Formal Methods for IT Security

IIIIiiﬁﬁEWiiii..ii.ll.lll.ll.iiilh

ISACA — CETIC Meeting
May 23th 2007

Objectives of the talk

What are formal methods ?
What to expect from their application ?
Our experience with some formal modeling tools

Context : IT Security

date titre

EERREEEREEEE NN n L

N

The roadmap

Introduction

The added value brought by Formal methods
Formal models in C.C. certification

Formal modeling tools

Cetic experience with formal tools

Conclusion

date titre

AT I L N IrIraTTTIsIn-

Formal Methods & IT Security

IT Security

tware Engineering

Formal Methods

date titre

illllliﬁﬁﬂﬂiii.iii.‘llllllll.iii.h

What are formal methods ?

Formal methods are mathematically-based techniques
for the specification, development and verification
of software and hardware systems

Idea : performing mathematical analyses can contribute
to the reliability and robustness of a design.

date titre

HEEEEEEEEEEEN SRR RN

ol

date

IT Security

IT / Computer Security aims at preventing,
or at least detecting unauthorized actions
by agents in a computer system.

IT security complements :

Safety : absence of damage due to mistakes
or other unintentional failure

titre

EERREEEREEEE NN n L

(o]

IT Security as a Software
Engineering Problem

Situation : security loopholes in IT systems actively exploited
Objective : thwart attacks by absence of vulnerabilities
Difficulty : security 1s interwoven with the whole system.

IT systems are very complex, security flaws are hard to find.

Remedy :

* address security in all development phases
* do review and tests

* make use of formal modeling / analysis

date titre

The roadmap

= |ntroduction

= The added value brought by Formal meth

iR L

= Formal models in C.C. certification
= Formal modeling tools
= Cetic experience with formal tools

m Conclusion

:
ATITILI IRy

date titre

V Life Cycle

Time & Money

—

Requirements System tests

N

. ‘/_\ . =
Design & (\ Unit & Integration Tests :

date titre

A
v

T T

T

V Life Cycle with Formal Methods

get at formal artifacts early enough

in the lifecycle to apply useful analysis

within the design loop.

\

\ Time & Money

Requirements

X
N\

Design & Code

date

/
|

titre

System tests

Unit & Integration Tests

EERREEEREEEE NN n L

=
o

1

-

Added Value of Formal Methods =
-

.

.

. E

Damage / Probability -

i likel rare E

of a software glitch _Y . Occurrence =
o N T -

/! Y\ ’ N a

harmless| / 1 %\ / ; =

,’l \\‘ \\ ,I -

| RN e a

i il -

/‘\\/ - 'l, ~ N a

catastrophic |\ 3 4) -

NN / / —

\\\ // - < R |

v e - =

Impact _:

2

a2

3

1 & 3 : covered by traditional testing ..
1

3 & 4 : target of formal methods techniques 3
A : is important and not adequately covered by traditional sw testing :
date titre —

NASA Feedback :
Invest In your requirements !

200

160

120 |

Target Cost Overrun, Percent

12

The roadmap

= [ntroduction

= The added value brought by Formal methods
= Formal models in C.C. certification

= Formal modeling tools

= Cetic experience with formal tools

= Conclusion

SRRl sannnnnniiiin.

date titre

i
™

Certification Goals & General
Approach

Goal : gain confidence in the security of a system

« What are the goals to be achieved ?

 Are the measures employed appropriate to achieve the goal ?
 Are the measures implemented correctly ?

Approach : assessment of system security by neutral experts
e Understanding the security functionality of the system
» Gaining evidence that functionality 1s correctly implemented
» Gaining evidence that the integrity of the system is kept

Result : Successful evaluation 1s awarded a certificate

date titre -

£% Common Criteria

date

International standard :
* Version 2.1 : ISO / IEC 15408:1999
e Version 3.1 : ISO / IEC 15408:2006

Generic approach :
e full range of IT systems
» scalable level of assurance

titre

15

CC process : Build a Security Target

- Definition of the Target of Evaluation (TOE) and
separation from its environment
 Definition of the security threats and objectives for the TOE
e Introduction of TOE Security Functions (TSF) :
measures intended to counter the threats
* Determination of Evaluation Assurance Level (EAL)

— The Security Target is the central document to which
all subsequent evaluation activities and results refer !

date titre

16

Evaluation Assurance levels

EAL1 : functionally tested

EAL?2 : structurally tested

EAL3 : methodically tested and checked

EAL4 : methodically designed, tested and reviewed

EALS : semiformally designed and methodically tested
including formal security policy model

EALG6 : semiformally verified and methodically tested
EAL7 : formally verified design and methodically tested

Increasing requirements on scope, depth and rigor

date titre -

The roadmap

= [ntroduction

= The added value brought by Formal methods
= Formal models in C.C. certification

= Formal tools & examples

= Cetic experience with formal modeling tools

= Conclusion

date titre

T T

AAEEER

=

Which formal tools ?

Formal tools

» Effort

Reward
(Assurance) //
Invisible Automated | Interactive
Formal Methods Model Theorem Theorem
\ checking Proving Proving
JML, Spin, Prover9, PVS,
Static Checkers, NuSmv, Waldmeister, Isabelle,
SAL,
(Alloy),
date titre

="

=

Alliannannnnnnnifiiin.

il

AEEEER

Alloy Analyzer

A model finder

Based on SAT technology : given a propositional formula, finds an
assignment of the propositional variables that satisfies the formula

Input : a first-order relational logic specification, analysis directives
with scopes

Automatic push-button technology, no expert knowledge required

Output : examples and counterexamples

date titre

N ; =
AL R R R R R R rrsrIIINInNI=-

Alloy Language

="

Alliannannnnnnnifiiin.

canFlow
(~ dominates)
SecurityClass Poset : reflexive, transitive, antissymmetric
|
.
|
TopSecret Secret Confidential Unclassified - ;a
-
- a
- A
a
a
E |
E |
. -
date titre

L)
-

ntares' jfm'Documents_2007ISACA"Ch_Wall\poset.als

File Edit Execute Options ‘Window Help

g ld ¥ A

Mew ©pem Save Ewecute Show

module Poset

e s ol e o e o o o ool e R s o e s o o e R

--* The specdfication ; signatures, relations, facts, predicates

ek sk ok ok ok ook ke ok ok ok ok ok ok ok ke ok ok sk ok ok ok ok ok ok R o ok ok ok ok ok ok ok ok ok ok e ok ok ok ok ok ok R ok ok ok

abstract sig SecurityClass |
canFlow @ set SecurityClass
Iy

fact canFlow_is_poset
£ canFlow is reflexive
all 5o SecurityClass | scin sc.canFlow
ff canFlow is transitive
all scl, 5c2, sc3 © SecurityClass |
sc2 in scl.canFlow and sc3 in sc2 canFlow == sc3 in scl.canFlow
Jf canFlow is antisyrmmetric
all disj sc1, =02 ¢ SecurityClass |
scl in sc2.canFlow and sc2 in scl.canFlow =% scl = 5c2

¥

/f TopSecret, Secret, Confidential, Undassified

one sig TS, 5, C, U extends SecurityClass {F

fact securityClasses |
C inU.canFlow Jff U-»C,ie. Cdominates U
S inC.anFlow ff C-»5S, i.e. Sdominates C
TS in S.canFlow ff 5 -» TS, 0., TS dominates S

Iy

pred show () §F

ek sk ok ok ok ook ke ok ok ok ok ok ok ok ke ok ok sk ok ok ok ok ok ok R o ok ok ok ok ok ok ok ok ok ok e ok ok ok ok ok ok R ok ok ok

--* Analysis directives : runs, assertions and checks + scopes

ek sk ok ok ook ke ok ok ok ok ok ok ok ke ok ok sk ok ok ok ok ok ok b o R ok ok ok ok ok ok ok ok ok sk e ok ok ok ok ok ok R ok ok ok

run show for 3
assert a_false_predicate {
Uin TS.canFlow

check a_false_predicate for 2

Alloy Analyzer 4.0 RC7 (build date: 2007 /Mayf01 19:47 EDT)

Exzecuting "Check a_false_predicate for 3"
Solver=minisat Bitwidth=4 MaxSeq=3 Symmetry=20
23 vars, 16 primary vars, 118 clauses. 484ms.
Counterexample found. Assertion is invalid. 172ms.

Executing "Run show for 3"
Solver=minisat Bitwidth=4 MaxSeq=3 Symmetry=20
83 vars, 16 primary vars, 117 clauses, 109ms,
Instance found. Predicate is consistent, 141ms.

2 {poset) Run show for 3 I =] B4
File Instance Theme ‘Window
A= A=
Attt e @ & H
Wiz Dot HML Tree Theme Ewvaluator Mext

L anFlow
AHDW
c)anFlow anFlow
anFlow anFlow
anFlow anF oy
anFlow
TS

|

Line 1, Calurmn 1

date

titre

AR R R R R R RrrraNRNRNIRNIIIINININIINIINI-

22

1

- E

Model Checking E

.

. .
Finite State Model -
-

E

-

OK -

\ =

=

' S B
a2

-

Model checking tool 3

2

3

\ a

R

-

-

KO e

|

Temporal logic formula Error trace : wm
Lmnel:.... &

Line7:.... :

Line8: 3

E |

date titre

N
w

L= 3
Belux Chapier

Model Checking

Calculates whether a system satisfies a certain behavioural property :
- is the system deadlock free ?
- whenever a packet is sent, will it eventually be received ?

Is it like testing ? No, the major difference is : Looks at all possible
behaviors of a system

Automatic push-button technology, no expert knowledge required

Output : examples and counterexamples that help in understanding,
communicating and that can be animated

date titre -

Model Checking

= How do we express the finite state model ?
= How do we express the behavioural property?

Example : The Needham Schroeder protocol with
the SAL model checking tool (SRI).

date titre 25

Needham —Schroeder protocol
(circa 1978)

Protocol’s purpose :
mutual authentication between principals A and B
in the presence of an intruder who can intercept, delay, read, copy,
and generate messages but who does not know the secret keys

of the principals.
1. <A, Na> B
< >
Alice < 2. <Na, Nb> A
3.<Nb> B
date titre

EERREEEREEEE NN n L

N
(o))

Needham Schroeder Protocol with
SAL

Network {msg : TYPE;}:CONTEXT =

BEGIN

... network : MODULE =
...INITIALIZATION ...TRANSITION...

END

Needhamschroeder : CONTEXT =
BEGIN
... net: CONTEXT = network{msqg;} ...
principal[i: principals] : MODULE
...INITIALIZATION ...TRANSITION...
intruder[x: intruders] : MODULE
...INITIALIZATION ...TRANSITION...

System : MODULE = (([] (id: principals): principal[id]) [] intruder[e])
| | (RENAME buffer TO imsg, inms TO omsg IN net!'network);

Prop: THEOREM system |- G ((FORALL (X, y: principals) :
(pc[x]=responding AND responder[x]=y) =>
((pcly]=waiting OR pc[y]=engaged) AND responder[y]=x)));
END

date titre

AU RN NN R NN

N
N
i

17 years later ... : man in the middle
attack

[
»

<Na, Nb> A

<&

p Intruder | <
<Nb>_I \

< >
Na,Nb> A [o

<Nb> B

At the end of the attack, Bob falsely believes
that Alice 1s communicating with him,

and that NA and NB are known only to Alice and Bob.

date titre

EERREEEREEEE NN n L

N
[o¢]

Needham —Schroeder protocol

Protocol’s fix :
includes B’s identity in msg 2
Now an intruder cannot anymore replay the message since
Alice would expect the intruder’s identity.

1. <A, Na> B

< >
Alice) 2.<Na, Nb, B> A

3. <Nb> B

EERREEEREEEE NN n L

date titre

N
©

The roadmap

Introduction

The added value brought by Formal methods
Formal models in C.C. certification

Formal tools

Cetic experience with formal tools

Conclusion

SRRl sannnnnniiiin.

date titre

8
W

Formal Requirements Models

Goal

Vp : Person . o (IsAuthorized(p) —
IsRegistered(p))

Req 1 Req 2

) Vp : Person (HasRegistered(p)
Vp : Person (IsAuthorized(p) — — 0 IsRegistered(p))
¢ HasRegistered(p)

EERREEEREEEE NN n L

Check :
N(Req_1, Req_2) = Goal

date titre

w
iy

Formal Requirements Models

/(le aks from objects to sub jeyt/ ﬁ leaks from subjects to ObM
Upgrade_Classification @

fact Initial knowledge empty { all s : Subject | no s.knows.(TO/Ord.First)
all o : Object | no o.accessed.(TO/Ord.First) }

fact Progress {
all t : Tick — TO/Ord.Last | let t* = t.nextTick | some s : Subject | some o : Object |
ReadDown[s,o,t,t’] || WriteUp[s,o,t,t’] || UpgradeClassification[s,o,t,t’]

assert no_leaks from objects to subjects {
all t : Tick | all s : Subject | all o : Object | 0 ->t in s.knows =>
s.clearance in (o.classification.t).canFlow }

check no_leaks from_ objects to subjects
date titre

32

| & & = & N N

Formal Requirements Models :
Acceptance Test Generation

.......................... Finite State Model

Model checking tool| —— Witness Trace

(acceptance test
objective)

/

Trap Property : obstacle or any negated property of interest
O (some t : Train | moving(t) /\ doors_open(t))

date titre

w
w

The roadmap

Introduction

The added value brought by Formal methods
Formal models in C.C. certification

Formal tools

Cetic experience with formal tools

Conclusions

SRRl sannnnnniiiin.

date titre

N
[

Conclusions

Basic idea of formal methods :

Requirements analysis
System engineering

date

AN

High level design
System architecture

N,

Detailed design
Code structure

Build little logic design models
Analyze them thoroughly

Don’t move forward until designs are
provably correct

Reduce the reliance on testing

Testing

N\

Operation

titre

AU RN NN R NN

35

Conclusions

What is the challenge ?

Use the technology of formal methods :
* to augment traditional methods and tools
e to automate traditional processes (e.g. testing !)

To do this :
* unobstrusively extract formal specification & properties
e deliver results 1n a familiar form

date titre

EERREEEREEEE NN n L

w
(o]

Conclusions

Main benefits from Req. Engineering experience :
« a formal model is the best critics you can find:
it helps to formulate the right questions
and checks that you get the right answers

e a formal model is an invaluable communication tool
with the stakeholders

IT security context :

access control, information flows, protocols, PKI,

date titre

37

Bibliography

Role Based Access Control Models (R.S. Sandhu, E.J. Coyne)
Lattice-Based Access Control (R.S. Sandhu)

Spin course : http://spinroot.com/spin/Doc/course (G. Holzmann)
Model checking : a Tutorial Overview (Stephen Merz)

Software Abstractions (D. Jackson)

Effective Test Generation (J. Rushby) :
http://www.csl.sri.com/users/rushby/slides/efftestgen.pdf

Formal Security Analysis (D. von Oheimb) :
http://david.von-oheimb.de/cs/talks/index.html

The Needham Schroeder protocol in SAL (J. Rushby) :
http://www.csl.sri.com/users/rushby/abstracts/needham03

date titre

EERREEEREEEE NN n L

w
0]

4

E |

The Alloy analyzer -

a

B |

E |

The formal model
(relational logic) 3 counterexamples :
a

a

E |

a

v '

E |

Front - end -

Kodkod API -

R |

Conversion to CNF Conversion to -
Relational -

a

E |

SAT -

Alloy

date titre

w
©

Logic model checker : how does it
work ?

system : L(S) (the set of all possible behaviors of S)
property : L(p) (the set of valid/desirable behaviors)
prove that : L(S) < L(p) (everything possible is valid)
method :

To prove L(S) < L(p) we can prove

L(S) n (Zo\L(p)) =9
which is the same as

L(S) N L(=(Pr=2@

Spin’s verification engine

date titre

N
o

HEEEEEEEEEEEN SRR RN

Promela
Model

Logic model checker : how
does it work ?

Behaviour \

Correctness
Property

date

random and interactive
model simulation

pan.c

executable
Model-checker

v

Error-trails

&
<

Counterexamples to
Correctness properties

SRRl sannnnnniiiin.

titre

=
™

Conclusions

Basic idea of formal methods :

Requirements analysis
System engineering

date

AN

High level design
System architecture

N,

Detailed design
Code structure

Phase where design decisions are made

Testing

N\

Phase where design errors are found

Operation

titre

AU RN NN R NN

N
N

Conclusions

Basic idea of formal methods :

Requirements analysis
System engineering

date

AN

High level design
System architecture

N,

Detailed design
Code structure

Build little logic design models
Analyze them thoroughly

Don’t move forward until designs are
provably correct

Reduce the reliance on testing

Testing

N\

Operation

titre

AU RN NN R NN

43

BLP : the Object Model

Subject

knows

accessed

Object

date

clearance

classification

canFlow
(~ dominates)
SecurityClass Poset
TopSecret Secret Confidential Unclassified

IS | l il . _ A
AT I L NIy IsIn-

titre

