
Semi-Automated Extraction of Targeted Data from Web Pages

Fabrice Estiévenart
CETIC

Gosselies, Belgium
fe@cetic.be

Jean-Roch Meurisse
Jean-Luc Hainaut

Computer Science Institute
University of Namur

Namur, Belgium
{jrm,jlh}@info.fundp.ac.be

Philippe Thiran
Information and System

Management
University of Namur

Namur, Belgium
pthiran@fundp.ac.be

Abstract

The World Wide Web can be considered an infinite source
of information for both individuals and organizations. Yet,
if the main standard of publication on the Web (HTML) is
quite suited to human reading, its poor semantics makes it
difficult for computers to process and use embedded data in
a smart and automated way.

In this paper, we propose to build a bridge between
HTML documents and external applications by means of so-
called mapping rules. Such rules mainly record a semantic
interpretation of recurring types of information in a cluster
of similar Web documents and their location in those doc-
uments. Relying on these rules, HTML-embedded data can
be extracted towards a more computable format. The defi-
nition of mapping rules is based on direct user input mainly
for the interpretation part, and on automatic computing for
the location of data in HTML tree structures. This approach
is supported by a user-friendly tool called Retrozilla.

1. Introduction

Composed of Web sites interconnected by hyperlinks,
the World Wide Web can be seen as a huge but chaotic
source of information. Encoded in a semantically poor for-
mat (HTML), Web data are well suited to human reading
when rendered in a browser but cannot easily be processed
automatically by software agents. In order to provide the
latter with a better access to Web content, it is necessary
to build a bridge between them and HTML-embedded data.
Such a bridge should tell software agents what kinds of data
they can find in specific sources and where to find them pre-
cisely. Typically, this information is recorded in so-called
mapping rules.

Our approach is depicted in Figure 1 and can be sum-
marized as follows. (1) Given a data-intensive Web site,

its pages are gathered into page clusters according to both
their semantic content and their HTML structure; (2) for
each cluster, recurring data of interest are given a semantic
interpretation that is associated with location information to
compose a mapping rule; (3) these mapping rules allow to
extract HTML-embedded data towards an XML structure
for further processing. Data migration [18], data integra-
tion [3] and information monitoring [17] are some of the
possible exploitations of the extracted data.Web site

(1) Clustering

(2) Semantic analysis

(3) Extraction

Page clusterWeb pageWeb pageWeb page
Mapping rules

Page clusterWeb pageWeb pageWeb pagePage clusterWeb pageWeb pageWeb page

XML document

Web site
(1) Clustering

(2) Semantic analysis

(3) Extraction

Page clusterWeb pageWeb pageWeb pagePage clusterWeb pageWeb pageWeb pageWeb pageWeb pageWeb pageWeb pageWeb pageWeb page
Mapping rulesMapping rules

Page clusterWeb pageWeb pageWeb pagePage clusterWeb pageWeb pageWeb pageWeb pageWeb pageWeb pageWeb pageWeb pageWeb pagePage clusterWeb pageWeb pageWeb pagePage clusterWeb pageWeb pageWeb pageWeb pageWeb pageWeb pageWeb pageWeb pageWeb page

XML documentXML document
Figure 1. Overview of our approach

In this paper, we focus on the second step, i.e., build-
ing the mapping rules. To do this, a restricted set of Web
documents (referred to as a working sample in the follow-
ing) belonging to the same page cluster are rendered in a
browser. A human actor, preferably aware of the semantic
field associated to the page cluster, is in charge of analyz-
ing these pages. According to his/her needs, s/he identifies,
locates and gives his/her own interpretation to interesting
data values, regardless of the HTML syntax. From these

inputs, mapping rules are automatically computed by a rule
generator.

Retrozilla is a toolbox that implements this approach, al-
lowing end-users to build mapping rules from a set of Web
documents displayed in tabbed windows. The system is
characterized by its ease of use and high flexibility. In-
deed, no specific knowledge of HTML intricacies or com-
plex mapping languages is needed to use Retrozilla. The
user directly interacts with the Web documents in a user-
friendly browser interface. As regards flexibility, this ap-
proach allows to address only the pieces of information that
are of interest to the user. Furthermore, Retrozilla-generated
mapping rules are able to process Web documents even if
they show major differences in their structure and when un-
expected constructs are encountered. Indeed they are built
from a representative set of Web documents that most often
shows all the discrepancies between the pages of the cluster.

In addition to Retrozilla, an extraction processor has
been developed. It interprets the mapping rules in order
to produce an XML document containing the target data
and an XML Schema [12] document representing their data
structure.

The paper is organized as follows: in Section 2, the main
concepts of our approach are defined: page cluster, page
component and mapping rule. Section 3 details the method
used to build mapping rules. The extraction of data towards
XML is presented in Section 4. The tools developed to sup-
port the building of mapping rules are introduced in Sec-
tion 5. An overview of related work is given in Section 6.
Finally, Section 7 gives some concluding remarks and plans
for future work.

Examples taken from the imdb Web site (http://
www.imdb.com), an on-line movie database will be used
to illustrate our approach.

2. Main concepts of our approach

In this section, we present the major concepts needed to
understand our approach. These concepts are respectively
page cluster (Section 2.1), page component (Section 2.2)
and mapping rule (Section 2.3).

2.1. Page cluster

In our approach, the pages composing a Web site are par-
titioned into page clusters [18], according to their semantic
content and their layout. In other words, they display the
same kind of information in a similar way. In the related
literature, such a division is also called page class [7] or
collection [1].

Various techniques of clustering can be found in the liter-
ature. They range from simple analysis of URLs [7], [20], to

more complex criteria such as table layout [20], tags period-
icity [7], keywords frequency [22] and navigational distance
from the home page [7]. Most often, several techniques are
used in parallel or sequentially in order to improve the ac-
curacy of the computed clusters.

Being a field of research by itself, the page clustering
issue will not be further discussed. Within the context of
this paper, we only rely on a set of heuristics to identify
page clusters. Thus, two pages belong to the same page
cluster if they share the following intuitive features:

• they come from the same Web site (domain);

• they display instances of the same concept (e.g., two
pages featuring details of a movie);

• they have a close HTML structure.

Each cluster is given a meaningful name that represents
the main concept featured in its pages.

Figure 2 shows two pages of the imbd-movies cluster.
For illustration purposes, their size was reduced (e.g., the
list of actors was shortened).

2.2. Page component

An information unit identified in a page is called a page
component. Semantically speaking, a page component is
an interesting attribute of the main concept featured in the
pages of a given cluster (e.g., the runtime of a movie). Syn-
tactically speaking, a page component is a recurring block
in the pages of the cluster (e.g., HTML heading tags sur-
rounding a character string). Each page component is given
the following properties:

• A unique name, which identifies the page component
with respect to others,

• its optionality, stating whether the component may be
missing in some pages,

• its multiplicity, stating whether only one or several
consecutive instances of it can appear in a page,

• its format, which distinguishes pure text, if the value is
only composed of simple text and mixed if it is com-
posed of both text and formatting elements,

• its location in the source documents.

While a page component is linked to a cluster, each of its
instances in the pages of the cluster are called component
values.

The values of the properties addressing a given page
component form a tuple that we call a mapping rule. This
tuple must provide enough information to extract instances
of the component as XML elements and to give it a seman-
tically pertinent name.

Figure 2. Two pages of the ”imdb-movies” cluster

2.3. Mapping rule

A mapping rule (also called extraction rule [14] or pat-
tern [3] in the related literature) is the formalization of the
properties of a page component. Each mapping rule ad-
dresses exactly one page component, and, conversely, a
page component can be mapped by exactly one mapping
rule.

The first four properties, i.e., name, optionality, multi-
plicity and format are model-independent, that is they could
be reused for the same purpose with non-HTML documents.
They can be formalized as follows in EBNF notation:

name ::= [a–zA–Z]([a–zA–Z] | [–] | [0–9])∗
optionality ::= ’optional’ | ’mandatory’
multiplicity ::= ’single-valued’ | ’multivalued’
format ::= ’text’ | ’mixed’

On the other hand, the last property, i.e., location, strictly
depends on the underlying model and thus needs to be for-
malized according to it. For instance, locating a piece of
information in an HTML document and in a RTF one can-
not be done the same way. Since we are dealing with
DOM-compliant documents [4], an XML-related technol-
ogy, namely XPath [5] has been chosen to represent the lo-
cation property.

XPath is a language that allows to select node sets in
DOM trees through node path expressions. An XPath ex-
pression can match simple leaf nodes or complex ones. It

can also return multiple nodes or void results. These abil-
ities are of high importance to us, since they can address
the optionality, multiplicity and format properties of page
components. Furthermore, predicates can be associated to
XPath expressions in order to constrain or broaden their se-
lection scope, thus enabling to produce very precise results.

On the other hand, XPath expressions always select full
nodes. That feature does not allow a part only of a text
node to be extracted. Consequently, the extracted data will
sometimes require post processing in order to remove their
noisy parts.

A sample mapping rule is given below. It addresses the
runtime component (i.e., the length of the movie) in imbd-
movies pages.

name : runtime
optionality : mandatory
multiplicity : single-valued
format : text
location : BODY[1]/DIV[2]/TABLE[3]/TR[1]/TD[3]/

TABLE[1]/TR[6]/TD[1]/text()[1]

3. Building mapping rules

In this section, we describe the scenario through which
mapping rules are built for a specific page cluster (Figure 3).
This methodology is semi-automated as it requires both hu-
man intervention and automatic rules deduction.

Page clusterWeb pageWeb pageWeb pageWeb pageWeb page Working sampleWeb pageWeb pageWeb pageSample selection

Candidate rule building

Rule checking

Rule refinement

Rule recording

For each component C

Rule for C is OK

Candidate mappingrule for C
exit

YN Rules repositorydata flowcontrol flow

Page clusterWeb pageWeb pageWeb pageWeb pageWeb page Working sampleWeb pageWeb pageWeb pageSample selection

Candidate rule building

Rule checking

Rule refinement

Rule recording

For each component C

Rule for C is OK

Candidate mappingrule for C
exit

YN Rules repository

Page clusterPage clusterWeb pageWeb pageWeb pageWeb pageWeb pageWeb pageWeb pageWeb pageWeb pageWeb page Working sampleWeb pageWeb pageWeb pageWeb pageWeb pageWeb pageWeb pageWeb pageWeb pageSample selection

Candidate rule building

Rule checking

Rule refinement

Rule recording

For each component C

Rule for C is OK

Candidate mappingrule for C
exit

YN Rules repositoryRules repositorydata flowcontrol flow
Figure 3. Mapping rules building scenario

3.1. Sample selection

A representative set of pages is selected to form a work-
ing sample. These pages belong to a same page cluster, but
must ideally exhibit the major structural discrepancies that
can be found amongst the pages of this cluster. Practice has
shown that a sample of about ten randomly selected pages
usually includes most of these variants. Other works [6] re-
port that mapping rules converge after the analysis of about
5 pages.

Throughout the process, each page of the working sam-
ple is likely to enhance the quality and the accuracy of the
mapping rules.

The following steps are performed for each component
of interest from the user’s point of view.

3.2. Candidate rule building

A candidate rule is a mapping rule that defines a com-
ponent in (at least) one page of the working sample. Such
a rule is built from the selection and the interpretation of a
component value in one (randomly chosen) page of the sam-
ple. Selection and interpretation are two kinds of user-input
from which a candidate mapping rule can be automatically
computed.

Selection consists in pointing (and thus locating) a com-
ponent value in one page of the sample. This operation
leads to the automatic generation of a precise XPath expres-
sion, i.e., an XPath where each HTML element is associ-
ated with its parent-relative position, leading to the focused
value. The XPath is tentative and is assigned to the location
property of the candidate rule.

Interpretation is the process through which a semantic
meaning is given to the selected component value. In our
approach, the name given to a component (i.e., its semantic
interpretation) is not automatically inferred [6] but rather

specified by a human operator. By doing so, we focus on
flexibility and precision rather than on automation.

The properties of a candidate mapping rule are deduced
according to the following principles:

• location and name are respectively given by selection
and interpretation.

• optionality and multiplicity are set to mandatory and
single-valued respectively. Because a candidate rule
first considers one page of the sample, the component
is obviously considered mandatory. In this preliminary
process of the scenario, the selected component value
is always a single instance of the component and is
therefore considered single-valued.

• format is set to text if the selected component value is
a simple text node; otherwise, it is set to mixed .

3.3. Rule checking

The candidate rule is applied on the successive pages of
the working sample to check whether it can retrieve the per-
tinent component values in all of them. This checking is
carried out by means of visual inspection in a tabular view
which displays the retrieved data in each page of the work-
ing sample. Table 1 displays the matched data for the com-
ponent runtime of a 4-page working sample of the imdb-
movies cluster.

Table 1. Candidate rule checking for compo-
nent ”runtime”

Page URI Component value
a. ./title/tt0095159/ 108 min

b. ./title/tt0071853/ 91 min

c. ./title/tt0074103/ The Wing and the Thigh
(International: English title)

d. ./title/tt0102059/ -

The perfect case arises when the candidate rule matches
the targeted value in every page. In such a case, the rule
is recorded (Section 3.5). If, on the contrary, a mismatch
occurs, then the rule must be refined (Section 3.4).

In Table 1, the candidate rule has selected the expected
text node for rows a and b . However, the ”min” suffix will
have to be removed in order to get the proper data. Rows c
and d show respectively unexpected and void values. Con-
sequently, the rule refinement process is required.

3.4. Rule refinement

Generated from one positive example, a candidate rule
is frequently too specific to locate the expected component
values in all the pages of the working sample. Several situ-
ations may actually occur:

• In (at least) one page of the sample, the value matched
by the candidate rule is an unwanted value (e.g., in-
stance of another component, intrusive fragment) (Ta-
ble 1, row c);

• In (at least) one page of the sample, the candidate rule
cannot match any value (Table 1, row d);

• In (at least) one page of the sample, the value matched
by the candidate rule is incomplete; this situation oc-
curs when the component value is made of text only in
some pages and of text and HTML tags in other pages;

• In (at least) one page of the sample, the value appears
to be multivalued.

In order to solve these conflicts and build a valid map-
ping rule, we enter an iterative process during which the
candidate rule is refined, each negative example (i.e., pages
in which the candidate rule was not able to locate the ex-
pected component value) being handled one at a time.

Several strategies can be adopted, depending on the spe-
cific problem to address. We explain some of them.

Adding contextual information

As already stated, a candidate rule is as specific as pos-
sible. Sometimes, locating a component value through a
position-based XPath may prove insufficient. For instance,
an optional component may produce position shifts in some
pages, thus leading to unwanted or void results.

In such a case, a good solution is to remove the position
information where the shift occurs and to add contextual
information in terms of a constant character string that al-
ways visually appears before (or after) the targeted value.
The XPath is thus more flexible as regards syntax (position
of tags), and the addition of contextual information ensures
that component values will be reliably located.

In terms of tree structure, it consists in locating a node
on the basis of its relative location with respect to another
text node that always comes before (or after) it. Trees are
traversed according to a Depth First Search, which is the
most natural way of reading a document.

Given two Web pages (partially represented by their
HTML code in Figure 4) of a working sample related to
imdb-movies , we want to define a mapping rule for a com-
ponent named runtime . From a selection in the first page, a
candidate rule is generated. It includes the XPath of Table 2,
row a. Because this first candidate rule matches a wrong

<BODY>
...

<TR>
…
</TR>
<TR>

<TD>
Runtime:
108 min

Country:
USA/UK

Language:
English/Italian/Russian

</TD>
</TR>

...
</BODY>

<BODY>
...

<TR>
…
</TR>
<TR>

<TD>
Also Known As:
The Wing and the Thigh

(International: English title)

Runtime:
104 min

Country:
France

</TD>
</TR>

...
</BODY>

<BODY>
...

<TR>
…
</TR>
<TR>

<TD>
Runtime:
108 min

Country:
USA/UK

Language:
English/Italian/Russian

</TD>
</TR>

...
</BODY>

<BODY>
...

<TR>
…
</TR>
<TR>

<TD>
Also Known As:
The Wing and the Thigh

(International: English title)

Runtime:
104 min

Country:
France

</TD>
</TR>

...
</BODY>

Figure 4. Using contextual information

data item in the page on the right-hand side of Figure 4
(”The Wing and the Thigh (International: English title)”),
it needs to be refined by adding a contextual specification.
Indeed, in both pages, the component is always preceded by
the constant string ”Runtime:” The refined XPath is shown
in Table 2, row b: the erroneous position predicate is re-
placed by a predicate searching for a specific text node in
the preceding and ancestral nodes. This latest XPath ex-
pression allows the right component values to be selected in
all the pages of the sample.

Table 2. Examples of valid XPath expressions

XPath expression
a. BODY//TR[6]/TD[1]/text()[1]

b. BODY//TR[6]/TD[1]/text()[ancestor-or-self/preceding-
sibling//text()[contains(”Runtime:”)]]

c. BODY//TABLE[1]/TR[1]

d. BODY//TABLE[1]/TR[position()>=1]

e. BODY//TABLE[1]/TR[2]/TD[2]/text()

f. BODY//TABLE[1]/TR[17]/TD[2]/text()

Table 3 shows the selected component values after the
refinement of the rule related to the runtime component.

Table 3. Rule checking after rule refinement

Page URI Component value
a. ./title/tt0095159/ 108 min

b. ./title/tt0071853/ 91 min

c. ./title/tt0074103/ 104 min

d. ./title/tt0102059/ 84 min

Optionality, multiplicity and format properties

Because all the pages of a cluster have a similar but possi-
bly non-identical structure, a component identified in a page
can be missing in other ones. In such a case, the candidate
rule selects a wrong component value (or no value at all).
To handle this, the optionality property is set to optional.

In the preliminary phase of candidate rule building (Sec-
tion 3.2), the result returned by the rule is always a sin-
gle component value. However, Web pages often display
consecutive pieces of information of the same type (list of
comments, items, people). In HTML, these repetitive com-
ponents mainly appear in the form of bulleted lists or table
rows. To handle this, the position predicate associated to
the repetitive tag is broadened in order to select consecutive
component values. For instance, in Table 2, the XPath ex-
pressions in row c and d respectively select the first row of
an HTML table and each row of the same table.

Declaring a component multivalued is also part of the rule
refinement process. The repetitive tag is automatically de-
duced by the comparison of the XPath expressions locating
the first and the last instances of the multivalued component.
For example, if rows e and f in Table 2 lead to the first and
the last values of a multivalued component, the repetitive
element is undoubtedly <TR>.

Sometimes, the located value turns to be incomplete. In
such a case, the problem lies in the fact that the expected
value is composed of a single text node in some pages and
of text nodes and HTML tags in other pages. To fix that, the
format property is set to mixed.

Adding an alternative path

Adding contextual information and modifying the proper-
ties of a rule do not always give results that are satisfactory
enough. Sometimes, we have still to deal with missing or
wrong values.

In such a case, a component value is selected in a page
where it could not be located to produce a new XPath ex-
pression that is appended to the mapping rule.

3.5. Rule recording

Once the candidate rule has been validated for the com-
ponent values in all the pages of the working sample, it is
recorded in a rule repository. This repository will be used
by external agents, for instance by the XML extractor.

4. XML extraction

The output of the analysis process can be understood as
a primitive three-level XML structure made of a root ele-
ment representing the page cluster, a second level element

for each page of the cluster and a leaf element for each page
component. Figure 5 shows a part of the XML document
generated for the imdb-movies cluster, assuming that only
the runtime component has been defined.

If this three-level structure does not fit the user’s view of
the data, it can be transformed by iterative aggregation of
the component elements into a richer tree structure that ei-
ther better represents the intrinsic page structure, or meets
other user requirements. For instance, in our imdb-movies
cluster, the leaf components comments and rating could
be embedded into a higher level component called users-
opinion. In such a case, this enhanced structure is recorded
in the rule repository.

The XML export is handled by a Java application. First,
it uses the information contained in the rule repository to
generate a data structure in the form of an XML Schema.
To be more precise, the name property of a mapping rule
becomes the name of an XML Schema element, while the
optionality and multiplicity properties are transformed into
cardinality constraints in the target structure. If enhanced
structure information is recorded in the rule repository, it is
used to produce a nested data structure accordingly. Oth-
erwise, the default three-level structure is used. Second,
the Java application relies on the mapping rules stored in
the rule repository to extract the targeted data from the
HTML pages of the corresponding cluster. These data are
stored into an XML document that complies with the XML
Schema.

<?xml version="1.0" encoding="ISO-8859-1"?>
<imdb-movies>

<imdb-movie uri="http://imdb.com/title/tt0095159/">
<runtime>108 min</runtime>

</imdb-movie>
<imdb-movie uri="http://imdb.com/title/tt0071853/">

<runtime>91 min</runtime>
</imdb-movie>
<imdb-movie uri="http://imdb.com/title/tt0074103/">

<runtime>104 min</runtime>
</imdb-movie>
…
<imdb-movie uri="http://imdb.com/title/tt0102059/">

<runtime>84 min</runtime>
</imdb-movie>

</imdb-movies>

Figure 5. Example of a generated XML docu-
ment

5. The Retrozilla tool

This section describes Retrozilla, a Mozilla-based [15]
prototype dedicated to the building of mapping rules.

1

2

4

3

1

2

4

3

Figure 6. Example of a generated XML document

The Mozilla platform was chosen for the following rea-
sons:

• Extensibility: Mozilla provides a cross-platform de-
velopment framework that allows developers to create
applications from accessible components (Javascript,
XUL, XPCOM).

• DOM interpretation of Web documents: Mozilla
provides an internal DOM representation of loaded
HTML documents, whatever their syntactical quality.
This hierarchical view of documents is necessary to lo-
cate components by means of XPath expressions.

• Tab-browsing facilities: when each page of a work-
ing sample is loaded in a tab, it is very comfortable to
switch between them during the rule refinement step.

• Built-in XPath engine: Mozilla provides a built-in
XPath engine that allows to select nodes in loaded doc-
uments.

5.1. The Retrozilla GUI

Developed as a plug-in for the Mozilla browser,
Retrozilla is a toolbox that allows to perform each step of
the scenario described in Section 3 in a user-friendly way.
The Retrozilla Graphical User Interface (Figure 6) includes
a Mozilla browser and a control panel.

Each page of the working sample is loaded in a tab of the
Mozilla browser (Figure 6, square 1). After the selection
of a component value in the browser, a dialog box allows
its interpretation and the generation of a first candidate rule
(Figure 6, square 2).

For rule checking, the control panel of Retrozilla in-
cludes a table similar to the one depicted in Table 1. The
candidate mapping rule under definition can thus be eas-
ily validated by a visual inspection of the component val-
ues (Figure 6, square 3) retrieved in each page of the sam-
ple. Rule refinement and recording are also realized with
the help of the control panel which receives user input and
permanently displays on the fly the values matched by the
mapping rule (Figure 6, square 4).

The screenshot of Figure 6 shows the definition of the
runtime component and the application of this definition to
the other pages of the working sample after the addition of
contextual information.

5.2. The mapping rule builder

The mapping rule builder uses the internal DOM repre-
sentation to compute the XPath leading to the value selected
in the page displayed on the screen.

In addition, this component is responsible for gathering
user inputs and associating them with the XPath in order to

produce a candidate rule or modify it during the refinement
process.

6. Related work

Mapping rules building is seldom discussed as a stan-
dalone topic in the literature. Most often, it is regarded as
part of a broader process, i.e., Web data extraction. As al-
ready mentioned in the introduction of this paper, in our
view, mapping rules can be used for various other purposes.

However, since an application dedicated to the extraction
of Web data towards XML has been developed too, posi-
tioning our work with respect to other Web data extraction
approaches seems relevant.

Various techniques are proposed in the literature for Web
data extraction: declarative languages [9], [2], wrapper in-
duction [10], [16], deduction from ontologies [21].

By using XPath expressions to select data in Web doc-
uments, the Retrozilla approach is based on a technique
called HTML tree structure analysis. Other projects also
rely on this technique. Many of them, just like Retrozilla,
have developed a customized Web browser to build data
extraction modules (most often called Web wrappers) in a
user-friendly way [3], [12], [19], [14].

Amongst them, Lixto [3] uses Elog, an expressive but
complex tree query language compared to XPath. XWRAP
[12] also uses tree paths and allows hierarchical structure
extraction. However, XWRAP-generated mapping rules are
expressed in a more procedural way (i.e., with conditional
and loop structures) rather than in a flat static structure, as
Retrozilla does. The wrapping language of W4F [19] is
the HTML Extraction Language (HEL). Its particularity is
the possibility to navigate the HTML tree either along the
document hierarchy (like traditional XPath expressions) or
along the stream of the document (i.e., its reading order).
This latter original feature is useful to assign contextual in-
formation to components. SG-WRAP [14] is a visual tool
that builds wrappers from a predefined schema. Associated
to SG-WRAM [13], it also allows the detection of wrap-
per failures and automatic wrapper maintenance. If, on the
one hand, these various systems seem to produce effective
results, on the other hand, the use of complex built-in lan-
guages makes it difficult, or at least costly, to reuse these
methods in applications other than data extraction.

Two other projects, Roadrunner [6] and EXALG [1], also
rely on the HTML structure to produce wrappers, but they
differ from all the other ones by proposing complete au-
tomation in wrapper construction. In these systems, com-
plex algorithms iteratively compute a common grammar for
documents of a given cluster by comparing them. Both
projects plan to provide techniques to automatically label
the extracted data with representative names, but so far a
user intervention is still necessary to give a semantic inter-

pretation to the extracted data. Another drawback of this
kind of approach is the lack of flexibility as regards targeted
data. Indeed, since the process is fully automated, there is
no means of deciding which components must be extracted.
All varying chunks of the HTML source code will be part
of the extracted data, thus leading to documents containing
data that do not interest some classes of end-users.

Finally, we suggested, in a previous paper [8], a com-
plementary approach for Web data extraction and schema
generation. In this work, the mapping between HTML and
XML was realized by means of a META file, i.e., an XML
representation of page clusters based on the source HTML
structure. This approach allowed the extraction of complex
multi-level XML structures from Web documents but re-
quired a better knowledge of HTML and XML models on
the user’s part.

In an objective and qualitative analysis of Web data ex-
traction tools, [11] exposes some features commonly used
to characterize such tools. It is worth evaluating Retrozilla
with respect to these criteria, namely degree of automa-
tion, support for complex objects, page content, ease of
use, XML output, support for non-HTML sources and re-
silience/adaptiveness (Table 4).

Table 4. Main features of Retrozilla

Feature Value Argumentation
Automation Semi Mapping rules are based on

both user intervention and auto-
matic computing.

Complex
objects

Yes A posteriori definition of com-
plex components.

Page content Data Xpath expressions are best
suited to data-oriented docu-
ments rather than text-oriented
ones.

Ease of use Easy User intervention in a browser
view; no technical skills re-
quired.

Xml output Yes The extraction of data towards
XML is already supported.

Non-HTML Could be Mapping rules could be adapted
to other source formats.

Resilience/
adaptiveness

No Presently, the changes over
time are not automatically de-
tected.
A set of mapping rules ad-
dresses only one page cluster.

7. Conclusion and future work

This paper discusses a tool-supported scenario to build
mapping rules from a sample of HTML documents and ex-

tract the targeted data towards an XML document. Fur-
thermore, such rules can be processed by external agents
in order to facilitate their access to HTML-embedded data.
Our approach is generic enough to be useful for multiple
purposes. Indeed, since they provide information on the
meaning, the location and the cardinality of page compo-
nents, mapping rules can be used by a wide range of appli-
cations such as the migration of a static Web site towards
a database, the integration of data coming from heteroge-
neous Web sites, the monitoring of Web data such as con-
current prices or stock rankings.

Retrozilla is a toolbox that implements this approach.
Compared to similar approaches, the main features of
Retrozilla are its ease of use and flexibility.

Assuming that user intervention is essential to provide
a good interpretation of data, user-friendliness was made
a major goal of our system. In the user’s view, mapping
rules are built regardless of both the HTML syntax and the
mapping rules formalism.

Another important point was to make our system flexi-
ble. In other words, given a page cluster, different users can
build different sets of mapping rules, according to their spe-
cific needs, what is generally not the case in other systems.

In addition, since the mapping rules are defined from a
representative set of Web pages, most of (if not all) the dis-
crepancies that can appear between pages are taken into ac-
count, thus giving fairly accurate results when extracting
data.

At this stage, Retrozilla is unable to detect and repair
automatically failures in the extraction process. However,
according to our definition of mapping rules, we think that
error recovery could be achieved by Retrozilla in a semi-
automated way. For instance, a failure in a rule could be
automatically detected when a mandatory component can-
not be found in one page or when the extraction of a single-
valued text component returns more than one node. When
such a failure is detected, the rule should be refined manu-
ally from the negative examples.

Because XPath was chosen to select the component in-
stances in the HTML documents, Retrozilla cannot extract
only a part of a text node. That feature may become a real
restriction when a text node contains more textual informa-
tion than the component value (Table 3) or when the text
node actually includes a comma-separated list of values of a
multivalued component. Extra information could be added
to mapping rules to handle this kind of situation. Using
regular expressions would allow to finely select the com-
ponent values within a text node to the detriment of user-
friendliness.

Retrozilla is empirically more effective on fine-grained
HTML structures (i.e., highly nested documents) rather than
on poorly structured (i.e., relatively flat) documents. In-

deed, components can be located more accurately when
there are nested in a deeper structure.

In the Retrozilla approach, each component value is cur-
rently a text node, i.e., a leaf node in the HTML hierar-
chical structure (in case of a mixed component, the com-
ponent value is a list of text nodes separated by HTML
tags). The definition of complex components (i.e., com-
ponents containing other components) is not handled by
Retrozilla. Consequently, the raw structure of targeted data
is completely flat. However a nested data structure can be
produced, a posteriori, during the extraction step, by means
of iterative aggregation of leaf elements (Section 4). This
bottom-up approach proves to be flexible and well appro-
priate for agile Web data extraction, i.e., when only a few
simple components need to be defined (for instance, the ex-
traction of a stock value or a concurrent price). On the other
hand, in a top-down approach, high-level blocks are first de-
clared before their inner (leaf) content. In a previous work
[8], we show that this approach can be optimally used in the
context of Web sites re-engineering (e.g., Web data migra-
tion towards a database) or when complex data structures
need to be declared. According to the exploitation of the
extracted data, one approach will always be preferred to the
other but we are working on the integration of both views to
get a multipurpose environment.

While the current Retrozilla prototype has proven effec-
tive on small case studies, it still has to be tested on a larger
scale. In this respect, we plan to carry out a performance
study with a panel of potential users in order to assess both
the usability of the prototype and the accuracy of the results.

In the near future we will also explore the opportunity to
build mapping rules according to a pre-existing data struc-
ture (XML Schema, RDF, OWL). Such an improvement
would allow schema reusability and sharing, and would
make it easier to integrate data coming from various Web
sites.

8. Acknowledgments

That research project is supported by the European
Union (ERDF) and the Région Wallonne (DGTRE) under
contract no EP1A12030000062 130007.

References

[1] A. Arasu and H. Garcia-Molina. Extracting structured data
from web pages. In Proceedings of the 2003 ACM SIGMOD
International Conference on Management of Data, pages
337–348, 2003.

[2] G. O. Arocena and A. O. Mendelzon. WebOQL: Restruc-
turing documents, databases, and webs. In Proceedings
of the 14th International Conference on Data Engineering
(ICDE’98), pages 24–33, 1998.

[3] R. Baumgartner, S. Flesca, and G. Gottlob. Visual web
information extraction with lixto. In Proceedings of the
27th International Conference on Very Large Data Bases
(VLDB’01), pages 119–128, 2001.

[4] W. W. W. Consortium. Document object model (dom).
http://www.w3.org/DOM.

[5] W. W. W. Consortium. Xml path language (xpath).
http://www.w3.org/TR/xpath.

[6] V. Crescenzi, G. Mecca, and P. Merialdo. Roadrunner: To-
wards automatic data extraction from large web sites. In
Proceedings of the 27th International Conference on Very
Large Data Bases (VLDB’01), pages 109–118, 2001.

[7] V. Crescenzi, G. Mecca, and P. Merialdo. Wrapping-
oriented classification of web pages. In Proceedings of the
2002 ACM Symposium on Applied Computing (SAC), pages
1108–1112, 2002.

[8] F. Estievenart, A. François, J. Henrard, and J.-L. Hainaut. A
tool-supported method to extract data and schema from web
sites. In Proceedings of the 5th International Workshop on
Web Site Evolution (WSE’03), pages 3–11, 2003.

[9] G. Huck, P. Fankhauser, K. Aberer, and E. J. Neuhold. Jedi:
Extracting and synthesizing information from the web. In
Proceedings of the 3rd IFCIS International Conference on
Cooperative Information Systems (CoopIS’98), pages 32–
43, 1998.

[10] N. Kushmerick. Wrapper induction: Efficiency and expres-
siveness. Artificial Intelligence, 118(1-2):15–68, 2000.

[11] A. H. F. Laender, B. A. Ribeiro-Neto, A. S. da Silva, and
J. S. Teixeira. A brief survey of web data extraction tools.
SIGMOD Record, 31(2):84–93, 2002.

[12] L. Liu, C. Pu, and W. Han. Xwrap: An xml-enabled wrap-
per construction system for web information sources. In
Proceedings of the 16th International Conference on Data
Engineering (ICDE’00), pages 611–621, 2000.

[13] X. Meng, D. Hu, and C. Li. Schema-guided wrapper main-
tenance for web-data extraction. In Proceedings of the 5th
ACM CIKM International Workshop on Web Information
and Data Management (WIDM’03), pages 1–8, 2003.

[14] X. Meng, H. Lu, H. Wang, and M. Gu. Data extraction from
the web based on pre-defined schema. J. Comput. Sci. Tech-
nol., 17(4):377–388, 2002.

[15] Mozilla. Mozilla suite - the all-in-one internet application
suite.

[16] I. Muslea, S. Minton, and C. A. Knoblock. Hierarchical
wrapper induction for semistructured information sources.
Autonomous Agents and Multi-Agent Systems, 4(1/2):93–
114, 2001.

[17] M. H. Nodine, J. Fowler, T. Ksiezyk, B. Perry, M. C. Taylor,
and A. Unruh. Active information gathering in infosleuthTM.
Int. J. Cooperative Inf. Syst., 9(1-2):3–28, 2000.

[18] F. Ricca and P. Tonella. Using clustering to support the mi-
gration from static to dynamic web pages. In Proceedings of
the 11th International Workshop on Program Comprehen-
sion (IWPC’03), pages 207–216, 2003.

[19] A. Sahuguet and F. Azavant. Building intelligent web appli-
cations using lightweight wrappers. Data Knowledge Engi-
neering, 36(3):283–316, 2001.

[20] L. K. Shih and D. R. Karger. Using urls and table layout for
web classification tasks. In Proceedings of the 13th inter-
national conference on World Wide Web (WWW’04), pages
193–202, 2004.

[21] H. Snoussi, L. Magnin, and J.-Y. Nie. Towards an ontology-
based web data extraction. In Online Proceedings of Busi-
ness Agents and the Semantic Web (BASeWEB’02), 2002.

[22] P. Tonella, F. Ricca, E. Pianta, and C. Girardi. Using key-
word extraction for web site clustering. In Proceedings
of the 5th International Workshop on Web Site Evolution
(WSE’03), pages 41–48, 2003.

