerabilities in a FlOSS product release could provided valuable
information for use in robustness quality models. Furthermore, studies of historical
evolution of vulnerabilities in a FlOSS product could also provide information regarding
the ability of the community to produce reliable software.

5.6.3 Analysis of Publication Databases
One particular sign of popularity and maturity, which may show signs of evolvability and
robustness, is the publication of a new book. Given the broadness of the Amazon
database, it could be used to identify book publications related to a particular FlOSS
product.

In addition to Amazon, scientific publications databases, which improve FlOSS products,
could reveal the presence of an active research community behind the FlOSS product.
Given that innovation is an important factor in evolution, information related scientific
articles could provide a useful indicator to QUALOSS quality models.

5.6.4 Analysis of News Websites and Archives
Presence in the press is an important factor to help the success of FlOSS projects. Some
interesting analysis could categorize and count press articles inventoried by a few
trusted sources such as Slashdot or FLOSSPlanet.

72

http://nvd.nist.gov/
http://nvd.nist.gov/
http://nvd.nist.gov/
http://cve.mitre.org/cve/
http://cve.mitre.org/cve/
http://cve.mitre.org/cve/

(contract #033547)

Evaluation Report on Existing Tools and
Existing F/OSS repositories

Deliverable ID: D1.1

Page : 73 of 76

Version: 2.0
Date: Feb 1, 08

Status : Proposal
Confid : Public

The challenge in creating objective news analysis is that many factors influence the
impact of a news article, for example, the broadness of distribution of the newspaper
and the credibility of the writer. However, media presence is a clear indicator of the
health of a FlOSS project hence we must further study the possibility to create objective
procedures to measure news impact.

5.7 MULTIPLE DATA SOURCE ANALYSIS

When possible to cross reference data between multiple data sources, the added value
of the analysis is likely to increase. For example, cross referenced information between
version control repositories, bug tracking reports, and mailing list archives could reveal
elaborate software development procedures between the community members of a
FlOSS project. These procedures would likely not be observable when analyzing a single
data source.

Fully automated analysis for multiple data sources is unlikely. However, if the
mechanism for cross referencing data is known, it may be possible to automate part of
the analysis. For example, if version control logs always include a field mentioning a
unique bug report or unique feature request, then it may be possible to automatically
cross reference version control and bug tracking data.

Except for a few FlOSS projects, we do not anticipate that traces between data of
multiple repositories will be kept. In turn, further investigation is required before
justifying the implementation of tools or analyses based on data cross reference as
input.

Further cross referencing may be done between release data and news archive
websites. In fact, having community members active in promoting a new product
release in the news at release time shows community versatility, which is definitely an
indication of robustness. It may also be possible to cross-relate data in vulnerability
databases and in bug reports.

73

(contract #033547)

Evaluation Report on Existing Tools and
Existing F/OSS repositories

Deliverable ID: D1.1

Page : 74 of 76

Version: 2.0
Date: Feb 1, 08

Status : Proposal
Confid : Public

6. CONCLUSION

This deliverable presents three important pieces of information to take into account
when building QUALOSS quality models.

First, the different types of data available on FlOSS projects are presented. The main
FlOSS data sources are product releases, version control repositories, bug tracking
systems, mailing list archives, and other unstructured sources such as on-line
documentation, website, and IRC logs. Furthermore, there also exists information about
FlOSS projects that is stored in external repositories, that is, data not controlled by the
FlOSS projects. In particular, FLOSSMETRICS and FLOSSMOLE provide filtered data
extracted automatically from renown forges like SourceForge, FreshMeat and Savannah.
Other external repositories are those inventorying software vulnerabilities such as the
one provided in the National Vulnerability Database. Finally, publication databases and
news archives provided by trusted sources may reveal interesting information related to
evolvability and robustness of FlOSS projects.

Second, this document enumerates existing tools to process the data from sources
mentioned above. From this enumeration, we find that many tools for processing code
are available. Similarly, there are also a few tools for processing version control data.
However, much fewer tools are available to extract and analyze other data sources. Only
a single tool was found for analyzing mail archives. Concerning bug tracking systems,
data extraction should be fairly simple if access to the bug tracking database is granted.
However this would make QUALOSS dependent on FlOSS projects granting the
appropriate access permissions. This is why other data sources such as FLOSSMOLE and
FLOSSMETRICS databases may provide appropriate alternatives since they have already
negotiated these access rights with well-know FlOSS forges.

Third, tools and advanced analyses are described for each data source. Advanced
analyses are likely to provide valuable information to the QUALOSS quality models.
Finally, we note that some of these advanced analysis may be manual. Although
QUALOSS plans on automating the application of most quality models, some manual
analysis is acceptable, especially if they yield highly important information regarding the
evolvability and robustness of FlOSS projects.

At this stage, this deliverable presents the necessary tools and analysis to process FlOSS
data from the mentioned sources. Nonetheless, additional tools and analysis may
augment our current list; especially as a result of task 1.3, which combines the
outcomes of tasks 1.1 and 1.2.

74

(contract #033547)

Evaluation Report on Existing Tools and
Existing F/OSS repositories

Deliverable ID: D1.1

Page : 75 of 76

Version: 2.0
Date: Feb 1, 08

Status : Proposal
Confid : Public

7. REFERENCES

(Artho-Biere 2005) C. Artho, A. Biere. Combined Static and Dynamic Analysis. Technical
Report 466, Dept. of Computer Science, ETH Zürich, 2005, full version of paper that
appeared in AIOOL'05.

(Aggrawal-Jalote 2006) Ashish Aggarwal, Pankaj Jalote, Integrating Static and Dynamic
Analysis for Detecting Vulnerabilities In Proceeding of COMPSAC pp. 343-350, 30th
Annual International Computer Software and Applications Conference (COMPSAC'06),
2006.

(Amor et al., 2005) Amor, González-Barahona, Robles and Herraiz. Measuring Libre
Software using {D}ebian 3.1 (Sarge) as a Case Study: preliminary results. Upgrade
Magazine. Vol VI, issue 3. 2005.

(Amor et al., 2006) Amor, Robles and Gonzalez-Barahona. Discriminating Development
Activities in Versioning Systems: A Case Study. Proceedings of the International
Workshop on Predictor Models in Software Enginnering. 2006.

(Ernst 2003) Michael D. Ernst. Static and dynamic analysis: Synergy and duality, In
WODA 2003: ICSE Workshop on Dynamic Analysis, (Portland, OR), May 9, 2003, pp. 24-
27.

(Gasser et al., 2004) Les Gasser, Gabriel Ripoche, and Robert Sandusky. Research
infrastructure for empirical science of FOSS. In Proceedings of the International
Workshop on Mining Software Repositories, Edinburgh, Scotland, UK, 2004.

(German, 2004). German. An empirical study of fine-grained software modifications.
Proceedings of the International Conference on Software Maintenance. 2004.

(German and Mockus, 2003) Daniel M. German and Audris Mockus. Automating the
measurement of open source projects. In Proceedings of the 3rd Workshop on Open
Source Software Engineering, Portland, Oregon, USA, 2003.

(Godfrey and Tu, 2000) Godfrey and Tu. Evolution in Open Source Software: A Case
Study. Proceedings of the International Conference on Software Maintenance. pp. 131-
142. 2000.

(Herraiz et al. 2005) Herraiz, Robles and Gonzalez-Barahona. Towards Predictor Models
for Large Libre Software Projects. Proceedings of the International Workshop on Predictor
Models in Software Engineering. 2005.

(Herraiz et al. 2006) Herraiz, Robles, Amor, Romera and Gonzalez-Barahona. The
Processes of Joining in Global Distributed Software Projects. Proceedings of the
International Workshop on Global Software Development for the Practitioner. 2006.

(Howison et al. 2006) Howison, J., Conklin, M., Crowston, K. (2006). FLOSSmole: A
collaborative repository for FLOSS research data and analyses. International Journal of
Information Technology and Web Engineering. 1(3). July-September, 2006. pp 17-26.

75

(contract #033547)

Evaluation Report on Existing Tools and
Existing F/OSS repositories

Deliverable ID: D1.1

Page : 76 of 76

Version: 2.0
Date: Feb 1, 08

Status : Proposal
Confid : Public

(Koch, 2005) Koch. Evolution of Open Source Software Systems – A Large Scale
Investigation. Proceedings of the 1st International Conference on Open Source Systems.
2005.

(Li et al. 2005) Tong Li, Carla S. Ellis, Alvin R. Lebeck, and Daniel J. Sorin. Pulse: A
Dynamic Deadlock Detection Mechanism Using Speculative Execution, USENIX Annual
Technical Conference, April 2005.

(Lopez-Fernandez et al., 2006) Lopez-Fernandez, Robles, Gonzalez-Barahona and
Herraiz. Applying Social Network Analysis Techniques to Community-Driven Libre
Software Projects. International Journal of Information Technology and Web Engineering,
Vol. 1, Issue 3. 2006.

(Mockus et al., 2002) Audris Mockus, Roy T. Fielding, and James D. Herbsleb. Two case
studies of Open Source software development: Apache and Mozilla. ACM Transactions on
Software Engineering and Methodology, 11(3):309–346, 2002.

(Robles et al., 2005) Robles, Amor, Gonzalez-Barahona and Herraiz. Evolution and
Growth in Large Libre Software Projects. Proceedings of the International Workshop on
Software Evolution. pp. 165-174. 2005.

(Robles and Gonzalez-Barahona, 2006) Robles and Gonzalez-Barahona. Contributor
Turnover in Libre Software Projects. Proceedings of the International Conference on
Open Source Systems. 2006.

(Rutal et al. 2004) Nick Rutal, Christian B. Almazan, and Jeffrey S. Foster, A Comparison
of Bug Finding Tools for Java, Procedings of the International Symposium on Software
Reliability Engineering. 2004, pp 245-256, (URL:
http://doi.ieeecomputersociety.org/10.1109/ISSRE.2004.1)

(Ruwase-Lam 2004) O. Ruwase and M. S. Lam, A Practical Dynamic Buffer Overflow
Detector, In Procedings of the 11th Annual Network and Distributed System Security
Symposium, February 2004.

(Spinellis 2007) Diomidis Spinellis. Code Quality: The Open Source Perspective. Addison
Wesley, 2006. ISBN 0-321-16607-8.

(Whitmire 1997) Scott A. Withmire, Object-Oriented Design Measurement, Wiley & Sons,
Sepetember, 1997, (ISBN: 978-0471134176)

(Zimmermann and Weissgerber, 2004) Thomas Zimmermann and Peter Weissgerber.
Processing CVSdata for fine-grained analysis. In Proceedings of the International
Workshop on Mining Software Repositories, Edinburgh, Scotland, UK, 2004.

76

http://doi.ieeecomputersociety.org/10.1109/ISSRE.2004.1
http://doi.ieeecomputersociety.org/10.1109/ISSRE.2004.1
http://doi.ieeecomputersociety.org/10.1109/ISSRE.2004.1

	1. Introduction
	1.1 Motivation of Task 1.1
	1.2 Objectives of Task 1.1
	1.3 Structure of the Deliverable

	2. Glossary
	3. F/OSS Repositories Data
	3.1 F/OSS Project Releases
	3.2 Version Control Systems
	3.3 Bug Tracking Systems
	3.4 Mailing List Archives
	3.5 Other Data Sources Internal to a F/OSS Project
	3.6 Data Sources External to a F/OSS Project

	4. Existing Analysis Tools
	4.1 Code Analysis Tools
	4.1.1 Language Independent Analysis Tools
	4.1.1.1 SLOCCount

	4.1.2 Ada Static Analysis Tools
	4.1.2.1 GNATmetric
	4.1.2.2 GNATstack
	4.1.2.3 GNATcheck
	4.1.2.4 AdaControl

	4.1.3 C/C++ Static Analysis Tools
	4.1.3.1 SISSy (-cpp)
	4.1.3.2 CCCC

	4.1.4 Java Static Analysis Tools
	4.1.4.1 SQUAL
	4.1.4.2 CheckStyle
	4.1.4.3 JDepend

	4.1.5 Python Static Analysis Tools
	4.1.5.1 PyMetrics
	4.1.5.2 PyLint
	4.1.5.3 The Metrics (for Python)

	4.1.6 Dynamic Analysis
	4.1.6.1 GCOV
	4.1.6.2 GNATmem
	4.1.6.3 Emma

	4.2 Analysis Tools for Other Repository-Data
	4.2.1 Version Control Analysis Tools
	4.2.1.1 CVSAnaly
	4.2.1.2 GlueTheos
	4.2.1.3 Wholine
	4.2.1.4 Carnarvon
	4.2.1.5 CvsGraph

	4.2.2 Mailing Lists Archives Analysis Tools
	4.2.2.1 MailingListStats
	4.2.2.2 SEAL

	5. Advanced Analysis Tools and Techniques
	5.1 F/OSS-Product-Release Advanced Analysis
	5.1.1 Advanced Static Analysis
	5.1.2 Advanced Dynamic Analysis
	5.1.3 Hybrid Analysis
	5.1.4 Analysis of Build-Install Mechanism
	5.1.5 Analysis of Product-Release Documentation

	5.2 Version-Control Advanced Analysis
	5.2.1 Historical Analysis of Version-Controlled Files
	5.2.2 Version Control Metadata Analysis

	5.3 Bug Tracking Advanced Analysis
	5.4 Mailing List Archives Advanced Analysis
	5.5 Advanced Analysis on Other Data Internal to a F/OSS Project
	5.5.1 Analysis of On-Line Documentation
	5.5.2 Analysis of Web and Wiki Pages
	5.5.3 Analysis of IRC Logs

	5.6 Advanced Analysis on Other Data External to a F/OSS Project
	5.6.1 Analysis of FlOSS Data Provided by Other Projects
	5.6.2 Analysis of Vulnerability Databases
	5.6.3 Analysis of Publication Databases
	5.6.4 Analysis of News Websites and Archives

	5.7 Multiple Data Source Analysis

	6. Conclusion
	7. References

