
1

Formal Methods for IT SecurityFormal Methods for IT Security

ISACA – CETIC Meeting
May 23th 2007

date titre
2

Objectives of the talkObjectives of the talk

What are formal methods ?

What to expect from their application ?

Our experience with some formal modeling tools

Context : IT Security

date titre
3

The roadmapThe roadmap

Introduction

The added value brought by Formal methods

Formal models in C.C. certification

Formal modeling tools

Cetic experience with formal tools

Conclusion

date titre
4

Formal Methods & IT SecurityFormal Methods & IT Security

Software Engineering

IT Security

Formal Methods

date titre
5

What are formal methods ?What are formal methods ?

Formal methods are mathematically-based techniques
for the specification, development and verification
of software and hardware systems

Idea : performing mathematical analyses can contribute
to the reliability and robustness of a design.

date titre
6

IT Security IT Security

IT / Computer Security aims at preventing,
or at least detecting unauthorized actions
by agents in a computer system.

IT security complements :
Safety : absence of damage due to mistakes
or other unintentional failure

date titre
7

IT Security as a Software IT Security as a Software
Engineering Problem Engineering Problem

Situation : security loopholes in IT systems actively exploited
Objective : thwart attacks by absence of vulnerabilities
Difficulty : security is interwoven with the whole system.

IT systems are very complex, security flaws are hard to find.

Remedy :
• address security in all development phases
• do review and tests
• make use of formal modeling / analysis

date titre
8

The roadmapThe roadmap

Introduction

The added value brought by Formal method

Formal models in C.C. certification

Formal modeling tools

Cetic experience with formal tools

Conclusion

date titre
9

V Life Cycle V Life Cycle

Why formal methods ?

Requirements

Design & Code Unit & Integration Tests

System tests

Time & Money

date titre
10

V Life Cycle with Formal MethodsV Life Cycle with Formal Methods

Requirements

Design & Code Unit & Integration Tests

System tests

Time & Money

get at formal artifacts early enough
in the lifecycle to apply useful analysis
within the design loop.

date titre
11

Added Value of Formal MethodsAdded Value of Formal Methods

likely
Damage / Probability
of a software glitch rare

harmless

catastrophic

1 2

3 4

1 & 3 : covered by traditional testing
2 : not very important
3 & 4 : target of formal methods techniques
4 : is important and not adequately covered by traditional sw testing

Occurrence

Impact

date titre
12

NASA Feedback :NASA Feedback :
Invest in your requirements !Invest in your requirements !

Why formal methods ?

date titre
13

The roadmapThe roadmap

Introduction

The added value brought by Formal methods

Formal models in C.C. certification

Formal modeling tools

Cetic experience with formal tools

Conclusion

date titre
14

Certification Goals & General Certification Goals & General
ApproachApproach

Goal : gain confidence in the security of a system
• What are the goals to be achieved ?
• Are the measures employed appropriate to achieve the goal ?
• Are the measures implemented correctly ?

Approach : assessment of system security by neutral experts
• Understanding the security functionality of the system
• Gaining evidence that functionality is correctly implemented
• Gaining evidence that the integrity of the system is kept

Result : Successful evaluation is awarded a certificate

date titre
15

International standard :
• Version 2.1 : ISO / IEC 15408:1999
• Version 3.1 : ISO / IEC 15408:2006

Generic approach :
• full range of IT systems
• scalable level of assurance

date titre
16

CC process : Build a Security TargetCC process : Build a Security Target

• Definition of the Target of Evaluation (TOE) and
separation from its environment

• Definition of the security threats and objectives for the TOE
• Introduction of TOE Security Functions (TSF) :

measures intended to counter the threats
• Determination of Evaluation Assurance Level (EAL)

⇒ The Security Target is the central document to which
all subsequent evaluation activities and results refer !

date titre
17

Evaluation Assurance levelsEvaluation Assurance levels

EAL1 : functionally tested
EAL2 : structurally tested
EAL3 : methodically tested and checked
EAL4 : methodically designed, tested and reviewed

EAL5 : semiformally designed and methodically tested
including formal security policy model
EAL6 : semiformally verified and methodically tested
EAL7 : formally verified design and methodically tested

Increasing requirements on scope, depth and rigor

date titre
18

The roadmapThe roadmap

Introduction

The added value brought by Formal methods

Formal models in C.C. certification

Formal tools & examples

Cetic experience with formal modeling tools

Conclusion

date titre
19

Formal toolsFormal tools

Why formal methods ?

Which formal tools ?

Effort

Reward
(Assurance)

Invisible
Formal Methods Model

checking

Automated
Theorem
Proving

Interactive
Theorem
Proving

Spin,
NuSmv,
SAL,
(Alloy),
….

Prover9,
Waldmeister,
….

PVS,
Isabelle,
….

JML,
Static Checkers,
…

date titre
20

Alloy AnalyzerAlloy Analyzer

A model finder

Based on SAT technology : given a propositional formula, finds an
assignment of the propositional variables that satisfies the formula

Input : a first-order relational logic specification, analysis directives
with scopes

Automatic push-button technology, no expert knowledge required

Output : examples and counterexamples

date titre
21

Alloy Language Alloy Language

Subject

SecurityClass

Secret Confidential UnclassifiedTopSecret

c

canFlow
(~ dominates)
Poset : reflexive, transitive, antissymmetric

date titre
22

Subject

knows

date titre
23

Model Checking Model Checking

Finite State Model

Temporal logic formula

Model checking tool

OK

KO
Error trace :
Line 1 : ….
Line 7 : ….
Line 8 : ….
….

date titre
24

Model CheckingModel Checking

Calculates whether a system satisfies a certain behavioural property :
- is the system deadlock free ?
- whenever a packet is sent, will it eventually be received ?

Is it like testing ? No, the major difference is : Looks at all possible
behaviors of a system

Automatic push-button technology, no expert knowledge required

Output : examples and counterexamples that help in understanding,
communicating and that can be animated

date titre
25

Model CheckingModel Checking

How do we express the finite state model ?
How do we express the behavioural property?

Example : The Needham Schroeder protocol with
the SAL model checking tool (SRI).

date titre
26

Needham Needham ––Schroeder protocolSchroeder protocol
(circa 1978)(circa 1978)

Alice Bob

1. <A, Na>_B

2. <Na, Nb>_A

3. <Nb>_B

Protocol’s purpose :
mutual authentication between principals A and B
in the presence of an intruder who can intercept, delay, read, copy,
and generate messages but who does not know the secret keys
of the principals.

date titre
27

Needham Schroeder Protocol with Needham Schroeder Protocol with
SALSAL

Network {msg : TYPE;}:CONTEXT =
BEGIN
… network : MODULE =

…INITIALIZATION …TRANSITION…
END

Needhamschroeder : CONTEXT =
BEGIN
… net: CONTEXT = network{msg;} …

principal[i: principals] : MODULE
…INITIALIZATION …TRANSITION…

intruder[x: intruders] : MODULE
…INITIALIZATION …TRANSITION…

System : MODULE = (([] (id: principals): principal[id]) [] intruder[e])
|| (RENAME buffer TO imsg, inms TO omsg IN net!network);

Prop: THEOREM system |- G ((FORALL (x, y: principals) :
(pc[x]=responding AND responder[x]=y) =>

((pc[y]=waiting OR pc[y]=engaged) AND responder[y]=x)));
END

date titre
28

17 years later 17 years later …… : man in the middle : man in the middle
attackattack

Alice Bob

<A, Na>_B

<Na, Nb>_A

<Nb>_B
Intruder

<A, Na>_I

<Na, Nb>_A

<Nb>_I

only to

At the end of the attack, Bob falsely believes
that Alice is communicating with him,
and that NA and NB are known only to Alice and Bob.

date titre
29

Needham Needham ––Schroeder protocolSchroeder protocol

Alice Bob

1. <A, Na>_B

2. <Na, Nb, B>_A

3. <Nb>_B

Protocol’s fix :
includes B’s identity in msg 2
Now an intruder cannot anymore replay the message since
Alice would expect the intruder’s identity.

date titre
30

The roadmapThe roadmap

Introduction

The added value brought by Formal methods

Formal models in C.C. certification

Formal tools

Cetic experience with formal tools

Conclusion

date titre
31

Formal Requirements ModelsFormal Requirements Models

∀p : Person . □ (IsAuthorized(p) →
IsRegistered(p))

∀p : Person (IsAuthorized(p) →
♦ HasRegistered(p))

∀p : Person (HasRegistered(p)
→ □ IsRegistered(p))

Goal

Req_1 Req_2

Check :
/\(Req_1, Req_2) ⇒ Goal

date titre
32

Formal Requirements Models Formal Requirements Models

No leaks from objects to subjects No leaks from subjects to objects

Read_Down Upgrade_Classification Write_Up

fact Initial_knowledge_empty { all s : Subject | no s.knows.(TO/Ord.First)
all o : Object | no o.accessed.(TO/Ord.First) }

fact Progress {
all t : Tick – TO/Ord.Last | let t’ = t.nextTick | some s : Subject | some o : Object |
ReadDown[s,o,t,t’] || WriteUp[s,o,t,t’] || UpgradeClassification[s,o,t,t’]

…. + frame conditions !!! …}

assert no_leaks_from_objects_to_subjects {
all t : Tick | all s : Subject | all o : Object | o -> t in s.knows =>

s.clearance in (o.classification.t).canFlow }

check no_leaks_from_objects_to_subjects ….

date titre
33

Formal Requirements Models : Formal Requirements Models :
Acceptance Test GenerationAcceptance Test Generation

Finite State Model

Trap Property : obstacle or any negated property of interest
◊ (some t : Train | moving(t) /\ doors_open(t))

Model checking tool Witness Trace
(acceptance test

objective)

date titre
34

The roadmapThe roadmap

Introduction

The added value brought by Formal methods

Formal models in C.C. certification

Formal tools

Cetic experience with formal tools

Conclusions

date titre
35

Conclusions Conclusions

Basic idea of formal methods :

Requirements analysis
System engineering

High level design
System architecture

Detailed design
Code structure

Coding

Testing

Operation

Build little logic design models
Analyze them thoroughly
Don’t move forward until designs are
provably correct

Reduce the reliance on testing

Finding errors earlier

means cost savings later

date titre
36

ConclusionsConclusions

Why formal methods ?
What is the challenge ?

Use the technology of formal methods :
• to augment traditional methods and tools
• to automate traditional processes (e.g. testing !)

To do this :
• unobstrusively extract formal specification & properties
• deliver results in a familiar form

date titre
37

ConclusionsConclusions

Main benefits from Req. Engineering experience :
• a formal model is the best critics you can find:

it helps to formulate the right questions
and checks that you get the right answers

• a formal model is an invaluable communication tool
with the stakeholders

IT security context :
access control, information flows, protocols, PKI, ….

date titre
38

BibliographyBibliography

Role Based Access Control Models (R.S. Sandhu, E.J. Coyne)

Lattice-Based Access Control (R.S. Sandhu)

Spin course : http://spinroot.com/spin/Doc/course (G. Holzmann)

Model checking : a Tutorial Overview (Stephen Merz)

Software Abstractions (D. Jackson)

Effective Test Generation (J. Rushby) :
http://www.csl.sri.com/users/rushby/slides/efftestgen.pdf

Formal Security Analysis (D. von Oheimb) :
http://david.von-oheimb.de/cs/talks/index.html

The Needham Schroeder protocol in SAL (J. Rushby) :
http://www.csl.sri.com/users/rushby/abstracts/needham03
http://david.von-oheimb.de/cs/talks/index.html

date titre
39

The Alloy analyzer The Alloy analyzer

SAT

Conversion to CNF Conversion to
Relational

Kodkod API
Front - end

Alloy

The formal model
(relational logic)

Scenarios : examples &
counterexamples

date titre
40

Logic model checker : how does it Logic model checker : how does it
work ?work ?

system : L(S) (the set of all possible behaviors of S)
property : L(p) (the set of valid/desirable behaviors)
prove that : L(S) ⊆ L(p) (everything possible is valid)
method :

To prove L(S) ⊆ L(p) we can prove

L(S) ∩ (Σω \ L(p)) = Ø

which is the same as

L(S) ∩ L(¬(p)) = Ø
Spin’s verification engine

date titre
41

Logic model checker : howLogic model checker : how
does it work ? does it work ?

Error-trails
Counterexamples to
Correctness properties

SPIN

Promela
Model
Behaviour

Correctness
Property

pan.c C
compiler

executable
Model-checker

random and interactive
model simulation

date titre
42

Conclusions Conclusions

Basic idea of formal methods :

Requirements analysis
System engineering

High level design
System architecture

Detailed design
Code structure

Coding

Testing

Operation

Phase where design decisions are made

Phase where design errors are found

The cost of fixing

mistakes goes up

date titre
43

Conclusions Conclusions

Basic idea of formal methods :

Requirements analysis
System engineering

High level design
System architecture

Detailed design
Code structure

Coding

Testing

Operation

Build little logic design models
Analyze them thoroughly
Don’t move forward until designs are
provably correct

Reduce the reliance on testing

Finding errors earlier

means cost savings later

date titre
44

BLP : the Object ModelBLP : the Object Model

Subject

Subject

SecurityClass

Object

Secret Confidential UnclassifiedTopSecret

knows

knows accessed

c

clearance

classification

canFlow
(~ dominates)
Poset

